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1 Introduction

These notes follow Ackerberg et al (2011). Empirical IO has many objectives that differ from
those I talked about for partial equilibrium continuous demand analysis.

The model setting is a general equilibrium environment, so both the supply side and
demand side are players, and both suppliers and demanders are relevant when we think
about welfare analysis. Objects of interest are, among other things: a) firm markups; b)
consumer price responses; c) new goods; d) market structure and branding; e) the cost of
living; f) firm decisions; g) production and firm cost functions.

The data environment is one where we observe at least prices and quantities at the market
level over many markets. It may be also that we observe many periods. It may be also that
we observe individual firm supplies and/or individual consumer demands within each market
(or market/time period). The most typical data set is a market panel for a particular type of
good (e.g., market-level quantities of different breakfast cereals in US cities over 1980-2010).

To address the issues faced in empirical IO, we need to construct models that can

1. Deal with market level data, even though the choice model is for individual consumers;

2. Deal with choice among a huge number of products, and be able to speak to new
products;

3. Deal with discrete aspects of product choice, like brand choice, and discretely consumed
products, like automobiles.

2 Market-level Demand Systems

The data we have are market-level quantity demands qi for i = 1, ..., N , but the model we
have is of individual consumer demands. Here, qi is a J−vector, where J could be a big
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number of possible goods. Pakes (1986) suggested a simulation estimator to bridge this gap.
Such an estimator uses several steps:

1. draw incomes yit and characteristics vectors zit for consumer i in market t from the
actual consumer characteristics in each market, e.g., from auxiliary data on consumers
characteristics in each market.

2. let some integrable demand model q̂it = q(yit, zit; θ), where θ is a parameter vector,
give the quantity vector chosen by each household. It is most likely a nonlinear model.

3. define aggregate demands q̂i(θ) =
∑

i∈t q(yit, zit; θ) given the parameter vector.

4. find the parameter vector θ that brings q̂i(θ) as close as possible to observed market
demands qi.

3 Products and Product Characteristics

If there J products (aka: goods) in a standard continuous demand system, then you have
at least J(J − 1)/2 parameters governing price effects (Slutsky symmetry gets rid of half of
them) and J − 1 parameters governing budget effects (this would be for the simplest model,
where e.g., hicks demands are linear in all prices and the budget). When J gets large, this
numbers of parameters get large. Further, it is quite hard to deal with new products in a
continuous demand approach.

When we say that J is a big number, we are referring to the fact that you can buy on
the order of 50,000 distinct products at a supermarket. If we treat each good as completely
distinct, we would need to estimate roughly 1,250,000,000 price parameters. But, do we
really think bran flakes and corn flakes are soooo different that they needed to be treated
entirely separately?

A characteristics model is one wherein each product j = 1...J actually delivers us a
K−vector of characteristics x, and our utility is a function of those K characteristics, and
not of any other information about good j. Thus, in a characteristics model, there is a
vector function x(q) that tells us how much of each characteristic we get when we buy the
quantity vector q, a J−vector of products. Here, K is taken to be much smaller than J .
Thus, the characteristics model takes the J dimensional product space and reduces it to
a K dimensional characteristics space. That is, a characteristics model offers dimension
reduction, from J products to K << J characteristics. This is a big win on parameter
reduction if K is small.
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A linear characteristics model is one wherein the utility is a function of a linear index of
those characteristics, so that x = Aq. Here, A is a KxJ matrix giving the amount of each
of the K characteristics contained in a unit of each product.

Suppose utility follows a linear characteristics model. Then,

U(q) = U(x) = U(Aq).

This is a very simple model, with a few important features (see, Blow, Browning and Craw-
ford 2008):

1. In characteristics space, every product defines a ray out of the origin. If you buy a
unit of the product, you get A units of the characteristics.

2. The budget constraint can be expressed in terms of the end points of these rays. You
can buy any quantity up to where you spend all your money on a particular product.
Connecting the end points of the rays gives you the budget constraint.

3. Some end points of rays may lie inside the convex hull of other end points. These
products are never bought, because other products provide the same characteristics at
a better price. Such products are said to suck.

4. The convex hull of the end points of rays thus defines the budget constraint. It may not
reach the axes (e.g., if there are no products that deliver just a single characteristic).

5. Indifference curves in x space just look like regular indifference curves, since the argu-
ment of utility is characteristics x.

6. You will never want to buy more products than there are characteristics. You might
want to buy less products. If your indifference curve lands on an endpoint of 1 of the
products’ rays, then you will buy just 1 product (that one), but if your indifference
curve lies on a flat bit of the convex hull, you will buy more than 1 product.

