8. Option Valuation

8.1 Mathematical Background
Stochastic Processes: Basic Definitionst

The development of options pricing theory is intimately related to notions associated with stochastic processes.
The first important work on options pricing, Louis Bachelier's (1900) doctoral dissertation, also represents a
significant early contribution to the theory of Brownian motion. Bachelier's work predates and anticipates
Einstein's work on Brownian motion five years later. Unfortunately, Bachelier's thesis passed largely unnoticed
and was only 'rediscovered' by Paul Samuelson around 1954, following the rediscovery' by L eonard Savage of a
(1914) Bachelier publication on speculation and investment (Bernstein 1992). Bachelier entered the mainstream
of financial economics in the mid-1960's when his thesis was included in Cootner's (1964) seminal book of
readings on the random behavior of stock prices.?

The theory of stochastic processes, proper, has a much longer history. One possible starting point would be
the work of Abraham de Moivre in the 1730's where he derived the normal distribution asthe limit of the skew
binomial. A moretraditional starting point dates back to 1827 when the English botanist R. Brown observed that
small particles, suspended in aliquid, exhibited "ceaselessirregular motions'. This observation was subsequently
appliedto behavior of various other physical objects, such assmoke particles suspended in the air.® Theimportant
modern contributions in stochastic processes can be traced to N. Wiener in 1918.* Hisrole is recognized in the
use of the term Wiener process to signify the fundamental building block of the theory of stochastic differential
equations. In recognition of the early work of Brown, the term Brownian motion is often used synonymously.
Important later contributionswere made by Kolmogorov and Feller. Excellent representations of the modern state
of thetheory canbefoundin Cox and Miller (1965), Gihman and Skorohod (1975, 1979), Arnold(1974), Karatzas
and Shreve (1988), Karlin and Taylor (1981), and Rogers and Williams (1987).

Formally, a stochastic process can be defined:

Definition: Let {X(t)} beafamily of random variablesindexed by thelinear (index) set ¥, where
te I. Then {X(t)} is said to be a stochastic process.

The terms stochastic (random) process and time series are often used interchangeably. Following Karlin and
Taylor (1975, p.32), "astochastic process may beconsidered aswell defined once itsstate space, index parameter
and family of joint distributions are prescribed." Similar approaches can be found in Goldberger (1964, p.142):
"...astochastic process is defined by a family of random variables {X(t)}....such that for all finite sets of choices
of t... ajoint probability distribution isdefined for therandom variables X(t) ,, X(1),,....,X(t),"; and, Dhrymes (1974,
p.383): "The probability characteristics of astochastic process{X(t)} are completely specified if we determine the
joint density function of afinite number of members of the family of random variables comprising the process."

Heuristically, the theory of stochastic processes describes the behavior of random variables, the X's, over time,
te I. A random variable isa function that maps from a prespecified domain, or sample space, to some portion
of thereal line, RY. In certain financial applications, e.g., where X refers to an asset price, X takes values only on
thepositive, half line. Inthiscase aswell aswhen the X values are allowed to assume any value along thered line,
it is conventional to assumethat there is a zero probability of X being equal to plusor minusinfinity. Whentis
fixed at a given point, X(t) has the conventional interpretation of a random variable, with associated (one-
dimensional) probability density function. Specification of the stochastic process for X requires further
specification of the joint density functions that relate X's at different points in time; the joint densities provide a
probabilistic specification of how X evolvesover time. This potentially complicated mapping can involvevarious
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combinations of discrete or continuous observation on X and t. While in financial applications X is usually
continuous, time can be either. The termsdiscrete stochastic processand continuous stochastic process are used
to refer to the time intervals at which X(t) is observed. Applications of stochastic processes have contributed
significantly in numerous fields, e.g., engineering, physics, biology and statistics.

A number of important notions from stochastic processes have received considerable attention in financia
economics. While martingal es and random walks are possibly the most familiar,® most of the literature on options
pricing is developed using diffusion processes. These concepts are all closely related. Diffusionsare (strong)
Markov processes, continuousin both X andt. Inturn, diffusions are constructed from Wiener processes that are
the continuoustime representation of a discrete time random walk. Both types of processes obey the martingale
property. The essential concept of a Markov process is most readily illustrated in discrete time. Using the
conditional probability distribution P[-], then the Markov property can be stated:

P[ X(t+1) = j | X(0)=a, X(1)=b, X(2)=C......., X()=5] = P[ X(t+1) = j | X()=s]

In effect, the Markov processis "memory less", the past and future are statistically independent when the present
is known.

While there are a number of subtle technical issues associated with the precise definition of Markov process,
Markov families and diffusions (e.g., Wentzel 1981), for current purposes it is sufficient to define a diffuson
process as a Markov process in which both time and the state variable X are continuous. W hen expressed in the
form of astochastic differential equation, diffusions can be used to concisely specify the joint density functions
for the stochastic process. To adequately motivate stochastic differential equations, it is necessary to develop the
basic concept of a Wiener process as the limit of a discrete "norma"” random walk, defined by a stochastic
difference equation. The discrete random walk, without drift, has the form:

X(t+1) = X(t) + Z(t+1) where X(0) = 0, and t € {1,2,3.....}

where Z(1), Z(2), Z(3).... form a stochastic process of independent random variables with the standard normal
probability distribution: Z(t) ~ N[0,1]. Inother words, over theunit timeinterval (A t= 1) Z(t) isanormal random
variable with mean 0 and variance of one.

Types of Diffusions

Consider what happens to normal random walk as the time interval At shrinks. In this case, Z(t + At) isno
longer N[0,1], but rather N[ 0,At] where the random walk now has the form:

X(t+At) = X(1) + Z(t + At) = X(t) + Z(t) V At

Reexpressing in difference form and using:

lim At = dt
At~ 0

Gives the stochastic differential equation for the standard Wiener process:
dX(t) = Z(t)Ydt = dX(t) = dW(t)

W(t) isusually referred to as a standard Wiener process with aunit variance parameter. The ensemble of sample
paths for X(t) conform to the evolution of arandom variable that is standard normal on the unit time interval.
Geometrically, the behavior of the Wiener process can be illustrated in two dimensions by taking X(t) on the
vertical axis and time on the horizontal axis. Starting from X(0), which is a predetermined point, the Wiener
process specifies an infinite number of possible paths originating from X(0). The pattern of these paths conform
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to N[0,At]. Toseethis, selectany timet, > 0O, takea'slice' across the X paths and plot the distribution of the paths.
The distribution of the paths will be a normal distribution, centered at X(0), withvariancet,. Similarly, doing the
same 'dicing' operation for another timet, > t, and eval uating the density associated with the ensemble of X time
paths will again produce normal distribution, centered at X(0), but with alarger dispersion. In this fashion, itis
possible to make aconnection with the distribution theory, familiar from traditional statistics, whichis concerned
with variables at a given point in time. The SDE technique is a method of describing the evolution over time of
random variables that are function of the class of normal random variables.

The Wiener process can be immediately generalized to allow for non-zero drift and variance that differsfrom
At. When a trend or "drift" term p and standard deviation o (# 1) are admitted then the arithmetic Gaussian
stochastic process (with constant coefficientsu and o) is defined:

dX(t) = p dt + o dW(t)

This constant coefficient processisalso referred to as an arithmetic or absolute Brownian motion. Thisensemble
of time paths for this process are also normal but differ from the standard Wiener process by allowing for a
different amount of variation around aconstant trend. The basic Wiener process can be used to construct awide
range of stochastic differential equations, each of which is associated with a different specification for the joint
density of the stochastic process. The construction of the Wiener processrequiresthesedensitiesto befunctionally
connected to the normal.

