
Skewness Preference, Mean-Variance
 and the Demand for Put Options

1. Introduction

     This paper explores the relationship between optimal solutions derived from mean-variance and

mean-variance-skewness objective functions.  The practical problem being examined is a stylized

risk management decision problem for a portfolio containing an asset with a negatively skewed

return distribution and an associated put option.  Because a mean-variance-skewness objective

function explicitly values positive skewness, it is intuitively expected that the optimal demand for

a negative skewness reducing security,  the put option, would be higher than the optimal demand

for the put option derived using mean-variance as the objective function.  However,  it is

demonstrated that introducing positive skewness preference into the decision-making process will

typically result in a reduction in the optimal amount of the put option demanded compared to the

mean-variance solution.  This reduction result is derived assuming that the put option is priced on

an actuarially fair basis such that it will have no impact on expected return.  Recognizing that

insurance can be modelled as a put option, this theoretical result is illustrated using a state

dependent example associated with determining the optimal level of crop insurance.

     In the following, Section 2 provides an overview of the moment preference approximation to

expected utility as an approach to decision making under uncertainty.  The mean-variance and

mean-variance-skewness objectives are motivated using a Taylor series expansion of a general

expected utility function.  Section 3 develops the wealth process required to specify the manager' s

objective function.  The approach used admits the possibility that both price and quantity can be

uncertain at the decision horizon date.   Section 4 provides theoretical analysis of the optimal

solution for the put option decision problem using a mean-variance-skewness objective function

and compares this solution with the mean-variance case.  In Section 5, comparison between the

mean-variance and mean-variance-skewness solutions is facilitated by the use of a plausible state

dependent example arising in a stylized farm risk management problem: what is the optimal level

of crop insurance to purchase?  In this example, crop insurance is modelled as a put option on crop
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yield.  Finally, Section 6 summarizes the contents of the paper.

2. Expected Utility and Moment Preference  

      The relationship between moment preference and expected utility has received considerable

attention.  Important topics have included: the conditions under which mean-variance analysis is

consistent with maximizing expected utility, e.g., Kroll,  Levy and Markowitz (1984), Ormiston

and Quiggin (1994), Bell (1995); and, the implications of introducing skewness preference into

the mean-variance framework, e.g., Kraus and Litzenberger (1976), Hassett et al. (1985), Lim

(1989), Diacogiannis (1994).  Brockett and Kahane (1992), among others, have shown that there

is not a direct correspondence between the derivatives of the expected utility function and moments

of the return distribution.  The implication is that maximization of a function defined over

moments, such as mean-variance or mean-variance-skewness, may not give the same solution as

directly maximizing expected utility.  Yet, Meyer (1987),  Ormiston and Quiggin (1994) and others

demonstrate that the conditions on the random variables sufficient for mean-variance rankings to

provide solutions consistent with expected utility rankings are relatively weak.   Extensions

providing the conditions on random variables required for mean-variance-skewness ranking to be

consistent with expected utility ranking are currently unavailable.

     As discussed in numerous sources, e.g., Loistl (1976) and Levy and Markowitz (1979), the

relationship between expected utility and moment preference objective functions can be motivated

using a Taylor series expansion of U[W], the decision maker' s utility function (U) for wealth (W),

evaluated at the expected value for terminal wealth [S].  Modelling the risk management decision

as a discrete two period problem involving the decision date, t, and the terminal (decision horizon)

date, t+ 1, gives (E[Wt+ 1] =  S):

Exploiting this type of expansion requires certain technical conditions be satisfied.  For example,

convergence of the power series within the interval of interest is needed. 1  In addition, desirable

properties for utility functions require: U' [W] >  0, non-satiation; U' ' [W] <  0, risk aversion;



3

and, U' ' ' [W] >  0, preference for positive skewness.  

     With relatively weak distributional restrictions, e.g., Hassett et al.  (1985), the Taylor series

representation of U[W] can be transformed into an approximation for a general expected utility

function based on the moments of the distribution for Wt+ 1.   The relevant approximation is derived

by taking conditional expectations and ignoring terms associated with moments higher than the

second, for a mean-variance approximation,  and moments higher than the third,  for a mean-

variance-skewness approximation.  The general notation EU[@] will be used to denote such a

moment preference functional.  From (1), taking expectations for the mean-variance-skewness case

gives:

where var[Wt+ 1] is the variance of terminal wealth, skew[Wt+ 1] is the skewness or centralized third

moment for terminal wealth.  Restrictions imposed by assuming risk aversion and positive

skewness preference permit the coefficients in (2) to be immediately signed as b,c >  0.  Further

restrictions on b and c, as well as the admissible range of W, can be derived by developing

derivative properties of (1)-(2) and invoking Jensen' s Inequality.  If c= 0 in (2), then the mean-

variance-skewness moment preference function will reduce to the mean-variance function, EUMV.

     What are the implications of introducing this additional skewness term into the moment

preference objective function?  Currently, little information is available comparing solutions from

mean-variance and mean-variance-skewness approximations.  Information about such comparisons

would be relevant for a range of decision making situations, especially those involving skewness

altering securities such as options and insurance.   The few studies that do compare the mean-

variance and mean-variance-skewness objective functions illustrate some confusion as to the

implications of introducing skewness.  In particular,  Prakash et al. (1996, p.240) claim to "show

how a risk-averse manager with sufficient preference for positive skewness may undertake projects
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with skewed payoff distributions that appear to be unfair gambles."  Horowitz (1998) correctly

takes exception to the Prakash et al. claim, arguing that there is no underlying utility function

which is consistent with the central theoretical condition which Prakash et al. use, i.e.,  3U' ' /U' ' '

>  skew[W1]/var[W1].  Horowitz refutes the Prakash et al. claim by demonstrating that it is not

possible for an expected utility function to conform to the Prakash et al. restrictions.