7. Characteristics models also have something to say about new goods. A new good is
just a new (or changed) column of A. If we know indifference curves over x, then we
can predict demand for something that has a different combination of characteristics
x from what we’ve observed before. That is, we can draw a new ray out, and see what
it does to the budget constraint.
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4 Discrete Demands

The continuous demand model allows the consumer to choose any positive quantity of any
product. But, in real life, you cannot buy 2 grams of rice—you have to buy a bag of rice.
So, there is discreteness in real-life consumer demand decisions.

Suppose that for each product j = 1, ..., J we could buy quantities only if they appeared
on the list qj1, .q

j
t .., q

j
Tj
. Here, Tj gives the number of choices of quantities for good j. Suppose,

e.g., that we can buy tuna only in 100g tins. Then, qjt is multiples of 100g. The set {qjt}j,t
defines all the possible combinations of quantities we could buy. This set defines the budget
constraint, which will generally be a step function in quantity space.

Indifference curves are still over continuous quantities. All we have changed is the budget
constraint. Nonetheless, this model has a few important features:

1. Consumers will always choose a quantity vector on a kink of the budget constraint.
The flat parts are all dominated by the kinks.

2. Consumers will not in general spend all their money. This means that there must exist
another good (sometimes called the “outside good”, sometimes called “money”) where
that extra money can be spent. In a static model, this outside good may or may not
generate utility. In a dynamic model, the outside good may be savings, which will
generate utility in another period.

3. Because consumers land on kinks and there may be extra money lying around in the
outside good, small price changes may not generate any behaviour response. This
means, we may have to be careful about how we think about quantity derivatives with
respect to price.

The simplest discrete demand model is one wherein the consumer can only choose zero or
1 of each product. In a 2-product world, this budget constraint looks like a square, with a
point at 1,1. If the consumer cannot able afford 1,1, then their demand choice is a discrete
choice between 1 unit of product 1 or 1 unit of product 2. This would be a binary choice
problem.

5 Discrete Demands in Linear Characteristics Model

Putting together discreteness and characteristics means that the rays we positted in Section
3 above are dotted. That is, you cannot buy any quantity of a product yield its chararac-
teristics; rather, you can only buy certain fixed values of quantities of it.
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If we further restrict the model so that the discreteness is binary for each product, we have
a budget constraint that is a hypercube in characteristics space. If we further restrict that
consumers never have enough money to buy more than 1 product, we have a multinomial
choice problem: consumers can buy 1 of J products which deliver different amounts of the
characteristics c.

For a multinomial choice problem, we can use standard limited dependent variable econo-
metric methods, but we want to ensure that:

1. We allow for error term distributions that are not crazy;

2. We allow for both observed characteristics and for unobserved characteristics.

The latter point means that we have to allow for unobserved characteristcs in a nonlinear
model (because discrete choice models are inherently nonlinear). Berry (1994) showed that
for a wide class of discrete choice models, we can formulate unobserved characteristics in such
a way that there is a one-to-one correpondence between choice probabilities and unobserved
characteristics parameters under the model. Berry, Levinsohn, and Pakes (1995; BLP) show
that for a narrower class of models, there is a contraction mapping that is linear in the
unobserved characteristics so that these models can be estimated relatively easily.

6 BLP

You know you’ve made the big leagues when the acronym for a paper you wrote becomes a
verb.

Consider a logit model for utility for a consumer i who can choose to consumer exactly
1 unit of 1 product among J products (this is very close to McFadden 1974 “random utility
model”):

Uij = xjβ − γpj + ξj + εij,

where xj is the observed row-vector of characteristics of a unit of product j, pj is its price, ξj
is the value of an unobserved characteristic of product j, β is a parameter vector of valuations
for each characteristic, and εij is unobserved taste variation.

The optimal choice is the one where utility is the highest. Since there are unobserved
variables, all consumers do not make the same choice. We solve the model for choice proba-
bilities, which are driven by the distribution of εij and the distribution of ξj. If we let these
be extreme value distributions, then the choice probabilities follow the familiar logit form.

In particular, suppose that ξj = 0 and εij are iid Type-1- Extreme-Value (T1EV) random
variates (or suppose that ξj+εij are iid T1EV) satisfying f(εij) = exp (− exp (−εij)) exp (−εij).
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Then,

P [xj = 1] =
exp (xjβ − γpj)∑
k exp (xkβ − γpk)

.

If εij is iid (both across products j for a consumer i, and across consumers i for a product
j), then the distribution of a consumer’s preferences over products other than the product
it bought does not depend on the product they bought. The iid assumption comes at some
cost.

Suppose the price of the product you buy rises. Then, you may want to switch. The iid
assumption means that every switcher sees every new alternative equally, and so would be
equally likely to switch to it.

