Consumer Demand and the Cost of Living

Krishna Pendakur

May 24, 2015

Consumer demand systems?

- A consumer demand system is the relationship

$$
\begin{equation*}
w_{i}^{j}=w^{j}\left(\mathbf{p}_{i}, x_{i}, \mathbf{z}_{i}\right) \tag{1}
\end{equation*}
$$

where $i=1, \ldots, N$ indexes households, $j=1, \ldots, J$ indexes commodities; $\mathbf{p}_{i}=\left[p_{i}^{1}, \ldots, p_{i}^{J}\right]^{\prime}$ is the price vector, x_{i} is the total-expenditure (aka: "budget", "income") level, $\mathbf{z}_{i}=\left[z_{i}^{1}, \ldots, z_{i}^{T}\right]^{\prime}$ is a T - vector of demographic characteristics, and w_{i}^{j} is the budget share of (share of total expenditure commanded by) the j'th commodity for the i'th household. Denote $\boldsymbol{\epsilon}_{i}=\left[\boldsymbol{\epsilon}_{i}^{1}, \ldots, \epsilon_{i}^{J}\right]^{\prime}$ as an idiosyncratic effect-an error term-for the j 'th expenditure share for the i'th household. We want to estimate the functions $w^{j}(\mathbf{p}, x, \mathbf{z})$.

- For convenience and terseness, one may use matrix notation and suppress the subscript i, writing

$$
\mathbf{w}=\mathbf{w}(\mathbf{p}, x, \mathbf{z})
$$

How are they useful?

Without Integrability

- predict the effects of policies that change prices, eg, sales tax changes.

With Integrability

- demands $w^{j}(\mathbf{p}, x, \mathbf{z})$ can inform us about cost and indirect utility functions.
- $C(\mathbf{p}, f(u, \mathbf{z}), \mathbf{z})$ the cost function giving the minimum cost of utility $f(u) ; f(V(\mathbf{p}, x, \mathbf{z}), \mathbf{z})$ the indirect utility function
- The function f is monotonically increasing but unobservable; just there to emphasise the ordinal nature of the utility function.
- I will suppress f hereafter.

Uses

- household (type) specific price indices for poverty, inequality and social welfare measurement.

$$
C\left(p_{1}, V\left(p_{0}, x, z\right), z\right) / C\left(p_{0}, V\left(p_{0}, x, z\right), z\right)
$$

- Macroeconomic policy, vis the 'inflation rate' (for average or all households) (see Crossley and Pendakur 2009).
- consumer surplus (CV, EV) calculation

$$
\begin{aligned}
& C\left(p_{1}, V\left(p_{1}, x, z\right), z\right)-C\left(p_{1}, V\left(p_{0}, x, z\right), z\right) \\
& C\left(p_{0}, V\left(p_{1}, x, z\right), z\right)-C\left(p_{0}, V\left(p_{0}, x, z\right), z\right)
\end{aligned}
$$

- reveal inter-household comparisons of well-being from behaviour-measure equivalence scales

$$
C\left(p, u, z_{1}\right) / C\left(p, u, z_{0}\right)
$$

- Integrability of estimated consumer demand system allows recovery of the cost function (up to f).

Integrability

- means that the consumer demand system can be generated by differentiating an indirect utility or cost function:
- Sheppard's Lemma:

$$
\begin{equation*}
\omega^{j}(\mathbf{p}, u, \mathbf{z})=\frac{\partial \ln C(\mathbf{p}, u, \mathbf{z})}{\partial \ln p^{j}} \tag{2}
\end{equation*}
$$

(replace u in ω^{j} with $V(\mathbf{p}, x, \mathbf{z}) \equiv C^{-1}(p, \cdot, z)$), or

- Roy's Identity uses V to derive $\frac{\partial \ln C(\mathbf{p}, u, \mathbf{z})}{\partial \ln p^{j}}$ as an implicit function: $\partial c / \partial p=\partial x / \partial p=-\partial V / \partial p / \partial V / \partial x:$

$$
\begin{equation*}
w^{j}(\mathbf{p}, x, \mathbf{z})=-\frac{\frac{\partial V(\mathbf{p}, u, \mathbf{z})}{\partial \ln p^{j}}}{\frac{\partial V(\mathbf{p}, u, \mathbf{z})}{\partial \ln x}} \tag{3}
\end{equation*}
$$

- If you faced a 10% increase in the price of, say, rent, and rent commanded half your budget, how much would your costs rise? The natural answer is $10 \% * 50 \%=5 \%$. This natural answer is due to the fact that for a small price change, we do not adjust our consumption choices: we just need 5% more money to buy exactly what we bought before. Essentially, this insight (going backwards) gives us Sheppard's Lemma. The proportionate change in cost due to a small price increase is equal to the budget share of that good.