     Studies examining the impact of skewness have been largely concerned with asset pricing and

portfolio theory, e.g.,  Kraus and Litzenberger (1976), Sears and Trennepohl (1983), Lim (1989),

Simaan (1993).  However, combining of securities into portfolios almost certainly reduces the

skewness of the portfolio relative to the value weighted sum of the individual asset skewness

values.  The structure of the decision problem under consideration here is decidedly different,

being concerned only with transforming a negatively skewed return distribution for an exogenously

determined amount of a single asset into a more symmetric distribution using a put option.  This

type of problem is typical of many risk management situations,  e.g., farming or mining, where

the size of the spot position is predetermined by production considerations and the decision

problem is to solve for the size of the hedge position.  Allowing both the quantity of the risky asset

and the number of put options to be endogenous substantively complicates the analysis without

adding significantly to the usefulness of the solutions, e.g., Poitras (1993).  More importantly,

practical situations where put options would be purchased often involve having the level of the

risky asset fixed prior to assessing the amount of option to be purchased.

     Finally,  while one obvious potential benefit of introducing skewness preference into the

objective function is enhanced ability to model certain types of decisions problems, this gain is not

without some costs.  Compared to the mean-variance approach,  the introduction of skewness

significantly increases complexity of the solutions, permitting only complicated preference

dependent closed form solutions to be derived.   This is due to the presence of quadratic terms in

the first order conditions arising from skew[W].   Fortunately, intuitive results can still be obtained

by fully solving for the mean-variance part of the solution, leaving an additional unresolved
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coskewness (cosk[8]) term which is associated with the quadratic terms in the first order

conditions.  This unresolved term will be utility function dependent,  as it will contain the

parameters b and c.  Hence, solving for the mean-variance-skewness optimal demand requires b/c

to be specified before an optimal solution can be obtained.  In this process, the mean-variance

optimal solution acts a control variate against which the mean-variance-skewness optimal solution

can be compared.  Properties of this comparison are developed in detail in Sec. 4.

3. The Wealth Process

     In order to obtain applicability to a range of decision-making situations, the approach taken is

to specify the wealth process,  admitting the possibility of two random variables, both price and

yield uncertainty at the decision horizon date.  The representative decision maker purchases an

asset at time t and sells it at time t+ 1, and purchases put options to provide protection against

downside movements, either in price or yield or both.   The price and the yield at t+ 1, the end of

the investment horizon,  can both be unknown at time t, the date the relevant risk management

decision is initiated.  In some types of decision problems,  such as the typical problem of

investment in domestic assets, this level of generality is more than is required because there is only

one random variable in this problem.  However, where the problem involves investment in foreign

assets, there are two random variables involved, the exchange rate and the yield on foreign assets

(denominated in foreign currency terms).  In other problems, such as a farmer subject to random

crop yield or a mine subject to random ore quality,  both price and quantity are uncertain.   Given

that price and yield can be uncertain,  the optimization problem does not permit the amount of

initial wealth to invest in the asset to vary. 2  Starting from the given initial level of wealth, the

investor' s objective is to maximize a moment preference function for the value of terminal wealth

assuming that the balance (possibly negative) of initial wealth which is not allocated to the risky

asset will earn (pay) the riskfree rate of interest.

      Initially, consider the wealth process for a decision maker not having access to any put

options.  Once the initial structure of the terminal wealth function is specified, usage of put options
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will be introduced.   Following Poitras (1993) and others, allowing for both the quantity and the

price to be random leads to the underlying wealth process:

 Wt+ 1 =  A Yt+ 1Pt+ 1 +  [Wt - C(A)] (1+ r)                                              (3)

where: Wt+ 1 is wealth at time t+ 1 and Wt is the known level of initial wealth; A is the fixed initial

size of the asset, e.g., acres planted for a farmer; Yt+ 1 is the possibly random quantity per unit or

yield per unit of the asset observed at t+ 1; Pt+ 1 is the random spot price at t+ 1; C(A) is the given

cost function associated with purchasing A; r is the riskfree interest rate.3  Manipulation of (3)

gives the more conventional form of the wealth process for a single risky asset:

     Wt+ 1  =  Wt (x(1+ R) +  (1-x)(1+ r)) =   Wt ((1+ r) +  x(R-r))  =  Wt +  Bt+ 1          (4)   

where: Bt+ 1 is the profit defined by (3) realised at time t+ 1, x is (C(A)/Wt) the given fraction of

initial wealth invested in the risky asset,  and (1+ R) is [(A Yt+ 1Pt+ 1)/C(A)] one plus the rate of

return on the risky asset.   For simplicity of exposition, it will be assumed that x >  0 in what

follows.4  

     The basic specification for the decision maker' s terminal wealth function given in (4) now

requires some additional terms to capture the payoffs associated with introducing the put option.

While the terminal wealth function with put options included follows appropriately from (4),  some

motivation is required.   In particular,  in the absence of some form of put option to provide asset

insurance,  there is a natural minimum on R, the rate of return on the investment.  Either a

complete catastrophic loss occurs where Yt+ 1= 0, or a spot price of zero occurs at time t+ 1, both

cases corresponding to the result (1+ R)= 0.  Significantly, three possible variants of put option

payout are possible,  each aimed at dealing with the different types of risks faced by the risk

manager.  More precisely, put option payouts can depend on the deviation of price,  yield or

revenue from a stated exercise value.  Payouts based on revenue provide protection against

Yt+ 1Pt+ 1 falling below a given floor.   In contrast, payouts based on yield or price cannot guarantee

a minimum return higher than (1+ R) =  0.  For the farmer example of Section 5, while put

payouts based on revenue set a lower level for farm income, put option payouts guaranteeing a
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price of $K per bushel cannot prevent a 100% loss due to crop failure, nor can a put payout based

on yield providing for,  say, Y bushels an acre prevent the future spot price falling to zero.

However, put payouts based on either price and yield do reduce the probability of the total return

attaining low values and, as a result,  do alter the distribution for terminal wealth.