In general, thedrift and standard deviation can be functions of both the state variable and time, such that «[x,t]
isthedrift and B[ x,t] isthevolatility. Consider, asimple form of state dependence, where o[ x,t] = pXand B[x.t]
= oX, with u and o being constants:

dX(t)= p X dt + 0 X dW() = dX(§)/X = p dt + o dW(t)

In this case, the instantaneous rate of change (dX/X) follows a Gaussian process. For this reason, the terms
geometric Gaussian process or geometric Brownian motion are sometimes used to identify this process. It can
be shown that for the geometric Gaussian process the paths of X(t) correspond to a process that islog-normally
distributed at each point in time. This is important for cases where X(t) refers to prices that, like log-normal
variables, cannot be negative (for X(0) > 0).°

The geometric Brownian motion has an important position in option pricing theory. Black and Scholes (1973)
use the geometric Gaussian process to describe the behavior of the stock price in deriving their option pricing
formula. The processis often encountered in avariety of option pricing situations because geometric Brownian
motion usually leads to arelatively simple closed form solution. While the empirical validity of thisassumption
can be questioned, the process is sufficiently close to real world processes that in many cases a reasonable
approximation is provided.” In addition, recent work by Nelson (1990) hasshown that allowing for p = p[X] and
o = o[ X] produces the result that the geometric Gaussian process is the continuous limit of the popular GARCH
discrete stochastic process.

For various reasons, it is useful to know the mean and variance of an assumed diffusion process. For example,
akey stepintherisk neutral valuation of the European option requiresthisresult. For geometric Brownian motion:

[
+
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E[X(H)] = X(0) e** = X(0) e 2

t

var[X(f)] = X(0F 2% [ - 1]

While not difficult, the derivation of these resultsisleft to Appendix Il1.
Other important processes that are exploited in the pricing of options include variations of the regular
Ornstein-Uhlenbeck (OU) process:®

dX(t) = o X dt + o dW(t)
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In financial applications, the OU process is often presented as a mean reverting process:
dX(t) = a[p - X] dt + o dW(t)

where o can be interpreted as the speed of adjustment of X(t) to the steady state mean p. Different variations of
the OU process have appeared. For example, Brennan and Schwartz (1979) and many others use the process:

dX(t) = a[p - X] dt + o X dW(t)

In this case, dX/X reducesto a mean-reverting OU.

Unlike the geometric and arithmetic Brownian motions, the X(t) distribution associated with the OU process
changes over time. At any time t, X(t) is governed by a non-steady state distribution that is normal but with
conditional means and variances that are time dependent, e.g., Cox and Miller (p.225-27). For theregular OU:

BXO) - X0 e varlxo) - &7

Asymptotically, ast - « then the OU convergesto anormal steady state distribution with mean zero and variance
0%/2e. This damping behavior of the OU is different from the geometric Brownian motion that increases
indefinitely ast - «. Similarly, the mean-reverting OU has conditional parameters:

2
EX@®] = p + XO) - p) e™  varlX()] = ;’—a {1 - e

Ast - « then the mean-reverting OU converges to a steady state normal distribution with mean p and variance
o’/2a. Cox, Ingersoll and Ross (1985) and others use a diffusion process, the square root process, in which
volatility depends on the square root of X. In mean-reverting form, the SDE for this process is represented:

dX(t) = a[p - X] dt + o VX dW(t)

This process can be shown to be the continuouslimit of anon-central chi-squared distribution. In turn, the square
root processis a special case of the more general constant e asticity of variance (CEV) process:

dX(t) = aX dt + oXP2 dW(t)

where B € [0,2). Unlike theother diffusions examined to this point, the CEV model describes aclassof processes
defined over the range of B. For p = 1, the CEV process is equivalent to a square root process. For = 2, the
processislognormal.

The Brownian bridge process is a development on the Brownian motion process that incorporatesadrift term
which forcesthe process to a fixed endpoint. For a Brownian bridge processthat starts at zero and ends at zero,
the unit variance process takes the form:

dX(t) = -X(O/(T - t) dt + dW(t)

The Brownian bridge process has been used in a number of papers, e.g., Ball and Torous (1983), Chiang and
Okunev (1993), to model the bond price process. For this purpose, the Brownian bridge is attractive because the
bond price convergesto par value at theterm to maturity endpoint. Cheng (1991) explores problemsthat assuming
a Brownian bridge has for arbitrage free pricing.

Unfortunately, the number of diffusion processesforwhich readily interpretableconditional probability densities
can be derivedislimited. While the density function for the general CEV process has been derived, the formula
is complicated. In addition to the processes already described and immediate extensions, such as the Brownian
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bridge, the only other class of processes that have manageable density functions are Bessel processes which, in
squared form, have the representation: dX(t) = « dt + 2+ X dW(t). This form of the Bessel processis typically
used, e.g., Geman and Y or (1993), because theassoci ated densitiesare stabl e under convol utions, auseful property
not shared by geometric Brownian motion. While not alwaysthe best empirical fit to the distribution for financial
random variables, the analytical advantages of diffusion processes have played important rolesin the application
of stochastic processes to problems in finance and economics.’

With relatively little andytical complication, the general SDE model can be extended to include jump
processes. One of the properties of the diffusion is the continuity of its sample paths. This property can be
generalized to permit certain types of jumpsin the state variabl e to take place, usually modeled as a Poisson event
process. In other words, the sample paths of the diffusion are continuous except at a countable number of
discontinuity points, where the jumps are generated by a Poisson process. In this case, the SDE can be written:

dX(t) = a[x{ dt + o[xt] dW(t) + V[x1] dQ(t)

where V[ x,t] obeys the same technical conditionsimposed on ¢ and ¢, and dQ(t) is a Poisson process assumed to
be distributed independently of W(t).*° For this type of SDE, there is a generalized form of Ito's lemma, e.g.,
Malliarisand Brock (1982, p.122). Theusefulnessof thisresult in applicationsisthat it, theoreticaly, permitsthe
valuation of jumpsin the underlying process, e.g., Merton (1976), Cox and Ross (1976).

Another complication that can beintroduced to the SDE is to impose absorbing or reflecting barrierson the
process. An absorbing barrier occurs when the process vanishes at a specific point. A natural example of this
occurs for price processes that vanish when the price process reaches zero. The absorbing barrier isimposed by
requiring the transition probability density to equal zero when the state variable equals the absorbing value. The
resulting solution for the absorbed transition density typically has a solution that is the difference of the
unrestricted density and the density associated with the pathsthat areabsorbed, e.g., Karlin and Taylor (v.1, p.355).
Situations where areflecting barrier is imposed on the SDE have less immediate natural application in Finance.
The imposition of areflecting barrier involvesrestrictions on the partial derivative of thetransition density with
respecttothestatevariable. Therestrictedtransition density will bethedifference betweentheunrestricted density
and the density associated with the transientsinduced by the reflecting barrier, e.g., Cox and Miller (1965, p.224).

The Chapman-K olmogor ov Equations

Associated with ageneral SDE of theform dX(t) = e[ X,t] dt + o[ X,t] dW(t), together with aninitial condition X(0)
= ¢, isanintegral solution for X(t):

t t

X@® = X(0) + f afs] ds + f o[s] dW(s)

0 0

Considerable analysis hasbeen done on identifying the conditions under which X(t) can be derived from the SDE,
e.g., Malliarisand Brock (1982, Chap. 2). The existence and uniqueness of such a solution depends on a number
of technical conditions being satisfied, primarily associated with the behavior of & and ¢.** Heuristically, the most
commonly used form of these conditions, the Lipschutz and growth conditions, can be interpreted asrestrictions
that the coefficients cannot grow faster than the random variables.

Given a specific solution, X(t), for the SDE, a number of important analytical results apply. One essential
feature of adiffusion processisthat the transition probability density, the probability law that determines how X(t)
evolvesthrough time, will be Markov. If X(t) isasolution to the SD E then, subject to the satisfaction of a number
of technical conditions, the transition probability density P[X,,t,;X,t] can be obtained from « and ¢ using the
Kolmogorov forward and backward equationsthat are PDE's which the transition probability density obeys. For
the arithmetic Gaussian process, that features constant coefficients, the forward or Fokker-Planck equation is:
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In financial applications, this PDE equation is usually subject to theinitial condition P[ X,,t,; X,t] = 8(X - X).
Theforward equation is so-named because the sol ution process starts from theinitial values X , and t, and solves
for the density function of the future values of X(t). Thisis the usual method of solving valuation problemsin
finance. The forward equation for transition densities that have non-constant coefficientsis:
1 &

~—{0’[X,1] PLX,

0
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Related to the forward equation is the backward equation, that is similar in appearance to the forward equation,
and is used to derive the density function of X, starting from the density associated with X(t). A demonstration
of how to apply the forward equation to solve for specific functional form of atransition probability density for
the OU and other processesin given in Cox and Miller (1965) and other sources.