More Integrability

- Properties of $C(V)$ imply properties on w^{j}, typically testable properties.
- integrability requires homogeneity (cost is HD1 in prices). This implies that absence of money illusion.
- homogeneity implies that

$$
w^{j}(\lambda \mathbf{p}, \lambda x, \mathbf{z})=w^{j}(\mathbf{p}, x, \mathbf{z})
$$

- this is equivalent to a condition on the derivatives of demand equations

$$
\begin{equation*}
\sum_{k=1}^{J} \frac{\partial w^{j}(\mathbf{p}, x, \mathbf{z})}{\partial \ln p^{k}}+\frac{\partial w^{j}(\mathbf{p}, x, \mathbf{z})}{\partial \ln x}=0 \tag{4}
\end{equation*}
$$

- integrability requires symmetry. Define the Slutsky Matrix as:

$$
\Gamma^{j k}(\mathbf{p}, x, \mathbf{z})=\frac{\partial w^{j}(\mathbf{p}, x, \mathbf{z})}{\partial \ln p^{k}}+\frac{\partial w^{j}(\mathbf{p}, x, \mathbf{z})}{\partial \ln x} w^{k}(\mathbf{p}, x, \mathbf{z})
$$

Symmetry is satisfied if and only if

$$
\Gamma^{j k}(\mathbf{p}, x, \mathbf{z})=\Gamma^{k j}(\mathbf{p}, x, \mathbf{z})
$$

More Integrability

- integrability requires concavity-the Slutsky matrix given by the following elements is negative semidefinite (cost is concave in prices):

$$
\begin{equation*}
\Gamma^{j k}(\mathbf{p}, x, \mathbf{z})+w^{j}(\mathbf{p}, x, \mathbf{z}) w^{k}(\mathbf{p}, x, \mathbf{z})-d^{j j} w^{j}(\mathbf{p}, x, \mathbf{z}) \tag{5}
\end{equation*}
$$

where $d^{j j}$ indicates $j=k$.

- We may state these conditions in matrix form as:
- homogeneity:

$$
\mathbf{w}(\lambda \mathbf{p}, \lambda x, \mathbf{z})=\mathbf{w}(\mathbf{p}, x, \mathbf{z})
$$

- Let $\boldsymbol{\Gamma}(\mathbf{p}, x, \mathbf{z})=\nabla_{\ln p} \mathbf{w}(\mathbf{p}, x, \mathbf{z})+\nabla_{\ln x} \mathbf{w}(\mathbf{p}, x, \mathbf{z}) \mathbf{w}(\mathbf{p}, x, \mathbf{z})^{\prime}$. Symmetry is satisfied if and only if

$$
\boldsymbol{\Gamma}(\mathbf{p}, x, \mathbf{z})=\boldsymbol{\Gamma}(\mathbf{p}, x, \mathbf{z})^{\prime}
$$

- concavity is satisfied if and only if

$$
\boldsymbol{\Gamma}(\mathbf{p}, x, \mathbf{z})+\mathbf{w}(\mathbf{p}, x, \mathbf{z}) \mathbf{w}(\mathbf{p}, x, \mathbf{z})^{\prime}-\operatorname{diag}(\mathbf{w}(\mathbf{p}, x, \mathbf{z}))
$$

is negative semidefinite.

Integrability Matters

- Without integrability, the surplus measures, cost-of-living indices are not uniquely identified:
- that is, you could get any cost-of-living index for a big price change, just by choosing a suitable path of little price changes.
- With integrability, the surplus measures and cost-of-living indices are uniquely identified from demands; the cost and indirect utility functions are identified up to a monotonic transformation of utility.
- cost-of-living changes associated with a big price change are 'path-independent'.