     In practice, conventional exchange traded put options are structured with payouts based on

price.   Other types of put options,  such as multiple peril crop insurance schemes, are a type of

yield insurance.  Still other types of put options,  such as some types of real options,  provide

revenue or income protection.  The case where the put payout is based on revenue insurance

produces a wealth process similar to the yield insurance case.   Introduction of a put option based

on price into (3) produces:

where K is exercise price on the put option which in going from (5' ) to (5) is assumed to be "at

the money" (where K =  Pt), z is the price per unit of output of the put, Qz is the number (in output

units) of puts purchased,  with the ratio ( being the asset value covered by the option position

divided by initial wealth.5

    This specification can be contrasted with that for put option payouts based on yield where,

instead of the number of options to purchase, it is the fraction of A to insure which is the decision

variable:

where L is the price (put premium) per unit of A for the yield put option,  Qy is the number of units

covered by the yield put option and Y is the yield floor provided by the put option or insurance
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plan.  Defining the optimization problem by allowing the risk manager to choose the fraction of

A to insure leads to: 

where l equals (LA/C(A)), 8 =  (Qy/A) is the fraction of A,  e.g., the total planted acreage,  covered

or insured with the physical yield put option and RR =  {Pt+ 1 Y A}/C(A).6  Assuming actuarially

fair pricing requires insurance to impact the decision problem through its effect on downside risk

and skewness.

4. The Risk Management Decision Problem

     The results in this section require assuming that: the risk manager optimizes a moment

preference approximation to a general expected utility function of the form, EUMVS =  U{E[Wt+ 1]}

- b var[Wt+ 1] +  c skew[Wt+ 1], where b and c are measures of the sensitivity of EU to changes in

var[@] and skew[@], with b,c >  0; and, that all options/insurance premiums are "fairly priced".

It is also assumed that R has a negative skewed probability density function, where skew[R] <

0.7  The following now applies:8

Proposition: The Optimal Demand for Put Options9 

      Assuming that the risk manager optimizes a moment preference objective function,  defined
over the mean, variance and skewness of terminal wealth as given by (2) and (6), then the optimal
demand for a put option with payoff depending on yield is:10

where: the subscript q corresponds to the random variable max[0, RR - R], 8* is the optimal
solution to the mean-variance-skewness objective function and the subscript R refers to the rate
of return on the asset.  The coskewness term,  cosk[8;RR], has the interpretation:
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The mean-variance solution (8MV) is given by ignoring the second term on the rhs of 8* in (7).
The closed form solution associated with (7) is:

where B =  x(3c Wt)/2b.

The stated closed form solution is one of two roots of the quadratic equation in 8 specified in (7).

Using results contained in the following corollaries, it possible to verify by differentiating the first

order condition that the stated closed form solution corresponds to a maximum, while the other

root corresponds to a minimum.

    Closer analysis of the Proposition can be used to identify conditions for which the optimal put

option demand derived from the mean-variance-skewness objective, 8*, is less than the mean-

variance optimal demand, 8MV .   A result such as 8MV $ 8* is interesting because it is seemingly

counter-intuitive since the mean-variance-skewness function explicitly values positive skewness

and the put option is a security which reduces the negative skewness in asset returns.  However,

the 8 which maximizes skewness of W is typically less than the 8 which minimizes the variance

of W, making the solutions considerably more complicated than simple intuition would suggest.11

While it is possible to work with the closed form (8) to derive the relevant conditions, it is more

transparent to derive results from (7) and then verify the results by making the appropriate

substitutions in (8).12  For example, from (7) it is apparent that negative cosk[@] at the 8* optimum

is required for 8MV $ 8* to apply.  Observing that cosk[@] is a quadratic function of 8 leads to

consideration of three points associated with cosk[@] function: the two roots of the quadratic which
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are associated with cosk[@] =  0; and, the minimum point of the cosk[@] function.  In this regard,

completeness requires verification that the roots of the quadratic are both real and that the solution

of the first order condition of the cosk[@] function is a minimum.

     In order to establish the properties of the cosk[@] function, a number of useful corollaries can

be developed from the Proposition.  Examining the proof of the Proposition reveals that the cosk[@]

term is the operative part of the derivative (d skew[W]/d8).  Hence, solving for the roots of the

quadratic as solutions to the problem cosk[@] =  0 is the same as solving (d skew[W]/d8) =  0.  It

follows that roots of the cosk[@] function correspond to optimum points of skew[W].  Hence, the

following corollary can be derived:

Corollary 1: Properties of max skew[W]13

At the point where skew[Wt+ 1] is maximized, the slopes of EUMV and EUMVS will be equal:

where 8msk is the value of 8 when skewness is maximized.  Because cosk[8] =  0 at this point:

Except in limiting cases, 8msk is not equal to the optimum values 8MV and 8*.

Because the slopes of the MV and MVS EU functions are equal at max skew[W], the optimum

values for 8MV and 8MVS are either equal or both greater than 8msk or both less than 8msk.   If 8* >

8MV,  then cosk[8] >  0 and d{EUMV - EUMVS}/d8 <  0 at 8*.  If 8* <  8MV,  then cosk[8] <  0 and

d{EUMV - EUMVS}/d8 >  0 at 8*.  

     To establish that 8* <  8MV,  it is expedient to consider the second derivative d2skew[W]/d82.

The solution of this derivative is 8min,  the value of 8 which minimizes cosk[8].  This leads to:

Corollary 2: The minimum value of cosk[8]

The minimum value of cosk[8] is given by:
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At 8min,  cosk[8min] =  cov[q,R2] +  8min cov[q2,  R] # 0.  It follows that at 8min:

With the aid of two additional theoretical results,  it is possible to combine the Corollary 2 result

with the slope condition at 8msk from Corollary 1 and show that 8msk # 8* # 8MV.   More precisely,

Corollaries 1 and 2 provide information on the relative slopes of the EUMV and EUMVS functions

at two separate points.   By imposing some relatively weak restrictions on the discrete state space,

it is possible to show that 8min  =  8MV.   This implies that the slope of EUMV =  0 at this point.

Observing that the EU functions are at least locally concave in 8,  it follows from the relative slope

conditions and 8msk # 8min =  8MV that 8msk # 8* # 8MV.