7.2 Ito'sLemma
Univariate Ito'sLemma

Calculusisanimportant mathematical techniquewith numeroususeful applications. Asconventionally presented,
calculusis applied to functions that are deterministic. In effect, the familiar rules associated with dy/dx, such as
y = x2 - dy/dx = 2x, only apply when x is known. When x is a random variable the usual rules of calculus no
longer apply. The importance of Ito'slemmaisthat it specifies the procedures for applying cal culus to functions
which containrandom variables. M ore precisely, Ito'slemmaprovides a method for evaluating thetotal derivative
of afunction of astochastic variable that follows a Markov diffusion process. Asdiscussed in 7.1, the diffusion
classincludesawide rangeof stochastic processes. Given this, the univariate form of Ito's L emmacan be stated:*?

Ito's Lemma: Let u(x,t) be a continuous random function mapping from R* x [0,T] - R, with
continuous partial derivatives u,, u,, and u,. If x(t) is a random process with a stochastic
differential equation obeying a diffusion of the form:

dx(t) = a(t) dt + v(t) dW(t)

where W(t) is a standard Wiener process and a(t) and v(t) are the drift and volatility of the
diffusion, then the function y(t) = u(x(t),t) also hasa differential on [0, T] given by:

dy(t) = {u, + u, a(t) + 1/2 u,, v(t)%} dt + u, v(t) dW(t)

This form of Ito's lemma generalizes in a natura fashion to the case where x is multidimensional, e.g., Malliaris
and Brock (p. 85-6).%

While Ito's lemma has had numerous applicationsin financial economics, perhaps the most well-known is the
Black-Scholes application to call option valuation. In thiscase, the non-dividend paying stock priceis assumed
to follow alog-normal diffusion:

dS= o« Sdt + o SdW

In this case, a(t) = «S and v(t) = oS where o and o are constants. The functional relationship between the call
option price (C) and the stock takes the form: C = C[St; X]. Application of 1to's lemma gives:
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dC={C,+ Cqa S+ 1/2Cs 0> S} dt + {Cs0 S} dW

This solution plays a central role in the derivation of the Black-Scholes price of a European call. In particular,
Black-Scholes are able to use the riskless hedge portfolio construction to provide an additional condition that
permits elimination of the dW term. In this fashion, the call option pricing problem istransformed from an SDE
problem that is not solvable in closed form with standard techniques, into a deterministic partial differential
equations(PDE) problem that can be solved. However, complications associated with solving PDE's are such that
closed form solutions are not always possible. This has at least two implications. Firstly, thereis an emphasison
problem specifications that can be solved in closed form, e.g., Black-Scholes, even though such solutions may not
be fully realistic. And, secondly, there is the need to apply numerical simulation to 'solve' problemsin which a
precise specification of the problem isrequired.

Ito'slemma can also be used to transform one type of SDE into another. One useful example involves the
function G(S) = In[§ when the SDE for Sis geometric Brownian motion. Application of 1to's lemma provides
the SDE for G(S), specified using the drift and volatility parametersfor S. More precisely, G, = 0, Gg= 1/Sand
Gy = -(1/9?. Using Ito'slemmait follows that:

dG = {0+ « - /202 dt+ o dW = (« - 1/2 6%t + o dW

The result that the log of alog-normally distributed random variable follows an arithmetic Brownian process is
not surprising, but the specification of the drift isnot obvious.

A straight forward extension to the case of functions of two variables (and time) is provided by Fischer (1975)
which examines the stochastic behavior of the rea bond price g = B/P where B is the nominal price of ariskless
bond and P isthe pricelevel. In this case, the rate of change in the price level (dP/P) and the return on azero-
coupon continuoudy compounded nominal bond (dB/B) can be specified:

dP/P = n dt + o dW dB/B = Rdt
Observing that when g = u(B,P) = B/P:
U=0 Ugp=-{UPY uUyp=0 ug=1P u,=-{B/P} u,=2{B/P%}
It is now possible to apply the multivariate form of Ito's lemmato get:**

dq={lRB+_—B‘n:P+£P2O2}dt+_—BOPdW
P 3 P2

P? P
Factoring out B/P gives the desired result:
do/g={R-7 + 0% dt- o dW

More devel oped applications of the multivariate form of Ito'slemma can befound in various sources, e.g., Gibson
and Schwartz (1990) and Schwartz (1982).

Multivariate Ito's Lemma

Itisuseful to proceed by exampletoillustrate the multidimensional form of Ito'sLemma. Briysand Solnik (1992)
providean interesting application to the case where x is multidimensional, involving two random variables. This
requiresamoreinvolvedform of Ito'slemma. The Briysand Solnik exampleinvolvesthe domestic currency vaue
of aforeign asset, V* = VS whereV isthe random foreign currency value of the foreign asset and Sis the random
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spot exchange rate, producing V* which is the random domestic currency vaue of the foreign asset. In this case,
processes are given for dV and dSwith dV* to be calculated using Ito's lemma.

To evaluate Ito's lemma for this case requires application of the associated multivariate total derivative. The
resulting solution for the two random variable case, y(t) = u[t, {x()}] = u[t, {x,(t), X,(1)}], takesthe form:

dy=utdt+uxdx+%tr[z u_] dr

where X is the variance-covariance matrix of the state variables and tr[-] isthe trace operator. Becausethere are

n state variablesin the general form, u,isan x 1 column vector containing thefirst partial derivatives, dx isarow

vector containing the diffusion processes and u,, is a symmetric n X n matrix of the second partial derivatives.
In the Briys and Solnik example, dy = dv* and V and S are assumed to follow the log-normal diffusions:

av ds
7=p.,,dt+0VdWV ?=psdt+odeS

The covariance between dWg and dW,, per unit time, cov(dWsdW,) = ps dt. It follows that 0,5 = pys Oy O
Recognizing that y = u(x,t) in this caseis V* = VS it follows that:

u1=aV*=S u2=aV*=V utzaV*=O
14 oS ot
ok . Prx PVx | = Pvx
Uy = - =0-= ) =1= = U
av oS ovos oSoV

Because there are now two state variables, V and S, the variance-covariance matrix X is 2 x 2 with varianceson
the diagonal and covariances on theoff-diagonal. Remembering from theunivariatelog-normal examplethat v(t)?
= 02 S, evaluating 1/2 tr[-] for this case gives:

O11 O12||%11 %
_ t?‘{

2

}:l{ou + 0, Uy, + Oy Uy, + O U} = G, = Ope VS
5 12421 2112 2 12 Vs

() o U

21 O] |th,) Uy

Using the result that 1/2 tr[-] = 0,5 VS. The solution to the total derivative is found to be:
dvx =0 + S(u,V dt + o,y dw,) + V(uS dt + oS dW) + 0, VS dt

arvx
V *

=y, + B + Op) dt + 0,dW, + o, dW

Given dV and dS, thisis dv*, the SDE for the domestic currency value of the foreign asset.
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8.2 Deriving the Black-Scholes Option Pricing Formula®®

Deriving the For mula

The Black-Scholes Assumptions
The Black-Scholes assumptions are:

a) Non-dividend paying stock.

b) European option.

c) Theinstantaneoudy riskless continuous interest rate r is congtant over time (with a flat term
structure).

d) The model has only one source of randomness, the single state variable, the price of the stock
that follows a log-normal diffusion process. Thislog normal process is defined only over S e [0,].
€) No transactions costs or taxes.

f) No penalties on short selling.

g) Riskless lending and borrowing at r.

h) Continuous trading.

Assumptions €)-g) are the conventional perfect markets assumptions.