Parametric estimation

- Ignore z for a while.
- Can estimate via specifying functional form for demand equations, eg,

$$
w^{j}(\mathbf{p}, x)=a^{j}+\sum_{k=1}^{J} b^{j k} \ln p^{k}+b^{j x} \ln x,
$$

where $a^{j}, b^{j k}$ and $b^{j x}$ are parameters estimated by OLS.

- Fine for prediction. Not fine for doing surplus or welfare measurement.

Homogeneity

- homogeneity not too bad:

$$
b^{j x}=-\sum_{k=1}^{J} b^{j k}
$$

It is a linear restriction in each equation.

- could impose this restriction via substitution:

$$
w^{j}(\mathbf{p}, x)=a^{j}+\sum_{k=1}^{J} b^{j k}\left(\ln p^{k}-\ln x\right),
$$

where we simply substitute the restriction into the equation.

Symmetry

- symmetry implies

$$
\begin{aligned}
& b^{j k}+b^{j x}\left(a^{k}+\sum_{s=1}^{J} b^{k s} \ln p^{s}+b^{k x} \ln x\right) \\
= & b^{k j}+b^{k x}\left(a^{j}+\sum_{s=1}^{J} b^{j s} \ln p^{s}+b^{j x} \ln x\right)
\end{aligned}
$$

which is a mess of cross-equation nonlinear restrictions, which is hard to substitute in.

- concavity is worse-a set of nonlinear cross-equation inequality restrictions.

A Good Trick

- Instead of making demand equations easy to look at, focus on utility or cost.
- Choosing a parametric function for cost or indirect utility and differentiate to get implied parametric functions for expenditure shares.
- eg, Deaton and Muelbauer's (1980) Almost Ideal (AI) model

$$
\begin{equation*}
\ln C(\mathbf{p}, u)=\ln a(\mathbf{p})+b(\mathbf{p}) f(u) \tag{6}
\end{equation*}
$$

where f is an unknown transformation, a is homogeneous of degree 1 and b homogeneous of degree 0 .

- gives via Sheppard's Lemma and substitution

$$
\begin{equation*}
w^{j}(\mathbf{p}, x)=\frac{\partial \ln a(\mathbf{p})}{\partial \ln p^{j}}+\frac{\partial \ln b(\mathbf{p})}{\partial \ln p^{j}}(\ln x-\ln a(\mathbf{p})) \tag{7}
\end{equation*}
$$

- homogeneity? did it on a and b.
- symmetry? properties inherited in derivatives.
- concavity? C is concave in p if a is concave in p. Easy to check, harder to impose, but do-able (Ryan and Wales 1999).

Almost Ideal

- Parametric structure
- let a be a translog and b is cobb-douglas in prices.

$$
\begin{aligned}
& \ln a(\mathbf{p})=\sum_{k=1}^{J} a^{k} \ln p^{k}+\frac{1}{2} \sum_{k=1}^{J} \sum_{l=1}^{J} a^{k l} \ln p^{k} \ln p^{\prime} \\
& \ln b(\mathbf{p})=\sum_{k=1}^{J} b^{k} \ln p^{k}
\end{aligned}
$$

then get

$$
\begin{equation*}
w^{j}(\mathbf{p}, x)=a^{j}+\sum_{k=1}^{J} a^{j k} \ln p^{k}+b^{j} \ln \bar{x} \tag{8}
\end{equation*}
$$

where

$$
\ln \bar{x}=\ln x-\sum_{k=1}^{J} a^{k} \ln p^{k}+\frac{1}{2} \sum_{k=1}^{J} \sum_{l=1}^{J} a^{k l} \ln p^{k} \ln p^{\prime}
$$

- 'slightly' nonlinear because a stuff gets multiplied by b stuff.
- Homogeneity is satisfied if $\sum_{k=1}^{J} a^{k}=1$ and $\sum_{k=1}^{J} a^{j k}=0$ for all j (makes $\ln \bar{x}$ HD0 by construction).
- Could impose this restriction by substitution. The last element of a in each row is given by $a^{j J}=-\sum_{k=1}^{J-1} a^{j k}$. So, you could instead write

$$
w^{j}(\mathbf{p}, x)=a^{j}+\sum_{k=1}^{J-1} a^{j k}\left(\ln p^{k}-\ln p^{J}\right)+b^{j} \ln \bar{x}
$$

which imposes the restriction directly.