     The result that 8* <  8MV cannot be proved in the general case. 14  Without some restrictions

on the state space, it is possible to construct examples where either 8* >  8MV or where 8* =  8MV,

though it does appear that such situations are uncommon.  The 8* <  8MV result does hold if some

relatively weak assumptions are imposed on the state space.  In particular, a sufficient set of

restrictions on the state space is: the state space is discrete; there are more than two possible states;

and, there is only one state,  with probability less than one-half,  where a put option payoff is

permitted.   If the assumptions about the discrete state space and one payoff state are imposed but

the state space only contains only two possible states then the following special case emerges:

Corollary 3: The Two State Space Case

If there are only two possible futures states, with probabilities p1 and (1 - p1) respectively,  then:
8* =  8MV =  8msk =  8min; and, (cov[q2,R])2 - skew[q] cov[q,R2] =  0.

In terms of the quadratic function of 8 associated with cosk[@], the two state case solution has only

one root,  with the minimum point of the quadratic corresponding to cosk[@] =  0.

    Inspection of the closed form solution (8) reveals the specific parametric configurations which
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determine the correspondence between 8* and 8MV.   More precisely, (8) can be rewritten as:

The proof of Corollary 3 demonstrates that, in the two state case, the terms inside the square root

reduce to 1.   In addition, for both the two state and greater than two state cases,  the following

result holds as a consequence of assuming one payoff state:

When there are more than two states and only one payoff state for the option, then the last term

under the square root is zero,  but the middle term can only be signed as:

This result requires the probability on the payout state to be less than one-half.  That this

expression equals zero in the two state case is a very special case, arising from the ability to

construct a zero variance, zero skewness portfolio.  To see this,  observe that the two state case

with one payoff state has R =  {R1,  R2} and q =  {q1,  0}.  A portfolio of the option and the asset

gives R +  8q =  {R1 +  8q1,  R2}.  Setting 8 =  {R2 - R1}/q1  produces a zero variance, zero

skewness portfolio.  Except in special cases, this is not possible with more than two states.

     Allowing the put option to payout in only one state, together with the assumption that there are

more than two possible states, produces the result of immediate interest:15

Corollary 4: Conditions Associated with 8* <  8MV

If there are more than two possible future states and the put option is permitted to payout in only
one state with probability less than one-half,  then the following conditions apply:

8msk <  8* <  8MV =  8min; and, (cov[q2,R])2 - skew[q] cov[q,R2] >  0.

Of all the parameters listed in Corollary 4,  the sign of cov[q,R2] is the most difficult to identify
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theoretically,  though it is relatively straightforward to provide a heuristic interpretation.  From

skew[q] >  0, the condition cov[q,R2] >  0 is expected because the greatest variation in the

negatively skewed R will be associated with the put option pay out.  The more negatively skewed

is the return distribution, the greater the need for the put option and the more positive is cov[q,R2].

However, because the put option also acts to reduce the negative skewness in terminal wealth, the

greatest variability in max[0,RR-R] will occur when (R-E[R]) is negative, making cov[q2,R]

negative.  This discussion illustrates the importance of the proof of Corollary 4 which

demonstrates that (cov[q2,R])2 is large enough that the result 8MV >  8* is obtained.

     It is also possible to motivate the analysis in another way: by exploiting conditions associated

with the Taylor series expansion it is possible to demonstrate that cosk[8] # 0 at the optimum for

both EUMV and EUMVS will be the case and 8MV $ 8* is the result of assuming the sufficient

restrictions on the state space.  One immediate implication of differencing the Taylor series

representations for EUMV and EUMVS is the result:16

In (9),  the term associated with dWt+ 1/d8 has been set equal to zero and does not appear due to

the assumption that the option is priced on an actuarially fair basis.  The condition (9) applies over

the range of 8 and not just at the optimum.  Intuitively,  it may be expected that because

skew[Wt+ 1] is negative, increases in 8 will increase skew[Wt+ 1] by making it less negative.

However, this in not the case across the range of 8 due to the subtle impact that the introduction

of the put option has on skew[Wt+ 1] through cov[q2,R].  The intuitive interpretation is incorrect

because skew[Wt+ 1] is not monotonic in 8.   Prior to reaching the minimum point for var[W],

increases in 8 will produce reductions in skew[Wt+ 1].

5. A State Dependent Example: Crop Insurance

     Crop insurance can be characterized as a put option on crop yield.   The representative farmer

plants a crop at time t and harvests it at time t+ 1.  Both the price at harvest and the quantity
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harvested are unknown at time t, the date the relevant risk management and planting decisions are

initiated.  The farmer' s optimization problem will not permit the amount of initial wealth to invest

in crop production to vary.  In practical terms,  taking the costs associated with planting the total

acreage to be given corresponds to a stylized "wheat farmer" or "apple orchard" where only one

crop is fully and systematically planted over the available acreage.  The underlying wealth process

for the farmer can be specified as in (6), where Wt+ 1 is wealth at time t+ 1 and Wt is the known

level of initial wealth; A is the number of acres planted; Yt+ 1 is the random yield per acre observed

when the crop is harvested at t+ 1; Pt+ 1 is the random spot price at t+ 1; C(A) is the given cost

function associated with planting the A acres; r is the riskfree interest rate.

      To illustrate the practical implementation of (8), consider the following state dependent

example:
                                STATE
              1             2            3              4

           Pr. = .1     Pr. = .4      Pr. = .4      Pr. = .1

Yt+1    0.6     1.3     1.5      1.2

Pt+1    1.1     .85     1.0      0.5

These price yield pairings exhibit a slight, negative correlation of -.0492.  From these values,

calculation of (1+ R) requires specifying planting costs per acre, C(A)/A.   Assuming for simplicity

that C(A)/A =  1 gives (1+ R) =  {.66, 1.105,  1.5,  .6},  with skew[R]  =  -.0169 and var[W] =

.1037.  Using this return variable,  appropriate selection of the "exercise prices" (Y) permits

identification of the precise amount of the insurance payoffs in the relevant states.   For example,

taking {Y =  1.2} yield insurance will payoff in state 1 such that q =  max[0, RR - R] =  {.66,  0,

0, 0}.  The statistical parameters required for determining (8) can now be calculated as:

Using these statistical parameters, it is possible to derive a precise numerical value for the optimal

solution (7).
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     As stated, (7) is composed of two (rhs) terms, the first corresponding to the mean-variance part

of the solution and the second associated with the impact on expected utility of the coskewness in

terminal wealth.   This method of stating the optimality conditions is used for interpretative

purposes, when expressed as a closed form, as in (8), the optimality conditions are less revealing.