The seminal paper by Black and Scholes (1973) directly addresses the problem of providing a practical, closed
form expression for the price of a call option on acommon stock prior to the maturity date. Extensionsto options
on futures and spot commodities follow with appropriate adjustments. Recognizing that a considerable amount
of research effort preceded the devel opment of Black-Scholes, e.g., Cootner (1964), what is most significant about
this contribution is that the formula depends only on observable inputs: the stock price, the exercise price, time
to expiration, the interest rate and the variance of the stock price. With suitable choice of estimator for the
variance, the accuracy of the formula has proved to be robust across a wide range of option pricing situations.
Extensions of this option pricing approach can be used to value: the debt and common stock of the firm; bond
features such as callability, convertibility and retractability; and, tax and investment policy. Asinitially derived,
the formula applies to a "perfect markets' world for a European call on a non-dividend paying stock. The
techniques used to derive the formula are consistent with the material on stochastic processes covered previously.
With appropriate transform of variables, Black and Scholeswere able to show that the call option pricing problem
reduces to solving a special case of the heat equation from mathematical physics.

The Black-Scholes argument proceeds by i mplementing the essential concept of ahedge portfolio. Recognizing
that there is both along and a short hedge portfolio, the long portfolio involves combining a long stock position
with « written call optionson the stock. The hedge is created by selling just enough callsto offset changesinthe
value of the stock position. This portfolio will involve a net investment of funds because the premium income
received from writing the calls will not be sufficient to purchase the stock position. Similarly, the short hedge
portfolio involves shorting the stock, buying call optionsto hedge the position agai nst upward changesin the stock
price, and investing the balance of the fundsin ariskless asset. Observe that, for both the long and short hedge
portfolio, as the stock price changes the option hedge has to be continuously adjusted to maintain the hedge
position.

For ease of exposition, consider the long hedge portfolio. In order to determine the number of call options to
sell, let V= S- BC be the vaue of the hedge portfolio. From the hedge portfolio construction:
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Given this specification for B, the change in the value of riskless hedge portfolio will earn the riskless rate of

interest. (This follows from the assumption that interest rates are riskless). In termsof arbitrage portfolios, this

condition is necessary in order to prevent the execution of arbitrage trades by either borrowing at the risklessrate

and buying the hedge portfolio or selling the hedge and investing the funds at the risklessrate. It followsthat there
are two dV conditions that have to be satisfied:

S-Syrar=-av - ar-as-%

Cy Cs

At this point, Ito's lemma can be applied to solve for dC:

dC={Ct+CSocS+%CSS02S2}dt+CSoSdW

The solution for dV can be derived as:

dv - as - %€
C

N
_ oS dt + oS dW - CL{[ct + CyaS + % Cy0® §7] dt
S
+ C,08 dW}

1 1 a2 C
=——{C, + = C,.0°8%dt = (S - D) dt

Cs{ ¢ "5 CuO 3 ( Cs)
Dividing through by -{dt/Cg gives the fundamental partial differential equation for a European call on a
nondividend paying stock:

1

Ct=rC—rSCS—Eo2S2CSS
With appropriate transformation of variables, this equation reducesto the heat equation.

The Black-Scholes option pricing formulais derived by solving the fundamental PDE, subject to appropriate
boundary and terminal conditions: C[S,0,X] = Max[0, T) - X]; C[0,t,X] = 0. If Laplace transforms are used
in the solution procedure, the condition C~,t,X] = 1isalso used. Asit turns out, solving the PDE problem
involves considerable anaytical manipulation. The ultimate solution is the Black-Scholes formula:*®

CIS,t*:X,r,0] =C =S N[d,] - X & N[d,]

where N[+] is the cumulative standard normal distribution evaluated at the appropriate argument and:*’
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The formulafor pricing puts follows from put-call parity:

P=C+Xe™ -S=SNd]-Xe™ Ndj]+Xe™ -8

=S{Nd] -1} -Xe™ {Nld,] - 1} =Xe™ N[-d,] - S N[-d,]

This follows from observing that N[d] - 1 = N[-d] (see Appendix 3).

Manual evaluation of the Black-Scholes formula requires familiarity with the cal culation of specific values for
N(d), the cumulative normal distribution function evaluated at d (see Table 8.1). Though itis easiest to work
directly with N(d), it is also possible to work with n(d), the normal probability density function and to construct
N[d] values from n[d] tables. Thisis possible because the value of the cumulative normal distribution function
evaluated at x, N[X], is the area under the normal density function between -~ to x.

To evaluate the Black-Scholes formula using the standard normal probability density table, refer to Tables 8.1
and 8.2 that have both N[ d] and n[d]. The potentially simple exercise of producing the required cumulative N[ d]
valuesis complicated by theform in which then[d] tableis presented. Toillustrate the use of thetable, observe
that when the calculated value d in N[d] is greater than zero, the value in the n[d] tableis added to .5 = N[(].
Similarly, when d < 0, then the value in the n[d] table is subtracted from .5. In the example provided, d, was
approximately -.25. To identify the appropriate N[-] value, look down the vertical axis in the n[d] table to find
thefirst digit, in this case .2, and then read across to get the second digit, in thiscase .05. Examining the tablethe
valuein that cell is .0987. Subtracting this value from .5, because d, < 0, gives .4013, the value used in the
example. Evaluating d, at -.50 gives a Table value of .1915 and N[d,] = .3085. These are the same values as
those obtained by working directly from N[d]. This method of calculating d using the relevant standard normal
densities can be used because the distribution is symmetric, making the values for one half of the distribution
redundant. Presenting the table using only half of the distribution information as in the Table allows a larger
number of 'useful’ cellsto be presented.

Inter preting the Formula

Thefirg stepininterpreting the Black-Scholesformulainvolvesinterpreting N[ d], particularly as Sand X change.
Consider an at-the-money option, S=X, wheret* issmall. Inthiscase, In[SX] = In[1] = 0 and, due to small t*,
the remaining valueswill be small and N[d] - N[0O] = .5. Similarly, when the option is deep in-the-money, S>>
Xand N[d] - N[+«] = 1, which impliesthat, for an European call option on a hon-dividend paying security, C
- S- Xexp[-rt*] > S- X. Observing that S- X is the early exercise value, it follows that European cdl options
on non-dividend paying securitieswill, if the Black-Scholes formulaiscorrect, not be exercised early. For puts,
deep in-the-money requires X >> Swhere N[-d] - N[ +<], which impliesfor aput option that: P - X exp[-rt*] -
S< X- S Itfollows that European puts on non-dividend paying securities can be rationally exercised early. This
asymmetry is an artifact of the upper bound on the value of the put position resulting from the restriction that S
> 0. If the spot pricefallsfar enough, the expected loss of interest dueto early exercise will exceed the expected
possible gains due to further price declines.

It has been demonstrated that as an option goes deeper into the money, the In[S/X] term in d, and d, tends to
dominate the value of d. The same istrue as the options goes deeper out of the money. For the call option, deep



12 Risk Management, Speculation and Derivative Securities

out-of-the-money requires X >> S. This produces: N[d] -~ N[-«] becauseIn[0] = -~. Hence, as the spot prices
goes to zero then: C -~ 0. A similar result holds for puts, with the proviso that deep out-of-the-money requires
S>> Xfor puts. Inthiscase N[-d] = N[-(+)] = 0. Similar intuition can be used to evaluate the formula ast*
- 0. Inthis case, only the term involving In [ X] matters, dueto thet* cancellation of ¥ t* leaving av t* term to
multiply (r + .5 ¢?). If the option is in-the-money on the expiration datethan C = S- X, whereas if the option is
out-of-the-money then C = 0. This is a verification that the formula satisfies the boundary condition that:
C[X,t=T] = max[S- X, 0].

Other basic interpretations of the formula are associated with the relevant partial derivatives. Analytically, the
partial derivatives:

c ¥
ot as 282

of the fundamental PDE, together with other partial derivatives of the Black-Scholes formula, are demonstrated
in Sec. 8.2 to play a central role in applications to the management of portfolios. Asit turns out, for portfolios
containing derivative securities, one or more of the partial derivatives become choice variables. To illustrate
possible applications, consider the riskless hedge portfolio. In this case, the delta of the portfolio is constructed
to have dVv/aS= 0.