- Symmetry requires $a^{j k}=a^{k j}$ for all j, k.
- in matrix notation, we have

$$
\begin{aligned}
& \qquad \ln C(\mathbf{p}, u)=\mathbf{a}^{\prime} \mathbf{p}+\frac{1}{2} \sum_{k=1}^{J} \sum_{l=1}^{J} \ln \mathbf{p}^{\prime} \mathbf{A} \ln \mathbf{p}+\exp \left(\mathbf{b}^{\prime} \ln \mathbf{p}\right) f(u), \\
& \text { where } \iota^{\prime} \mathbf{a}=1, \iota^{\prime} \mathbf{A}=0_{J}, \mathbf{A}=\mathbf{A}^{\prime}, \iota^{\prime} \mathbf{b}=0 .
\end{aligned}
$$

Estimating Demand, Cost and Indirect Utility

- What can you do with this? Estimate demand, and reconstruct cost and indirect utility.
- What are the data?
- Aggregate or micro data on how households allocate expenditure across goods when facing different budget constraints define by prices and total expenditure.
- Assume that

$$
w_{i}^{j}=w^{j}\left(\mathbf{p}_{i}, x_{i}, \mathbf{z}_{i}\right)+\epsilon_{i}^{j}
$$

where ϵ_{i}^{j} is the disturbance term for individual i in equation j. Assume that these disturbances are exogenous, which implies that $E\left[\epsilon_{i}^{j}\right]=0$ for all $j=1, \ldots, J$.

- Since expenditure shares sum to 1 , we can recover the function w^{J} if we have w^{1}, \ldots, w^{J-1} in our pocket.
- Thus, we only ever estimate $J-1$ equations: w^{1}, \ldots, w^{J-1}.

Estimating the Almost Ideal DS

- Given the AI demand system with no demographics, we get

$$
\begin{equation*}
w_{i}^{j}=a^{j}+\sum_{k=1}^{J} a^{j k} \ln p_{i}^{k}+b^{j} \ln \bar{x}_{i}+\epsilon_{i}^{j} \tag{9}
\end{equation*}
$$

where

$$
\ln \bar{x}_{i}=\ln x_{i}-\sum_{k=1}^{J} a^{k} \ln p_{i}^{k}-\frac{1}{2} \sum_{k=1}^{J} \sum_{l=1}^{J} a^{k l} \ln p_{i}^{k} \ln p_{i}^{l}
$$

- in matrix notation, this is

$$
\begin{aligned}
w_{i} & =\mathbf{a}+\mathbf{A} p_{i}+\mathbf{b} \ln \bar{x}_{i}+\epsilon_{i} \\
\ln \bar{x}_{i} & =\ln x_{i}-\mathbf{a}^{\prime} \mathbf{p}_{i}-\frac{1}{2} \ln \mathbf{p}_{i}^{\prime} \mathbf{A} \ln \mathbf{p}_{i}
\end{aligned}
$$

which is nicer to look at.

- Estimate (8) either by nonlinear methods (LS/ML or GMM), or iterative linear methods (Blundell and Robin 1999).
- Define $\epsilon_{i}=\left[\epsilon_{i}^{1}, \ldots, \epsilon_{i}^{J-1}\right]^{\prime}$, and let $\Omega=E\left[\epsilon_{i} \epsilon_{i}^{\prime}\right]$, the expectation of the variance of disturbances across equations for an individual. All methods are system methods, because we have a system of equations. Nonlinear SUR subject to cross-equation symmetry restrictions:

$$
\text { st } a^{j k}=\min _{a^{j}, j^{k}, b^{j}} \sum_{i=1}^{N} \epsilon_{i}^{\prime k j} \text { for all } j, k
$$

given an estimate of $\widehat{\Omega}$ such that plim $\widehat{\Omega}=\Omega$. Minimise sum of squared errors to get parameters subject to restrictions.