However, it is apparent from both (7) and (8) that the impact of skewness on the optimal solution

depends on parameters of the moment preference expected utility function (b,c).  Because the

mean-variance component depends only on the ratio of covariance to variance, this part of the

solution can be immediately determined from the statistical parameters as 8MV =  -{ FRq/ Fq
2} =

.855.  The mean-variance-skewness solution,  8*, is determined by solving the quadratic equation

associated with (7) to get (8).  The relevant calculations are facilitated by observing that the

dimensionless number B =  x{3c Wt/2b} can be taken to be a constant, dependent on specific

preference assumptions.

     Using this approach, it is possible to evaluate the optimal yield insurance positions as various

parameters are altered.  As an initial starting point, take x{3c Wt/2b} =  {3c C(A)/ 2b} =  1.5

which gives 8MV =  .855 and 8* = .688.  This state dependent example is consistent with the result

from of Sec. 4 that the impact of introducing skewness preference into the moment preference

approximation to a general expected utility function results in a reduction of the optimal yield

insurance position from that indicated by the mean-variance part of the solution.   This

seemingly counter-intuitive result can be attributed to the different impact that 8 has on cosk[RR],

skew[W] and var[W].   To see this, consider the changes in these statistics as 8 changes.  Using

the parameters from the state dependent example:

         8        skew[W]      var[W]      cosk[RR] 

         0        -.0169         .1037        .01020
        .2        -.0127         .0919        .00395
        .3659    -.01181        .0845        .00000     8msk

        .4        -.01185        .0832       -.00065
        .6        -.0132         .0776       -.00359
        .688      -.0143         .0762       -.00436     8*
        .8        -.0158         .0752       -.00487
        .855      -.0167         .0751       -.00494     8MV =  8min
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       1.0        -.0188         .0759       -.00450
       1.2        -.0209         .0797       -.00247

The skew[W] and var[W] columns represent the relevant portion of the opportunity set for the

farmer' s optimal choice problem using mean-variance-skewness objective function.   The cosk[RR]

is the term which determines the difference between the mean-variance and mean-variance-

skewness solutions.  Insofar as this term is negative, the introduction of positive skewness

preference will result in a reduction in the optimal yield insurance position (8MV >  8*).

Intuitively, this follows because the mean-variance solution produces a lower skew[W] than 8*.

     From the numbers provided, it is apparent that the 8 associated with the minimum variance of

wealth point does not correspond with 8 for maximum (least negative) skewness.  In addition to

having implications for modelling the optimal crop insurance position,  these results also have more

general theoretical interest.   Contrary to the examples provided by Brockett and Kahane (1992),

the underlying opportunity set associated with the state dependent example exhibits a tradeoff

between skewness and variance.   While it may be possible to construct counter-intuitive examples

where the decision maker will choose the prospect which has both higher variance and lower

positive skewness, such situations may be of limited practical importance.  The subtle interaction

between moments will tend to create tradeoffs (between risk and return/ between risk and

skewness).  The rankings for these types of choices using moment preference expected utility

functions may not differ substantively from rankings derived from exact expected utility functions.

However, the state dependent example does illustrate that comparison of optimal solutions

obtained from the mean-variance and mean-variance-skewness moment preference functions can

produce counter-intuitive results.

     Compared to the mean-variance solution, a significant disadvantage of the mean-variance-

skewness solution given in the Proposition is the presence of parameters,  b and c, associated with

derivatives in the Taylor series expansion of the exact expected utility function.  Changing any of

the terms in x{3c Wt/2b} can produce variation in the optimal solution for the mean-variance-

skewness objective function.  In turn,  changes in b and c can also imply changes in the optimal
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solution obtained from exact expected utility functions, such as the power or negative exponential.

Consider the implications of assuming power utility:  U =  {W"/"}.  Recalling the Taylor series

interpretations of c =  U' ' ' /3! and b =  -U' ' /2! , it follows that 3c Wt/2b =  (2 - ")/2 where {U' ' '

Wt/U' ' } =  (" - 2) can be related to the more familiar measure of relative risk aversion, {U' '

Wt/U' } =  (" - 1).  Variation in the optimal solution 8* as x{3c Wt/2b} changes can now be

contrasted with changes in the optimal solution obtained from directly maximizing power utility

(8PEU).

     As discussed in Section 2, Brockett and Kahane (1992), among others, have shown that there

is not a direct correspondence between the derivatives of the expected utility function and moments

of the return distribution.  To explore the practical implications of this observation in the present

context, various 8* and 8PEU were simulated using x= 1 giving:

              "               8PEU         x{3c Wt/2b}      8*   
              .9            .761               .55         .787
              .6            .757               .70         .769
              .3            .732               .85         .753
              .001          .706               1.00        .736
             -.3            .679               1.15        .721
             -.6            .650               1.30        .706
             -.9            .621               1.45        .692
            -1.0            .611               1.50        .688
            -2.0            .512               2.00        .648
            -4.0            .341               3.00        .588
            -5.0            .277               3.50        .520
            -10.0           .107               6.00        .499
            -18.0           .020              10.00        .416
            -98                               50.00        .385
          -19998                              10,000       .366
             -4               0

While the presence of the preference parameters b and c permit 8* to provide a substantially better

approximation than 8MV to the exact power utility solution 8PEU,  the mean-variance-skewness

approximation is lacking for extreme values of ".   In addition, it is not possible to make precise

inferences about a given value for x{3c Wt/2b} and the associated value of ".   For example, the

specific solution provided previously (8* =  .688) corresponds approximately to " =  -.3 for 8PEU.

However, for x =  1, x{3c Wt/2b} =  1.5 corresponds to " =  -1.  Despite these problems,  the
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behaviour of 8* does reflect the qualitative result that: increases in the degree of relative risk

aversion (" becoming more negative) produces a smaller fraction of the total acreage covered with

yield insurance.