Another simple example is a portfolio containing only a call option. By setting, say, 3°C/dS? = 0 by choosing
to writeonly options that are deep in-themoney, the fundamenta PDE provides restrictionson the remai ning two
partial derivatives of the form:

a—C+rSa—C=rC
aS

ot

Recognizing that 0C/0S = 1 when the option is deep in-the-money provides a solution for 0C/ot in terms of the
interest expense of the fundsinvestedin the position. Chapter 10 provides numerous more devel oped extensions
of this approach to the construction of portfolios containing options.

Application of the Black-Scholes Formula
Assume the following: S(t) = $36, X = $40, t = 3 months = t* = .25, r = .05, ¢ = .5. Both the
interest rate and standard deviation are expressed in annualized form. For sigma, thisrequires

estimating the standard deviation over the relevant sampling frequency and then annualizing as
appropriate. Given this:

d, = {In[36/40] + (.05 + 5(.5)%) .25} /{.5 (/.25)} = -.25
d, = {In[36/40] + (.05 - .5(.5)%) .25} /{.5 (V.25)} = -.50

Evaluating the N[-] values: N[-.25] = .4013 and N[-.50] = .3085 and exp{(.05)(.25)} = .9877, itis
possible to solve for the Black-Scholes call option price:

C = S[.4013] - X [.9877] [.3085] = 14.4468 - 12.1882 = $2.26
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Table 8.1 Values of the Cumulative Normal Distribution Function

Values of N(d) for Selected Values of d

s

d N(d) d N{d) d Nid)
—1.00 1587 1.00 .8413
—-285 Loe —.985 A711 1.05 8531
—2.90 0019 —.30 1841 1.10 8643
—2.85 0022 —.B5 1977 1.15 B749
—2.80 L0026 —.80 2119 1.20 8843
—-2.75 .0030 =il 2266 1.25 8944
—2.70 0035 —.70 2420 1.30 H032
—2.65 0040 —.65 2578 1.35 A5
—2.60 0047 --.60 2743 1.40 8192
—2.55 D054 —.55 2912 1.45 8265
—2.50 .0062 -.50 .3085 1.50 8332
—2.45 0071 —.45 3264 1.55 3394
—2.40 0082 —.40 3446 1.60 8452
—2.35 .0094 =35 3632 1.65 9505
—2.30 0107 —.30 3821 1.70 8554
—2.25 0122 —.25 A3 1.7% 9599
—2.20 39 —.20 A207 1.80 9641
—2.15 .0158 —15 4404 1.85 0678
—2.10 0179 —.10 4602 1.90 8713
—2.05 0202 —.05 4801 1.95 9744
--2.00 D228 00 .5000 2.00 9773
—1.85 0266 05 5198 2.05 8748
—1.80 0z2a7 A0 .5398 2.10 9821
—1.B5 0322 ] 5596 215 .9842
—1.80 0359 20 5793 2.20 .9861
—-1.75 .0401 .25 5987y 225 .o878
—1.70 0446 .30 6179 2.30 .5893
—1.65 0495 .35 6368 235 8806
-1.60 .0548 AQ 6554 2.40 9918
—1.65 0606 45 B736 2.45 9929
—1.50 .0668 .50 6915 2.50 8938
—1.45 Q735 5b 7088 2.55 9946
-1.40 0808 60 7257 260 8853
—1.35 .0885 B5 7422 2.65 9960
—1.30 0968 70 7580 2.70 8965
—1.25 1057 75 734 275 8570
—1.20 1151 80 7881 2.80 9974
—1.15 1251 85 8023 2.85 9978 .
—1.10 1357 .90 8159 2.90 9981

—1.05 1469 .95 B289 2.95 5904

#
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Table 8.2 Value of the Normal Density Function
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THE STANDARD NORMAL DISTRIBUTION

z .00 Mt 02 .03 .04 .05 - 0G .07 .08 .09
0.0 | .0000 .0040 ,.DOSO .o120 0160 01090 0230 0270 .0319 0359
0.1 | 0308 .HI8 .78 L0317 .DBAT 0S40 DD L6735 0714 U753
0.2 | .o703 .0832 .0871 .0910 U048 L0u87 L1020 n6d 1108 L1141
o3| .nme .17 L1255 1203 1431 L1368 L1a0d L1443 L1480 L1517
0.4 | 1554 .150% .1G28 1004 1700 L1736 L1772 L1BUS 1844 L1879
0.5 | 1015 .1950 1985 .2MI 2054 2088 2128 L2157 L2100 22
0.6 | .o257 2201 2324 2357 2180 o422 2484 2480 L2517 2510

0.7 | J2ssu 2611 dog2 (2073 2701 0734 2T6d L2704 L2828 L2852
o.8 | .2881 .2010 .2uid LBOGT NS (Bodd 305 L3078 31060 L3188
0.0 | .2150 5180 @212 8 Lu2el (8u8Y 3315 L4340 3305 - 3889
1.0 |..3413 3438 3461 (3485 3508 3531 (3554 L3577 .3500 (3021
1.1 | .3643 3665 .3G8O 4708 3729 L3740 3770 .3750 3810 3530
1.2 | .ag4a (386U L4B8S 307 T S LN RS 1 < e 11 R LS
1.3 A0H2 U LA0Gl EPTIT 1T R RN | Al 447 AW 4177
1.4 | 4192 4207 g2n2 4240 4251 4265 427D 42492 L4306 L4310
1.5 | Jasu2 L4345 4857 4U70 382 AWUE L4900 4418 4420 KELH
1.6 | 4452 .4463 4474 4184 ,A405 4505 4515 4525 A58 4545

1.7 | .4554 .4564 .4573 .4532 4501 L4509 4008 4016 L4625 4031
LA | A1 Ay use  LdG6d L4071 4678 4080 4 Wi L4na9% 4706
1.9 | 4718 4719 4728 4742 ATS8  ATHL 4TH0 L ATHG 47061 SAT67
o.0 | 4772 .4778 4783 4783 4703 4798 4803 .4B0§ - 4812 817
a1 | 4821 .4826 .4830 .4834 4838 4812 .4846 .4850 4834 4857
o2 | 4861 4804 4808 4571 4875 4878 .4881 4834 .48%7 .4890
a4 | 4801 4800 L4808 4801 4HH AOnd L4908 A9 403 4910
9.4 | 4018 420 L4022 4025 407 TSI (11} B 13 2 B F1< DR 1
2.5 1 4038 40 494) 4043 AU5 4B A8 4040 4051 L4952
2.¢ | .4053 ~.4055 .4950 4057 4050 4960 4961 4062 .4063 L4964
2.7 | .4085 4068 4967 4068 0G0 4970 L4U7D1 45972 4073 4974
2.8 | 40714 4975 4976 L2077 L4077 4078 4UTD 4070 L4980 L4081
2.9 | 4081 @2 qORZ SR 4081 a981 4085 L4083 L4980 4980
3.0 | 4987 4087 LAUST AN 4uSy  uNg L 4uBY CUSY L4000 LH000

Note: For x > 0, add .5 to the value in the Table. For x < 0, subtract the value in the Table from .5
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Implied Volatility

Malz (2000) on OTC Foreign Currency Option Trading

In foreign exchange markets, options are traded among dealers using the delta as a metric for exercise price and the
Black-Scholes volatility as ametric for price. The volatility smile can then be represented as a schedule of implied
volatilities of options on the same underlying and with the same maturity but different ddtas. This convention is
unambiguous, since a unigue exercise price corresponds to each call or put ddta and a unigue option premium in
currency units correspondsto each implied vo ility. The maost liquid option markets are for at-the-money forward
and for 25-delta calls and puts. There are also somewhat less actively traded markets in 10-delta calls and puts.

