
1 Correlated Missing Regressors

1.1 Endogeneity
Formally, the problem is that, in a model

Y = g(X,β) + ε,

the disturbances are endogenous, or equivalently, correlated with the regressors,
as in

E[X ′ε] 6= 0

In the Venn Diagram (Ballentine) on page 167 of Kennedy, we get a picture of
this. There is a variable X which does covary with Y (red+blue+purple), but
sadly some of the covariance with Y is through covariance with the error term
(red). This covariance leads to bias in the OLS estimator.

1.2 Why do you get bias?
Covariation of Y with the disturbance term, which is correlated with X, is
attributed to X. Consider the case where

Y = Xβ + ε, ε = XΓ + η ⇔ Y = X (β + Γ) + η.

The regression loads the response of Y to X entirely on to X. But in reality,
the response of Y to X has two channels: the direct channel through β, and the
indirect channel through Γ. The indirect channel is through the disturbance
term: it is the derivative of ε with respect to X.

Think of the simplest possible regression model, where X is a univariate
continuous variable in [−1, 1] and the true coefficient is 1, but where

E[X ′ε] = 1.

Here, X is positively correlated with the disturbance, which has expectation 1
when X = 1, and expectation −1 when X = −1. Draw the picture and you
will see that the OLS estimator gives you the wrong slope. The reason is that
it assigns variation that is due to the covariance of X and the disturbance to
covariation between X and Y . Here, it will give you an estimate of 2 rather
than 1.

The covariance between X and the disturbance pollutes the OLS estimator
with variation that violates its identifying assumptions.

1.3 Correlated Missing Variables.
Suppose the true model is

Y = Xβ + ZΓ + ε,

E
[
[X Z]

′
ε
]

= 0
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but we estimate a model based on

Y = Xβ + ε,

then, the expectation of the OLS estimator is

E
[
β̂OLS

]
= E

[
(X ′X)

−1
X ′ (Xβ + ZΓ + ε)

]
= β + E

[
(X ′X)

−1
X ′ (ZΓ + ε)

]
= β + (X ′X)

−1
X ′ZΓ + (X ′X)

−1
E [X ′ε]

= β + (X ′X)
−1
X ′ZΓ

Here, even though the ε are exogenous to the X’s, there is a bias term depend-
ing on the empirical covariance between X and Z. If X ′Z = 0, then β̂OLS is
unbiased. If Z is a random variable, then if E [X ′Z] = 0, then β̂OLS is unbiased.
This is why only correlated missing variables are a problem: uncorrelated miss-
ing variables do not induce bias.

If X and Z are correlated, then the OLS estimator is comprised of two terms
added together: (1) the true coefficient on X, and (2) the marginal effect of X
on ZΓ. The latter effect may be interpreted as Γ times the regression coefficients
on X in a regression of Z on X.

2 The Method of Moments
A method-of-moments approach substitutes sample analogs into theoretical mo-
ments. A moment is an expectation of a power of a random variable. Sample
analogs are observed variables that can be plugged in. So, every moment esti-
mator has 3 steps:

1. Define a moment condition.

2. Plug in sample analogs for unobserved expectations.

3. Solve for estimates.

2.1 Method of Moments for OLS
For example, given the assumption that

E[X ′ε] = 0,

the method-of-moments approach to estimating parameters is to substitute sam-
ple moments into the restriction:

X ′e = 0⇔ X ′(Y −Xβ) = 0.

The unique solution to this equation is the OLS estimate.
The method-of-moments approach tells you that the covariance assumption

on X and the disturbances is extremely closely linked to the solution of min-
imising vertical distances.
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2.2 Method of Moments for IV
How do you solve an endogeneity problem? Go back to the Venn Diagram.
The problem is that we have red variation that OLS mistakenly attaches to X.
Three general approaches are

Say you have a variable, called an instrument, usually labelled Z, that is
correlated with the polluted X, but not correlated with the disturbance term.
You could use that information instead of X. This is the purple area in the
Venn Diagram. The purple area is not correlated with the disturbance term by
construction. Thus, you can use it in an OLS regression.

The only problem is a regression of Y on the instrument gives you the marginal
impact of the instrument on Y , when you really wanted the marginal impact of
X on Y . You can solve this by expressing the instrument in units of X. This is
the spirit of two stage least squares.