     In addition to the form of the utility function, variation in 8* can be introduced by changing

a number of other parameters such as the "exercise price" Y or the assumed distributions for the

state variable, in this case the probabilities associated with each state for the state dependent

example.  Consider the impact of changing Y : 

     Y              q                8MV         8*                 8*q                   skew[q]
 
    1.6    {1.1,  .255, .1, .2}    .745        . 631        {.694,  .16, 0.6, .13}   .0547 
    1.5    {.99,  .17, 0, .15}     .801        . 737        {.73,  .125, 0, .111}    .0503
    1.4    {.88,  .085, 0, .1}     .822        . 724        {.637,  0.6, 0, .072}    .0409
    1.3    {.77,  0, 0, .05}       .790        . 680        {.525,  0, 0, .034}      .0321
    1.2    {.66,  0, 0, 0}         .855        . 688        {.454,  0, 0, 0}         .0207
    1.1    {.55,  0, 0, 0}         1.026       . 825        {.454,  0, 0, 0}         .0120
    1.0    {.44,  0, 0, 0}         1.230       1.03        {.454,  0, 0, 0}         .0061

This 8* behaviour reveals a constancy-of-income/monotonicity of 8* result when the insurance

pays off in only one state.  In order to maintain a constant level of income, as Y falls the fraction

of total acres to insure must increase, confirming the comparative static result that (d8*/d skew[q])

<  0.  As Y gets increasing smaller, the increase in 8* continues until ' overinsurance'  (8* >  1)

is indicated.  However, this result does not extend beyond the single payout state case.  As Y

increases, payouts occur in more states, to the point where all states have payoffs and

monotonically declining underinsurance emerges.

     In addition to variation in Y, the amount of over or under insurance depends on the probability

attached to the disaster state.  In general, as this probability increases the optimal fraction of

planted acreage covered by yield insurance decreases.  For example, set Y =  1.2 and x{3c Wt/2b}

=  1.5 and change the probabilities for the four states from {.1,.4,.4,.1} to:

    Prob.                    8MV          8*        rPY  

 {.2,.3,.3,.2}              .707        .465        -.24
 {.3,.4,.25,.05}            .833        .697        -.521
 {.4,.25,.25,.1}            .909        .744        -.495
 {.5,.2,.25,.05}            .896        .711        -.569
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 {.05,.4,.4,.05}            .891        .724        +.386
 {.05,.25,.25,.45}          .469        .205        +.253

where rPY is the correlation between price and yield.  These results do not mimic the constancy

of income result associated with changing Y.  A reduction in the acreage covered by insurance

does not always occur as the probability of the disaster state increases.  While this is partially true,

the monotonic increase in 8* depends not only on the disaster state probabilities but also the

probabilities in the other states.  Contrary to the Y case, 8* does not increase monotonically until

overinsurance emerges.  In addition, while useful for illustrative purposes,  changing the

probabilities also has other less desirable implications, such as altering the correlation between P

and Y to values which are not consistent with the observed P and Y behaviour for most crops.

     Finally,  some state dependent examples were constructed to provide numerical illustrations of

situations where 8* >  8MV.   In general, such examples require there to be more than one payout

state for the option.   One such example is the following:

Pr. =  {.1,  .4, .3, .1, .1}     (1+ R) =  {.2,  1.2, 1.5, 2.0, 2.5}    q =  {1.1,  0, 0, .6, 0}

As in the previous case, letting B =  1.5 produces 8* =  1.07 >  8MV =  .75.  However,  closer

inspection reveals that this example violates the implicit assumption associated with the restriction

of R to be ' negative skewed' .   In other words, one of the option payouts in this example is

associated with a state which is not a disaster state.   A slight reduction in the payout for this state

to q =  {1.1,  0,  0, .4,  0} required resetting B =  6 in order to obtain 8* =  1.04 >  8MV =  .94.

Using simple trial and error, considerable effort did not produce examples of cases where 8* >

8MV when payouts were restricted only to disaster states.   In practice,  situations where put option

payouts occur in high return states would be uncommon, with such situations being ruled out

completely for revenue insurance.  Hence, it would appear that 8* <  8MV is the situation which

would be encountered in practical applications.

6. Summary

     This paper has examined the relationship between the optimal solutions derived from mean-
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variance and mean-variance-skewness expected utility functions.  The specific decision

optimization problem examined involves determining the demand for a put option in a portfolio

which also contains an asset with a negatively skewed return distribution.  The specification

permits both asset prices and yields to be uncertain.  The manager is permitted to have access to

put options which either protect against asset yields falling below a given floor or against asset

prices falling below an at-the-money exercise price.  Assuming that the put option is actuarially

fairly priced,  the optimality conditions for a mean-variance-skewness expected utility function are

derived and compared with the mean-variance solutions.  Both theoretically and using a state

dependent example it was demonstrated that,  if managers are risk averse and have a preference

for positive skewness, then the optimal demand for put options derived using a mean-variance

objective function will typically be greater than the optimal demand indicated by a mean-variance-

skewness objective function.  This is seemingly counter-intuitive since the put option is a security

which reduces the negative skewness in asset returns.  Explicit recognition of skewness in the

objective function should, presumably, result in a higher optimum demand than indicated by an

objective function defined only over mean and variance.

     In a state dependent example which compared the optimal crop insurance (put option on yield)

solutions for the mean-variance and mean-variance-skewness cases, a substantive difference in

complexity was revealed.  As indicated in the theoretical results, the mean-variance solution

depends solely on statistical parameters, while the mean-variance-skewness solution is preference

dependent.  The added complexity of the preference terms does permit the mean-variance-

skewness solution to provide a better approximation for various exact expected utility functions.

For the specific case of the constant relative risk aversion power utility function, it was

demonstrated that as the degree of relative risk aversion increases (the farmer becomes more risk

averse) the optimal fraction of total acres to insure diminishes in both the mean-variance-skewness

and exact power utility cases.  While this is an improvement over the constancy of the mean-

variance solution, there was considerable divergence between the exact power utility solution and
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the mean-variance-skewness solution when the degree of relative risk aversion was high.

     In addition to these results, the optimal solutions also permit a number of other inferences.