Hatting it Up

- This gives you a bunch of estimates $\widehat{a}^{j}, \hat{a}^{j k}, \widehat{b}^{j}$, which imply a log-cost function

$$
\begin{aligned}
\ln C(\mathbf{p}, u) & =\ln a(\ln \mathbf{p})+b(\ln \mathbf{p}) f(u) \\
& =\sum_{k=1}^{J} \widehat{a}^{k} \ln p^{k}+\frac{1}{2} \sum_{k=1}^{J} \sum_{l=1}^{J} \hat{a}^{k l} \ln p^{k} \ln p^{\prime}+\prod_{j=1}^{J}\left(p^{k}\right)^{\widehat{b}^{k}} f(u)
\end{aligned}
$$

this thing is all 'hatted up'-it is full of numbers now.

- real expenditure $\ln x^{R}=\ln R(\mathbf{p}, x)$ is the expenditure you need when facing some particular price vector $\overline{\mathbf{p}}$ to get the same utility as with x facing \mathbf{p}.
- Choose $\overline{\mathbf{p}}=1_{J}$ for convenience.

$$
\ln x^{R}=\ln R(\mathbf{p}, x)=\ln C(\overline{\mathbf{p}}, f(u))
$$

The Cost-of-Living Index

- Then, log-cost at $\overline{\mathbf{p}}$ is given by

$$
\begin{aligned}
\ln C(\bar{p}, f(u)) & =\ln C(\overline{\mathbf{p}}, f(V(\mathbf{p}, x))) \\
& =\ln a(\mathbf{p})+b(\mathbf{p}) V(\mathbf{p}, x) \\
& =0+1 \cdot f(V(\mathbf{p}, x)
\end{aligned}
$$

indirect utility V is found by inverting C around u :

$$
\begin{align*}
\ln C(\mathbf{p}, u) & =\ln a(\mathbf{p})+b(\mathbf{p}) f(u) \Leftrightarrow \tag{10}\\
f(V(\mathbf{p}, x) & =\frac{\ln x-\ln a(\mathbf{p})}{b(\mathbf{p})} \tag{11}
\end{align*}
$$

Familiar? $f(V(\mathbf{p}, x))=\ln \bar{x}$.
So,

$$
\ln x^{R}=\ln R(\mathbf{p}, x)=\frac{\ln x-\ln a(\mathbf{p})}{b(\mathbf{p})}
$$

- The cost-of-living index I is the ratio of expenditure to real expenditure:

$$
\begin{aligned}
\ln I(\mathbf{p}, x) & =\ln x-\ln x^{R} \\
& =\ln x-\frac{\ln x-\ln a(\mathbf{p})}{b(\mathbf{p})} \\
& =\ln x-\frac{\ln x-\sum_{k=1}^{J} \widehat{a}^{k} \ln p^{k}+\frac{1}{2} \sum_{k=1}^{J} \sum_{l=1}^{J} \widehat{a}^{k l} \ln p^{k} \ln p^{\prime}}{\prod_{j=1}^{J}\left(p^{k}\right)^{\hat{b}^{k}}}
\end{aligned}
$$

- The log-cost-of-living is
- computable
- linear in $\ln x$
- independent of $\ln x$ if and only if $\widehat{b}^{k}=0$ for all k.
- Canada produces us a single cost-of-living index for all people at all expenditure levels. Is this right?

Quadratic Extension to the AI

- Quadratic Almost Ideal (QAI) model

$$
\begin{equation*}
\ln C(\mathbf{p}, u)=\ln a(\mathbf{p})+\frac{b(\mathbf{p}) u}{1+q(\mathbf{p}) u} \tag{12}
\end{equation*}
$$

- gives budget shares with $\ln \bar{x} \equiv \ln x-\ln a(p)$

$$
\begin{equation*}
w^{j}(p, x)=\frac{\partial \ln a(\mathbf{p})}{\partial \ln p^{j}}+\frac{\partial \ln b(\mathbf{p})}{\partial \ln p^{j}} \ln \bar{x}+\frac{\partial q(\mathbf{p})}{\partial \ln p^{j}} \frac{(\ln \bar{x})^{2}}{b(\mathbf{p})} . \tag{13}
\end{equation*}
$$

- It really uglied up just to get that quadratic term. Slutsky symmetry is doing the uglifying.
- Gorman (1963) showed that if budget shares are additive in functions of expenditure, then all J budget shares may depend on at most 3 functions of expenditure. So, quadratics are the limit. Rank may be defined as the dimension of the nonlinear subspace of expenditure occupied by the budget share equations (see Lewbel 1993). So, this is referred to as the rank 3 limit.