Practical application of the Black-Scholes formula requires some method of estimating the variance, o?, of the
continuously compounded rate of return on the stock (dS/S).*® Unlike the other values required to calculate the
Black-Scholesoption price, (S,X,r,t), thevaluefor volatility is not directly observed. Some method of estimating
o isrequired. Startingwith thefirst empirical studieson Black-Scholes, it has been recognized that using the past
history of returnsto estimate volatility can produce undesirableresults, e.g., inconsistency between Black-Scholes
and observed option prices, e.g., Latane and Rendleman (1976), Macbeth and M erville (1979).* Lauterbach and
Schultz (1990) reports: "...our findings indicate that the constant equity variance assumption is the most serious
deficiency in the Black-Scholes model." Over time it has been recognized that, given an observed call option
price, Black-Scholes can be"inverted" and used to solvefor an estimateof volatility. 1n other words, given S X,r,t
and C it is possible to use Black-Scholes to solve for ¢. For this purposes, computer programs that solve for
Black-Scholes pricesal so providearoutine for solving the implied standard deviation or implied volatility (1V).%

Not surprisingly, the behavior of implied volatility has been intensely studied from a number of different angles.
From the beginning, study of implied volatility hasreveal ed that Black-Scholesisnot aformulafor pricing options
but, rather, because the traded call price isobserved and the only unobserved variablein the Black-Scholes model
is the volatility, Black-Scholes is more appropriately viewed as a formula for determining an estimate of the
underlying spot price (S) volatility.? Various properties of theimplied volatility have been examined in numerous
studies. One property of interest isthe ability of the implied volatility to predict future volatility, typicaly using
the most advanced econometric volatility predictor, e.g., GARCH, as abenchmark. Thistype of comparison can
befoundin Stein (1989), Day and Lewis (1992), Caninaand Figlewski (1993), Lamoureux and Lastrepes (1993),
Heynen, Kemnaand Vorst (1994), Takezawa (1995) and Xu and Taylor (1994, 1995), Sabatini and Linton (1998),
Dumitru (1999).

Volatility forecasts have a number of potential uses, including being used as input for market markers
determining appropriate bid/offer quotes for option trading or as inputs to Value at Risk calculations. For a
number of reasons, itisdifficult to formulate definitive tests of implied volatility performanceinforecasting future
spot volatility. Given this, there is conflicting evidence as to whether 1V's from option pricing models provide
superior forecasts to those obtained from spot data using appropriate econometric techniques (such as GARCH
estimators). Some studies, such as Takezawa (1995), Canina and Figlewski (1993) and Stein (1989) find that the
IV's tend to be poor forecasts of future realized volatility compared to econometric estimators. Among other
reasons, thisisattributed to implied volatilities 'over reacting' to volatility surprises. Other studies, such as Xu and
Taylor (1994) find that implied volatilities are the best predictors of future volatility.

One difficulty in identifying the forecasting properties of implied volatilities concerns the sampling windows
being used. On the IV side, there is the problem of how best to combine IV information. Implied volatilities
change over timeand numerous studies have demonstrated that averages, including weighted averages, of past Vs,
have better performance than using just the previous IV, e.g, Schmalensee and Trippi (1978), Latane and
Randleman (1976), Beckers (1981). 1Vs from at-the-money options are also found to be better predictors than
deep out-of-the-money and, where applicabl e, deep in-the-money options. Shortdated optionsand optionswritten
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on extremely high or low volatility spot markets also have poor performance. Thereis also the question of how
to combine the estimates from options on the same security, withthe same timeto expiration but different exercise
prices. Another complication concerns the variable being forecasted. |s accuracy in pricing subsequent options
the criteria, or isit the tracking of actual spot market volatility, or isit profitability of atrading strategy based on
optionmispricing, e.g., Galai (1977)? All these questionsare complicated by non-simultaneity of option and spot
guotes, as well as the problem of accounting for the bid/offer spread, e.g., Rubinstein (1985).

From these early results, the study of implied volatilities progressed to the detailed comparison of volatilities
extracted from different optionsfor the same commodity or security, concentrating on currenciesand stocks. More
precisely, at any point in time, a number of options with varying term to maturity and exercise price are available
for the same spot commaodity. The implied volatilities for the different option prices reveal asignificant degree
of heterogeneity. In particular,comparing implied volatilitiesfor different exercise pricesrevealsavolatility smile
or volatility smirk when currency option prices are used to calculatethe 1Vs.? ThelV islowest for at-the-money
options, with the IV having progressively higher values as the option price moves in-the-money or out-of-the-
money, e.g., Heynen (1994), Dumitru (1999), Taylor and Xu (1994), Malz (2000).# This empirical result for
currency optionsis stylized and the precise shape of the smile varies acrosstime and currencies. For example, a
smirk is sometimes observed where the IV sfor at-the-money and in-the-money are approximately equal whilethe
out-of -the-money options have higher IVs.

The IV smile of currency options does not carry over to stock and stock index options where a volatility skew
isobserved, e.g., Dumaset al. (1998). In avolatility skew, IV decreases as the strike priceincreases. Low grike
price options, where the call is deep in-the-money and the put is deep out-of-the-money have the highest IVs. 1V
declines progressively reaching the lowest level s for high strike price options, where the put isdeep in-the-money
and the call is deep out-of-the-money. For both currency and stock options, differencesin calculated IVs are also
observed when different terms to expiration are used, with the shorter maturity optionstypically exhibiting higher
IV's. All thisvariation in empirical 1V hasled to considerable theoretical analysis, attempting to explain the IV
variation.

If the Black-Scholes model were perfect, then volatilities derived from option prices would be the same
irrespective of the expiration date and exercise price of the option used to derive the V. However, in practice,
volatilities derived from in- at- and out-of-the-money options differ, sometimesthe IV plot reveals a smile when
implied volatility is plotted against moneyness of the option, e.g., Heynen (1994), and sometimes the plot reveals
asmirk or askew. A first possible step in dealing with observed IV behavior is to evaluate the vega risk of the
position. For a postion containing only one option, the vega risk can be approximated by taking the derivative,
with respect to o, of the appropriate Black-Scholes formula, e.g., Hull and White (1987), Malz (2000). This
approach is discussed in Chapter 9. It is possible to incorporate vegarisk into VaR calculations.

Another possible approach to accounting for observed 1V behavior is to model the stochastic behavior of
volatility directly. Thisinvolvesintroducing an additional stochastic process into the model. Unfortunately, the
presenceof two random variables, volatility and commodity price, significantly complicatesthe model ling process,
e.g., Scott (1987, 1997), Hull and White (1987, 1988), Heston (1993), Ball and Roma (1994), Duan (1995),
Ritchken and Trevor (1999). The basic problem of introducing volatility is captured by Ball and Roma: "Since
volatility is not spanned by assetsin the economy, the volatility risk may not be eliminated by arbitrage methods.
Therefore, its market price of risk explicitly entersinto the PDE." Hull and White (1987) were able to partially
circumvent this problem by taking volatility to be uncorrelated with the commaodity price, allowing the Black-
Scholes price to be determined by integrating over the probability distribution of the average variance during the
life of the option.

The Hull and White approach can be motivated using a power series expansion of the option price. Ball and
Roma (1994) demonstrate the the Hull and White approach can be extended "to any security price processthat is
conditionally log-normal and for which the M GF of the averagevariance possessesaknown analytical form". This
follows because, if atractable stochastic process for volatility has been specified, it is possible to solve for the
expected variance by direct integration. This approach can be extended to demonstrate how stochastic volatility
leads to a smile effect (Ball and Roma 1994, p.662). To see this, expand the option price in a univariate Taylor
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series, expanded in volatility around the expected value of the true variance of the underlying process. Ignoring

terms higher than second order gives:
Cx = e + L S CET e — o) + Lo var[o?]

2 3 (62)2 2

where C* is the true option price that takes account of stochastic volatility, C is the Black-Scholes price, E[ 7]

= Q isthe expected value of the average variance, and var[67] is the variance of the average variance.