For example, a number of parameters are found to impact the solutions: the fraction of initial

wealth invested in crop production (x); the exercise ' price'  levels; and, the assumed distribution

for crop yields and prices, including the probabilities attached to the disaster states.  Each of these

factors are found to impact the effect of skewness on the optimal usage of crop insurance.  More

precisely,  as the fraction of initial wealth invested in crop production (x) increases,  the impact of

coskewness on the optimal solution also increases.   Because coskewness is likely to be negative,

this implies that the optimal fraction of total acres to insure will fall as x increases.   Similarly, as

the exercise ' prices'  on the insurance fall,  the amount of insurance required to protect revenue

against disaster states must increase.  The immediate implication is the possibility of

overinsurance: that the number of acres to insure may be greater than the number of acres planted.

Typically,  as the probability of the disaster state increases, the optimal fraction of acres to insure

will fall in order to maintain the desired income level.  However, this result does depend on the

probabilities assigned to other states.

     Finally, this paper provides considerable opportunities for future research.  The paper

demonstrates that 8* # 8MV for a put option with negatively skewed W and R.  This leave three

other situations to be worked out: put options in combination with positively skewed W; call

options with positively skewed W; and, call options with negatively skewed W.  While the

approach of this paper could be used in the derivation of these results,  it does not necessarily

follow that the main result of this paper, 8* # 8MV,  applies to those cases.  By altering the

composition of the underlying portfolio, e.g., to permit short positions in the underlying assets,

further situations could also be explored.   Another potentially interesting problem which can be

considered is to explore the restriction that b is the same for both EUMV and EUMVS.   This

assumption is essential to the results given in this paper.   An alternative approach would be to

explore the relationship between b and c required for 8MV =  8*.  Put differently, because skewness
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and variance are functionally related,  the addition of skewness to the moment preference expected

utility function requires an adjustment to be made to the assumed level of risk aversion in order

to reconcile the optimal solutions.  Again, the approach used in this paper could be adapted to

resolve this problem.
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      Appendix 

Proof of Proposition:

    The objective is to maximize the mean-variance-skewness expected utility of terminal wealth
as specified in (6) using (2) to derive (8).  Invoking the assumption of "fair pricing" of options,
this leads to the following mean, variance and skewness functions, where q corresponds to the
max[0, RR - R] random variable associated with the yield insurance case:

Using these functions, evaluating the first order conditions for MEU/M8 using the expected utility
function (EU =  E[Wt+ 1] - b var[Wt+ 1] +  c skew[Wt+ 1]) and assuming the risk parameters b, c >
0, gives the following optimality condition:

Manipulating and using the definition for cosk[@] provided in the Proposition gives the required
result (8) for the yield insurance case.

Proof of Corollary 1:

From inspection of the first order condition from the Proposition, it follows that the 8 that solves
{d skew[W]}/d8 =  0 corresponds to the 8 that solves cosk[8] =  0.  In this case, the first order
conditions for EUMV and EUMVS will be equal, which is equivalent to the stated condition that the
slopes of the two functions be equal.
     Because cosk[8] is quadratic in 8,  there will be two 8 which provide solutions to the quadratic
equation corresponding to cosk[8] =  0.  Evaluating which is a maximum and minimum value
requires some information on the signs of certain values.  To establish that 8msk is the maximum
value for skewness,  observe that the second derivative of skew[W] will have the same sign as the
first derivative of cosk[8].  Substitute the 8msk from the Corollary into the first derivative of
cosk[8] to get:

When the value under the square root is positive, this indicates that the second derivative is
negative and the stated value is a maximum for skew[W].   For the other root, the value under the
square root would have to be negative for a maximum, indicating that the solution is imaginary.
This case is considered in Corollary 4 and ruled out.

Proof of Corollary 2:

To solve for 8min,  set the first derivative of cosk[8] =  0 and solve.  Substituting 8min back into the



26

expression for cosk[8] provides the formula for cosk[8min].  To show that cosk[8min] is negative,
substitute the value of 8min into the expression and solve.  Also observe that from the 8msk solution
in Corollary 1 the value inside the square root will be non-negative and less than or equal to 8min,
implying that 8msk # 8min.   Finally,  to better describe the result that 8* <  8MV,  observe that EUMV

and EUMVS are concave in 8.   Because the slopes of these two functions are equal for 8msk and the
slope of EUMV $ the slope of EUMVS at 8min,  the maximum point (dEUMVS/d8) must occur at a point
no lower than the 8 for (dEUMV/d8).  Because 8msk occurs at cosk[8] =  0 and 8* # 8MV implies
cosk[8] # 0, it must also be the case that 8msk # 8* # 8MV.

Proof of Corollary 3:

The restriction of the state space to permit only one state where there is an option payout facilitates
the derivation of specific expressions for almost all the parameters of relevance.  More precisely,
let there be k possible states and let pi be the probability of state i.   If qi is the option payout in
state i, then the one payout state assumption requires q1 >  0 and qi =  0 for i =  {2,. . . .k}.  Given
this,  the following results apply:

Observing that:

It follows that:

From this:

The other relevant parameters needed to show 8MV $ 8min are:

It can now be shown:
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The final parameter of interest does not produce the same degree of simplification as the others:

Using these results, Corollary 3 follows from evaluation of 8msk and 8*in the special case where
there are only two states.   In particular, it is possible to show that the term under the square root
sign goes to zero when there are only two possible states,  only one of which is a payout state.  The
following result demonstrates that this outcome is not due to both terms under the square root sign
being zero.

Sign of cov[q2,R] <  0 

Consider the two-state case, where p1 is the probability of the disaster state which is associated
with the put option payout and p2 is the probability of the normal state where there is no option
payout, p1 =  1 - p2 and a bar over a variable indicates the mean.  It follows that:

The last two sign restrictions are true due to the restriction that "R is negatively skewed" which,
by assumption, means that the option payout will only occur in the state where the negative return
occurs.   Because there is no option payout in state 2,  q2 =  0.  Substituting these results into the
summation formula produces:

Signing of the variables in this expression proves the conjecture.  While not needed, it is also
possible to show, by examining the two state representation of the formula for skewness that p1

<  p2 is needed for skew[R] <  0 and skew[q] >  0.