2.3 Exactly Identified Method of Moments
The moment restrictions are

E[Z ′ε] = 0

If Z has K columns, then we say that the model is exactly identified. Substi-
tuting in sample moments yields

Z ′
(
Y −Xβ̂MoM

)
= 0

Solving this for the coefficients yields:

β̂MoM = (Z ′X)−1Z ′Y

This is sometimes referred to as Indirect Least Squares. Indirect Least Squares
is equivalent to two-stage least squares when Z has the same rank as X:

X̂ = PZX

β̂2SLS =
(
X̂ ′X̂

)−1
X̂ ′Y =

= (X ′PZPZX)
−1
PZY = (X ′PZX)

−1
X ′P ′ZY

=
(
X ′Z (Z ′Z)

−1
Z ′X

)−1
X ′Z (Z ′Z)

−1
Z ′Y

= (Z ′X)
−1

(Z ′Z) (X ′Z)
−1
X ′Z (Z ′Z)

−1
Z ′Y

= (Z ′X)
−1
Z ′Y,

because with square matrices, you can rearrange within the inverse.
Consider a one-dimensional X and Z, and consider regressing Y on Z and
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X on Z:

β̂Y onZOLS = (Z ′Z)−1Z ′Y

β̂XonZOLS = (Z ′Z)−1Z ′X

β̂Y onX2SLS = β̂Y onXMM =
β̂Y onZOLS

β̂XonZOLS

Here, we see that the IV estimator (2SLS, MM) is given by the ratio of two
OLS estimators. It is the ratio of the derivatives of Y and X with respect to Z,
and for that reason, we think of it is as indirectly illuminating the derivative of
Y with respect to X.

Thus, regressing Y on Z looks the same as 2SLS of Y onX in the Ballentines,
but the Ballentine misses out the rescaling shown above.

2.4 Generalised Method of Moments
If Z contains more columns than X, we say that the model is overidentified.
In this case, you have too much information, and you can’t get the moment
restriction all the way to zero. Instead, you solve for the coefficients by min-
imising a quadratic form of the moment restriction. This is called Generalised
Method-of-Moments (GMM). The GMM estimator is exactly equal to the two
stage least squares estimator in linear homoskedastic models.

Assume Z has J > K columns. GMM proposes a criterion "get Z ′e as close
to zero as you can by choice of the parameter vector β". Since β only has K
elements and Z ′e has more than K elements, you can’t generally get Z ′e all
the way to zero. So, you minimize a quadratic form in Z ′e with some kind of
weighting matrix in the middle. Consider

min
β
e′ZΩ−1Z ′e

where Ω is a matrix that puts weight on the bits of Z ′e that you think are most
important, or most informative about Z ′e.

Since E [Z ′ε] = 0, it doesn’t matter asymptotically how you weight the
various bits of it. You could use Ω = IJ if you wanted, and the estimator
would be consistent. Minimisation with Ω = IJ is often referred to as Minimum
Distance Estimation. The point here is that any choice of Ω yields a consistent
estimator. However, different choices of Ω yield estimators of different efficiency.

A natural choice of Ω is the covariance matrix of Z ′ε. By assumption,
E [Z ′ε] = 0, so its covariance E [Z ′εε′Z] is equal to its mean squared error. If
an element of Z ′ε is always really close to zero, then you’d want to pay a lot
of attention to keeping this element close to zero. In contrast, if an element
of Z ′ε varied wildly, you wouldn’t want to pay too much attention to it in
choosing your β. Since the weighting matrix is Ω−1, elements of Z ′ε that are
wildly varying, and have big variance, get small weight in the quadratic form;
elements which are always close to zero, and have small variance, get big weight
in the quadratic form.
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Hansen (1982) shows that if Ω is the covariance matrix of Z ′ε, then the
GMM estimator is asymptotically efficient.

Given homoskedasticity,

V [Z ′ε] = E[Z ′εε′Z] = E[Z ′σ2I ′NZ] = σ2Z ′Z

So, we minimize

min
β

(Y −Xβ)
′
Z

1

σ2
(Z ′Z)

−1
Z ′ (Y −Xβ) =

min
β

(Y −Xβ)
′
Z (Z ′Z)

−1
Z ′ (Y −Xβ)

min
β

(Y −Xβ)
′
PZ (Y −Xβ)

min
β

(Y −Xβ)
′
P ′ZPZ (Y −Xβ)

yielding a first-order condition

2X ′P ′Z (Y −Xβ) = 0

⇔
X1rststage′ (Y −Xβ) = 0.

That is, choose β to make e orthogonal to X̂.
That is, given homoskedasticity, the GMM estimator is the 2SLS estimator:

X ′P ′Z (Y −Xβ) = 0

X ′P ′ZY = X ′P ′ZXβ

β̂GMM = β̂2SLS = (X ′P ′ZX)
−1
X ′P ′ZY

Since all exogenous variables correspond to columns of X that are also in Z,
and defining as an instrument as an exogenous variable that is in Z but not in
X, this implies that you need at least one instrument in Z for every endogenous
variable in X. Consider

X = [X1 X2], Z = [X1 Z2],

a case where a subvector of X is exogenous (because it shows up in Z), and the
rest is endogenous. Here, X2is endogenous.

Y = Xβ + ε = X1β1 +X2β2 + ε

The two stage approach to IV is to estimate X on Z and use its predicted values
on the RHS instead of X.

What are its predicted values? Since Z contains the exogenous pieces of X,
this is equivalent to regressing

Y = X1β1 + X̂2β2 + ε

where
X̂2 = Z (Z ′Z)

−1
Z

′
X2

the predicted values from a regression of the endogenous X’s on the entire set
of Z.
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