Parametric Estimation of Cost-of-Living Indices

- Pendakur $(2001,2002)$ uses the QAI to estimate poverty and inequality with household-specific price indices.
- This yields a price index which is different for rich and poor.
- In Canada, use of the QAI price index yields a different picture of inequality changing over time
- standard indices showing falling inequality over late 1970s; expenditure dependent indices show rising inequality.
- standard indices show slightly rising inequality over 1990s; expenditure dependent indices show slightly falling inequality.
- Donaldson (1992) showed that the inequality and poverty indices derived from 'real expenditure' calculated in this way depends on the choice of base price vector.
- david: 'There is no substitute for utility'.
- I agree, but that means we have to somehow identify f, which cardinalises utility.

Nonparametric Estimation of Engel Curves

- Rather than specifying a functional form and estimating its parameters, the idea in nonparametric estimation is to 'let the data speak for themselves' as to the shape of functions.
- local mean nonparametric estimation uses nearby data to estimate the height of the regression curve at every point.
- Pendakur (1999) and Blundell, Duncan and Pendakur (1998) use the 'shape invariance' restrictions to incorporate demographics into nonparametric estimation of Engel curves $\left(w^{j}(x)\right)$ and to estimate equivalence scales.
- local mean estimator is

$$
w^{j}(x)=\frac{\sum_{i=1}^{N} K_{h}\left(x_{i}-x\right) w_{i}^{j}}{\sum_{i=1}^{N} K_{h}\left(x_{i}-x\right)}
$$

- K_{h} is kernel function, eg, $K_{h}(u)=\varphi\left(\frac{u}{h}\right)$ where φ is the standard normal density function.
- At each $x, w^{j}(x)$ is the WLS estimate with w^{j} on the LHS and a constant on the RHS with weights $K_{h}\left(x_{i}-x\right)$.
- Blundell, Duncan and Pendakur show that partially additive effects are NOT integrable.
- get nonparametric estimates of Engel curves for each demographic type. Find the closest shape-invariance satisfying engel curves for all demographic types.
- maintaining the assumption of ESE implies shape-invariance, which is sufficient to identify equivalence scales even without imposing parametric structure on Engel curves.
- Pendakur (2004) uses similar restrictions to estimate lifetime equivalence scales without imposing parametric structure.

Nonparametric Estimation of Consumer Demand Systems

- an Engel curve is not a demand system. We need shares over $\mathbf{p}, x, \mathbf{z}$, and we need to impose integrability to get prices indices.
- Haag, Hoderlein and Pendakur (2009) develops a methodology for nonparametric estimation of integrable consumer demand systems and price indices.
- The trick is to use local polynomial estimation.
- Here, at each point in the domain, $w^{j}(\mathbf{p}, x, \mathbf{z})$ is the WLS estimate of a model with W^{j} on the LHS and a polynomial in $\mathbf{p}, x, \mathbf{z}$ on the RHS with weights given by the K_{h}.
- Recall that integrability is a set of conditions on derivatives. These are hard to impose on local mean estimators, but easy to impose on local polynomials.
- The r^{\prime} th derivative of a local polynomial is just the coefficient on the r^{\prime} th term.

Where should we go?

- Measurement error (eg, Chesher et al, Review of Economic Studies, 2002) remains a big problem.
- Preference Heterogeneity (Lewbel and Pendakur 2009, 2015)
- non- and semi-parametric flexibility (Lewbel and Pendakur 2009; Haag, Hoderlein and Pendakur 2009; Pendakur and Sperlich 2009).
- Lack of price variation means price effects are largely gotten from their indirect rather than direct effects-in QAI, price effects come from intercepts and not from price derivatives.
- Cardinalise utility. Money metrics are not a good substitute for utility (Donaldson 1992; Roberts 1980), but we need to know the shape of utility over expenditure.
- Are nonparametrics really worth the trouble? I suspect that the best use of all this nonparametric demand stuff is as a diagnostic of parametric models.
- Nonparametric estimators are local estimators only.
- Nonparametric estimators require more data than we typically have.