Suppose 2 products have the same choice probabilities. Then, they have the same price
derivatives. This means they’d have the same markups (as these are determined in oligopoly
by demand responses).

These problems with the iid errors do not disappear if we include the unobserved charac-
teristic ξj. Rather, these just act like fixed effects in the logit probability expression above.

BLP address these problems by allowing for valuations β that vary across consumers. Let
xj include both observed product characteristics and pj, the price of good j. (That is, let
the price be one of the K characteristics.) Let zi and νi be a T o−vector observed consumer
characteristics and a T u-vector of unobserved consumer characteristics. Then, let utility be
given by

Uij = xjθi + ξj + εij,

where
θi = θ + Θozi + Θuνi.

This expression for utility is identical to the simple form given above in that it depends on
observed characteristics, price (one of the characteristics now), an unobserved characteristic
and an error term. Here, θi is a K + 1−vector of parameters (K characteristics and 1 price)
that varies across individuals. For a consumer with zi = νi = 0, θi = θ. But, for other
consumers, the vector θi adds the T o−vector of observed characteristics zi multiplied by the
T oxK + 1-matrix of parameters Θo, and the T u-vector of unobserved characteristics νi mul-
tiplied by the T uxK + 1-matrix of parameters Θu. The unobserved consumer characteristics
break the restriction that everyone sees every alternative to their good identical.

All utilities are relative to that of an outside good (Ui0), so we think of these as “utility
above the outside good”. Now the assumption of iid εij does not bite so terribly, because we
have Θu to allow for correlation across equations. So, let εij be iid T1EV (so that we get a
multinomial logit at the end).
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Now, we want to express this utility function in terms of the bit that is easy to deal with,
and the hard bits. Substituting the valuations above into the utility function, we get

Uij = δj + xjΘ
ozi + xjΘ

uνi + εij,

where
δj = xjθ + ξj.

At the market level, we are going to have δj which are not troublesome because the unob-
served characteristic does not vary across i and because θ does not vary across i. However,
we do have 2 potentially troublesome terms: the interaction between observed product char-
acteristics x and observed consumer characteristics z; and the interaction between observed
product characteristics x and unobserved consumer characteristics ν.

7 Estimation of BLP

Consider the case where we have product x market level data that gives the market share
of every product in every market (it doesn’t need to be a balanced panel though). Also,
assume there exist some instruments w satisfying E[ξ|w] = 0. Since we only observed these
data, we obviously do not observe any consumer characteristics z. All are loaded onto the
unobserved consumer characteristics ν. We assume that we do know the distribution(s) of
these consumer characteristics.

The parameters of the model are δ, θ. Note that δ includes ξ.

1. Conditional on the unobserved consumer characteristics ν, and given a particular pa-
rameter vector δ, θ, market shares have the logit form exp(τj)/1 +

∑
s exp(τs). So, we

integrate over the distribution of ν (there are no observed z’s) to get market shares σj:

σj(δ, θ) =

ˆ
exp (δj + xjΘ

uνi)

1 +
∑

s exp (δs + xsΘuνi)
f(ν)∂ν.

Nobody likes integrating. Pakes (1986) suggests sampling some ν from a distribution,
and summing:

σj(δ, θ;P
ns) =

∑
r

exp (δj + xjΘ
uνir)

1 +
∑

s exp (δs + xsΘuνir)
.

Here, P ns is a distribution from which you sample s times for each of the n observations
in a particular market. This gives a vector of σj given δ, θ;P ns. This step requires a
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distribution P ns to sample from. You might choose a normal, e.g..

2. Then, solve for δ by iterating. BLP (1995) show that this reduces to iterating the
following linear equation

δnewj (θ) = δoldj (θ) + ln sj − lnσj(θ, δ
old;P ns)

until σj(δ, θ;P ns) = sj for all j. This means we can identify δ given θ, including
identification of ξ given θ. In particular, with θ in our pocket and δj identified, we can
compute ξj = δj −

∑
k xjkθk. This iteration step would typically use a while loop in

Stata.

3. Now we use our instruments for ξ. Find θ that bring ξ as close as possible to orthogonal
to w. In particular, one may use GMM for the moment conditions E[ξ|w] = 0. This
is not the friendliest GMM, though, because for each value of θ, we have to do step 2
above. Luckily, it is canned in the Stata module blp.

4. The GMM requires instruments w that are uncorrelated with unobserved characteris-
tics ξ. One might well suspect that observed product characteristics x (and consumer
characteristics z, if used) are thus elements of w. But are prices p uncorrelated with
unobserved characteristics? This seems a far cry. One might use supply-side instru-
ments for prices. Or, one might model the supply side of the market, e.g., by modeling
the pricing equations for oligopolistic supply (this would still require instruments).
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