From this point, it is possible to adapt an argument similar to that in used in Sec. 2.1 to capturethe cost of risk.
Recall that IV istheimplied volatility cal culated from the Black-Schol es formula using the observed option price.
While it is conventional to solve for IV using observed option prices, it is also possible to solve for the 1V
associated with the option price calcul ated from the pricing model that accountsfor stochastic volatility. Withthis
inmind, let IV* = Q + w; theimplied volatility calculated from the Black-Scholes model using the option prices
determined by the stochastic volatility model is equal to the expected variance of the true process generating the
commodity price plusany deviation of IV* from the expected variance of the process that accountsfor stochastic
variance. It follows that the first order Taylor series approximation gives.

Cr-CV =@ + o] = Q] + 028 L - Lpen &
a(6%) 2 c’

The relationship between the deviations of the implied volatilities cal culated from Black-Scholes prices, on the
same commodity, using the different pricesavail able, can now be determined by directly evaluating the derivatives
C" and C..

Ball and Roma give an approximation to the solution for w as:

_varlod | Q| S e
Q 4 Q¢

1

Solving thisfor at-the-money revealsw < 0. AsBall and Roma observe: "Thisis not surprising since the Black-
Scholesoption priceisonly everywhere concavein variancefor at-the-money optionsand, hence, astraightforward
application of Jensen's inequality implies that the stochastic volatility option is priced below the Black-Scholes
counterpart evaluated at the mean of average variance." With this result the presence of a smile effect in the
calculated |V using actual option prices can now be determined by observing that there are different ws for the
various exercise prices. Some caution is needed in applying these results due to the initial assumption that the
randomness in volatility is uncorrelated with randomness in commodity prices. Failure of this assumption
contributes to the volatility skew in equity option IVs.

Ultimately, only so much can be accomplished by dealing with o, which is just one parameter from the
underlying commaodity or security price digtribution. Itis natural that attention has also focused on modeling or
extracting the complete digribution for the underlying commodity price process. Improving pricing accuracy by
better modeling the distribution of commodity prices has been of interested almost since Black-Scholes (1973).
One potential approach along these lines is to empirically evaluate the commaodity price distributions to assess
which empirical assumption is most appropriate. For example, Bates (1996)and others examine the empirical fit
of jump diffusion, stochastic volatility and mixed jump-stochastic volatility models. Oneinherent difficulty with
this approach is that the digtributional model which has the best goodness of fit, e.g., the skew-stable, may not be
manageabl e theoretically, especially if the objective is a closed form solution.

Onceitis recognized that there are only afew caseswhere closed forms can be derived, approxi mation methods
gain appeal. Various approximation techniques, including Edgeworth expansions, Hermite-Fourier expansons
Chiarellaet al. (1999), L aguerre expansions(Dufresne2000), and Gram-Charlier expans ons, have been examined,
e.g., Jarrow and Ruud (1982), Shimko (1994), Corrado and Su (1996). However, these methods are decidedly in
thedirection of numerical eval uation of option prices, e.g., using finite difference methods. While these methods
can be used to accurately solve for option prices, the intuition and appeal of the closed form solution is lost.
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Another related approach is to estimate the volatility surface directly, e.g., Derman and Kani (1994), Jackwerth
and Rubinstein (1996), Avellanedaet al. (1997). To date, this approach has been found to be "no better than an
ad hoc procedure that merely smooths Black-Scholes implied volatilities across exercise prices and times to
expiration” (Dumas et al. 1998, p.2059).

8.3 Salving the Black-Scholes PDE
Possible M ethods of Solving Black-Scholes

There are at least six methods available for deriving the Black-Scholes option pricing formula from the
fundamental PDE. These methods are, in no particular order of importance: the original approach proposed by
Black-Scholes, that involves making relevant substitutions into available solutions to the heat equation derived
using Fourier seriesmethods; therisk-neutral val uation approach of Cox-Ross, that involvessol ving the di scounted
expected value of the option's expiration date payoff function; evaluating the PDE as the limit of the binomial
process; taking Laplace transforms; the Feynman-Kac approach, closely related to the risk-neutral valuation
approach, that involves expressing the solution of the fundamental PDE as the expected value of a functional of
Brownian motion; and, finally, by direct verification that the derivation of the Black-Scholes formula satisfiesthe
PDE and boundary condition. While the last suggested method is consistent with ‘proof by knowledge of the
solution', it is also consistent with the ad hoc method, sometimes used in mathematical physics and engineering,
of guessng a solution and then verifying that the proposed sol ution satisfies the PDE.

The method that has been found to have useful applications to arange of pricing situations, particularly where
the solution to the pricing problem is not apparent, istherisk-neutral val uation method proposed by Cox and Ross.
For the European cal option on a non-dividend paying stock, this method involves directly evaluating the
expectation:

C, = e™ E{max [0, S, - X]}

=e™{ E[S, - X|S,>X] + E[0| S, <X]}
= e ™{E[S, - X | 8, > X]}

= e™ {E[S,| S, > X] - X Prob[S, > X]} 8.1)

wheret* = T-t, E[-] isthetimet expectation taken with respect to therisk neutral density Prob[-] (see A ppendix
3). Stoll and Whalley (1993) provide a worked solution for this problem.

Asfor the 'proof by knowledge of the solution’ method of solving the Black-Scholescall option pricing formula,
while thismethodisnot conceptually satisfying, itisimmensely practical in many situations. The method proceeds
by examining the solutions for PDE problemswith similar structure. As discussed in textson PDEs, e.g., Berg
and McGregor (1966), there isan elaborate classification scheme for PDE problems that facilitates this exercise.
Having determined the solution to a closely related problem, a solution to the pricing problem is then guessed and
derivatives of the pricing problem are taken to verify whether the PDE and boundary conditionsare satisfied. This
starts an iterative processthat combinesintuition and brute forceto arrive at asolution. This method relies on the
guidance of the existence and uniquenesstheoremsfor PDEs from advanced mathematical analysis to determine
when a solution will be available and if that solutionisunique. Of course, atrivial variation of this method isto
now the solution at the start and verify that it satisfiesthe PDE and boundary condition.

Y et another method to solve the Black-Scholes PDE involves applying the technique of Laplace transforms.
Applied to the function f[t], this transform is defined as:
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©

L[ A0 1 =fe"1tf[t] dt

0

Solutions to the Laplace transform for a wide range of functions are available. After making an appropriate
transformation of variables, the Laplace transform technique permits the fundamental PDE to be converted to an
ordinary differential equation (ODE) that is easier to solve. In the Black-Scholes case, the Laplace transform
solution involves the erf[-] function, that often appears in Laplace transformations involving probability
distributions. The Laplace transform method is quite tedious and, without prior knowledge of the solution
provided by Black-Scholes, it is not obvious how to proceed to the desired solution. Though widely used in
engineering, the Laplace transform approach is not common is finance applications, e.g., Buser (1986).

The Original Black-Scholes Solution

The origina notation in Black and Scholes (1973) differs somewhat from what is currently in common use. To
retain the flavor of the Black-Scholes discussion, some of theoriginal notation will be adopted. 1n Black-Scholes
(1973), the notation used for the call price was w (to refer to warrants) and the PDE has the form:

W oy s L 0w

ot oS 2 082

where v? isthe variance of the stock price. This PDE is also subject to the boundary condition applicable to the
exercise value of the option on the maturity date T:

W(ST)= gT)-X for YT)=> X and w= 0 otherwise (YT) < X)

At thispoint it is possible for analysis to proceed with 'proof by knowledge of the solution'. In other words, the
Black-Scholes solution is "proved" by verifying that the Black-Scholes call option pricing function satisfies the
PDE. Thisexercise will be carried outin Sec. 9.1. Restrictionsimposed on the state space then make it possible
to infer that the Black-Scholes solution is the unique solution to the PDE problem.