Sign of (cov[q2,R])2 - skew[q] cov[q,R2] =  0 for the two state case

Again consider the two state case.  The condition requires that:
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Expanding the summation operator,  evaluating the powers and cancelling gives:

The =  0 follows from observing that, in the last expression,  X1 Y2 =  {(1 - p1)q1}{R1 - b) =
(p1q1)(R2 - bR) =   Y1 X2.   This equality follows immediately from expanding these expressions and
cancelling terms.

Proof of Corollary 4:

The proof requires demonstrating that (cov[q2,R])2 - skew[q] cov[q,R2] >  0 under the assumptions
of greater than two states, with only one payoff state for the option which has probability less than
1/2.  The proof relies on an initial substitution from the results for the parameters stated above to
establish:

The assumption that p1 <  1/2 ensures that the sign of {(cov[q2,R])2 - skew[q] cov[q,R2]} depends
on the sign of the expression {(1 - p1)FR

2 - p1 (R1 - bR)2}.  The sign of this expression can be
evaluated by evaluating the relevant expression for an increasing number of states.  For three
states, the expression gives:

For four states:

And so on, for increasingly larger number of states.
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1.  Further discussion of issues related to the general properties of a Taylor series expansion
for approximating a general expected utility function can be found in Loistl (1976).   Hassett et
al. (1985) examine specific types of problems with the Taylor series which arise where
skewness is involved.  Brockett and Kahane (1992) discuss the connection between preference
for moments and expected utility rankings of risky prospects, arguing that " U' '  <  0 and U' ' '
>  0 are not related to variance avoidance or skewness preference".

2.  In addition to the practical situations already listed, there are numerous other situations
where the size of the risky asset position is fixed.  Insurance decisions provide many cases,
such as those involving fire or earthquake insurance on a house or how much crop insurance to
purchase for an apple orchard.   Other examples include the purchase of currency put options to
protect against changes in exchange rates by a company bidding on a contract denominated in a
foreign currency or a metals refinery concerned about declining prices for scrap already in
inventory.  In most practical situations, the decision about how many put options to purchase is
unbundled from the real asset decision.  In other words, the hedging decision is separated from
the production decision,  e.g., Feder et al. (1980).

3. In the domestic asset investment problem, it is typical to assume that APt =  APt+ 1 is the
initial value of asset units, e.g., shares of stock in the initial investment,  making the problem
somewhat simpler. 

4.  Extending the analysis to situations where x <  0 does changes the underlying conditions of
the decision problem somewhat.   For example, optimal solutions would involve the sale of put
options.  In many practical situations,  e.g., crop insurance, this would not be possible.  In
some situations, the purchase of call options could be a feasible alternative.   In addition, when
the shape of the return distribution is negatively skewed and x >  0, this leads immediately to a
negatively skewed distribution for terminal wealth.   This situation changes when x <  0.  

5.  It is also possible to specify the put option using futures prices.   However,  because this
involves the introduction of basis considerations, this complicates the analysis.  Because
exchange traded options are often written using futures prices,  construction using futures prices
is in some cases potentially more realistic.  The assumption that the option is at-the-money is
not restrictive and is used only for notational convenience.

6.  It is simple to extend the profit function for the yield insurance case to cover revenue
insurance.   For revenue insurance, instead of two random variables associated with price and
yield interacting to determine revenue (PY),  there is only one random variable for revenue (R).  
The put option decision problem involves determining (QR/A), the fraction of A covered or
insured with the revenue put option.  Substitution of R =  {R A}/C(A) into (6) motivates the
relevant profit function.

7.  This assumption involves somewhat more than is stated.   More precisely,  this assumption
requires that the put option payouts will occur in states where the returns are low.   Cases
where put option payouts occur and revenue is high are excluded to avoid having to consider
pathological cases.  

8.  If the option is not fairly priced,  in practice it will probably be underpriced, due to
government subsidies.  In the crop insurance context, underpricing will produce an increase in
the usage of insurance.   

9.   The optimal demand for the put option depends fundamentally on parameters in
cosk[8] which may be unfamiliar,  such as cov[q2,R].  Interpretation of these terms by

NOTES
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numerical example is considered by example in Section 5.

10.  While almost identical, the optimal demand for a yield put option does differ from the
price put option in that (*/x =  [Qz Pt]/C(A) and 8* =  Qy/A.  These decision variables have a
somewhat different interpretation.   For the put option based on prices,  it is the fraction of the
initial dollar value of investment in the risky asset which is of interest, while for the yield put
option it is the fraction of the physical size of the asset.  The optimal demand for put option on
revenue is the same as that for yield insurance,  with the proviso that the actual value of the
various parameters, i.e.,  variances, covariances and the like, will have different values.

11.  The underlying moment preference objective function requires that dEU/d skew[W] >  0. 
Using (8) it is now possible to do comparative static analysis on specific parameters, e.g., to
determine that {d8*/d skew[q]} <  0.  This point is illustrated in section 5.

12.  This inherent advantages of using (7) over (8) is apparent from the simple operation of
verifying that the 8MVS =  8MV when B =  0.  To show this in (7) is immediate.  However, (8)
requires the application of l' Hospital' s rule,  i.e.,  evaluating the limit as B goes to zero.

13.   Examining cosk[@], it is apparent that {d skew[W]}/d8 is quadratic in 8,  so there will
be both a minimum skew[W] and a maximum skew[W] solution for 8.   This point is
considered in detail in the Appendix.

14.  In the following, trivial cases are ignored.  For example, if the put option finishes out of
the money in all future states of the world then 8MV =  8*.  Similarly,  if the distribution of R is
symmetric and the put option finishes in the money in all futures states of the world then 8MV

=  8* is assured by linearity of the put option payout.

15.  The proof for this Corollary also requires that the probability of the option payout state be
less than one-half.

16.   In general,  this derivative takes the form:

However, this expression reduces to (9) due to the assumption that the option is actuarially,
fairly priced which produces the result that dW/d8 =  0.