However, not knowing the solution to the PDE, Black and Scholesfound it necessary to proceed by solving the
boundary value problem directly. The method used is cumbersome and has since been superceded by other
solution methodologies, such as direct evaluation of the discounted expectation problem used in risk neutral
valuation. To better appreciate the more difficult and direct method of solving the PDE used by Black and
Scholes, consider thefoll owing guide provided by Black and Schol es asto themethod of finding asolution (p.643-
4):

To solve this differential equation, we make the following substitution:

- 2 1 S 1
WSH = D) - v Ing - = e - D)

2 1
- (;)(r - Ev2)2(t - ] ®

With this substitution, the differential equation and boundary condition become:
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2
\4
wu(—
(2)
v2
r -

2

yw0) =0 u<0, y(w,0) = X [exp{

} - 1] u>0

Thisdifferential equationistheheat-transfer equation of physics, anditssolutionisgivenby Churchill (1963, p.155). Inournotation,
the solution is:

@ + g/

I 27, _ 4°
Wu,s) = E _f; X [CXP{ﬁ} 1] CXP{T} dq
W 2

Substituting (this result) back into equation (9) from the Black-Scholes derivation, and simplifying provides the
Black-Scholes formula.

The general method selected by Black-Scholes is to use a change of variable and scale to transform the
fundamental PDE for the European call into a variation of the heat equation, e.g., Berg and M cGregor (1966).
This permits Fourier series results to be applied. In particular, Black and Scholes reference the solutions to the
heat equation from Churchill (1963, p.155). This approach requires a complicated substitution to transform the
Black-Scholes PDE into a form of the heat equation for which accessible solutions are available. Once this
substitution is available, it is still not easy to derive a solution from the results in Churchill, and it is not
immediately obvious that the form of the solution will involve density functions. Substantial effortisrequired to
proceed from the solution derived from Churchill, given in terms of vy, to the Black-Scholes call option pricing
formula, that is given in terms of the call pricew. Itisthe objective of this Section to provide that solution.

Churchill (1963, p.155) states a solution, derived using Fourier series methods, for the heat equation subject to
aboundary condition of the kind applicableto Black-Scholes. The notation in Churchill differsfrom that used in
Black and Scholes. Remembering that Black-Scholes did a change of variable transform from w(S;t) to y(u,s),
Churchill provides:

2
The solution to: 98%D) _ p T8N subject to g(x,0) = fix)
ox ot?
Is given by:
g(ef) = —— [ fix + 20k e dn
e,

To match up this notation, change the dummy variable of integration to q'. Also observe that k=1 in Black-
Scholes and g(xt) is written asy(u,s). These subgtitutions produce:

yus) = — [ o + 25, 0) e 0¥ dg’
L

It is now possible to exploit the properties of the boundary condition provided by the max[-] function to regtrict
the region of integration.

To do this, observe that y(u,0) = 0 for u< Oand y(u + 29'v's, 0) = 0for u= -2q’' ¥'s. Thiscan be solved for the
dummy variableq’ toget: g < - u/(2Vs). It follows that the lower limit of integration can be set to produce, in
the Black-Scholes notation:
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2
1 f (u + 2q’ JE)(%) .
yus) = — [ X {expl - 1] expl{-¢'}*] dq
Jn Y, _V
_2_¢§ r >

In effect, the Black-Scholes solution involves achange of variable from w toy to transform the PDE to aform that
is comparable to a type for which solutions are more readily derived. This change of variable imposes specific
solutions on the boundary condition associated with y(u,0). The propertiesof y(u,0) are used to restrict the range
of integration and provide a solvable problem. Changing the variable of integration g' to be (q V' 2) reproducesthe
Black-Scholes result.

What remainsisto do as Black-Schol es suggests and “ substitute back into (9)”. Thefirst step isto rewrite y(u,s)
to get:

2
- @ + g/29)() 4 v - .
@s) = — [ X exp| ] exp[—L-] dg - — [-L] d
yu.s \/2_11: _fi eXp (r ] V_2) €Xp 5 q \/2_11: _fL eXp 5 q
V2s 2 Vs

Given this, the operation of substituting involves unbundling the change of variable. Observing that the y(u,s)
specified by Black-Scholesin (9) provides the relevant definitions for u and s, the lower limit of integration can
be solved as:

2 28 ? ’
_(r_%)[ln(})—(r—"?](t—l’)]_1n()§()+(r—"7)(t-1’)

\72
vyt -T

u
V2s 4 v?
J;OA_T)Z(I‘_T)

Using this result, the second term in y(u,s) becomes:

X
Vot
The connection with the Black-Scholes formulais now apparent.

Thefirst term of y(u,s) follows appropriately. Examining the numerator in the exponentid, the following terms
can be solved:

- 4,
g2 X -v?
expl[—L-] dg = ——=— [ exp[——] dv = -X N[d,]
_Q 2 /2 f,, 2 2

V2
“7 S 2
=2+ (- D) - =d,(vyi- D)
V2 X 2
r - —
2
2
V25 >
2 A D
V2
yr - —
2

Using this the first term can now be written:
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® 2
X expld, vyt -T] explg v yt - T] exp[i] dq
o 4, 2

What follows is a considerable amount of manipulation. Using the following two results:

—g2 2y
expl L) explaw/ = 71 = expl-2(q - w11 expr D)

20 _
sz\/t——+7v(t2 T)=1n§+r(t-T)

This producesfor the first term:

% £ exp[ln% £ Ht - D) exp[—%(q - v - Ty] dg

27

S y 1
= Z_exp[r(t - 1] [ exp[-= (g - vt - T)] dq
Sorltc T [ ool v T

What remainsis to change the variable of integration:

g =wWt-T-q this produces:
q

s O T S _
= exp[r(t - T)] f expl-—q'l dg’ = S explr(t - D] Nd]

Substituting the first and second termsinto (9) from Black-Scholes reproduces the famous formula.
Risk-Neutral Valuation

For exposition purposes, it is instructive to consider two solutions to the risk-neutral valuation problem: the
solution to the Black-Scholes option pricing problem, which assumes geometric Brownian motion for the state
variable; and, the solution to the Bachelier option pricing problem, which assumes arithmetic Brownian motion
for the state variable (Poitras 1998b). The solution to the risk-neutral Black-Scholes valuation problem for
geometric Brownianmotionisavailableinseveral sources, e.g., Stoll and Whalley (1995). Thegeneral risk neutral
valuation problem, given in equation (8.1) starts by considering the valuation problem for a European call option
on a non-dividend paying stock. In words, (8.1) indicates that the value of the call option depends only on the
paths where S; > X. The density associated with S; < X, that includes the potentially negative price paths, does
not directly enter the valuation. While thereis some difference in the shape of the upper portions of the normal
and log-normal distributions, thisdifference providesabasisfor contrasting the performance of the Bachelier and
Black-Scholesoptions. Given that neither assumption generally providesa particularly close fit to observed price
distributions, it doesnot follow that lognormality will necessarily provide better pricing accuracy than normality
in all situations. Thisissue must be addressed empirically.

Evaluation of (8.1) requires the integration of variables that follow the standard normal digtribution. Two
different specifications are needed to do this, one for the arithmetic Brownian motion and the other for geometric
Brownian motion. For the case of arithmetic Brownian motion, over the time interval starting at t and ending at
T, witht* = T-t:
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S, -8, - at*
S, =8 +at*+0t"Z or z=-Lr * -

o yt*

where Z is N(0,1). The standard normal specification associated with geometric Brownian motion is stated in

Appendix Il1.
Evaluating (8.1) for the arithmetic Brownian motion case gives:

S, +at™ - X
X Prob[S, > X] = X N[ ]
oyt*
E[S, IS, > X] = f (S, + at* + oyt* 2) n[Z] dZ
& - S, - at*Yor/t™
S, + ar* - X)/O\/t_* +00
= (S, + ar”) f n[Z] dZ + o\t f Z n[Z] dZ
e X - S, - at*)oyt*
S +at* - X S +at* - X
= (S, + at*) N ] + oyt " n[-F——— ]

ol ol

Observing that risk neutrality requiresthat (S + at*) = § exp[r t*], substituting these results into (8.1) gives the
closed form solution for the Bachelier call option pricing formula. To verify that this is the absence-of-arbitrage
consistent solution requires the derivatives of the fundamenta PDE for the Bachelier call option formula stated
in Proposition 8.1 to be evaluated and then substituted in the fundamenta PDE for the Bachelier option.
Determining that the PDE, together with the boundary and terminal conditions, is satisfied, ensures that absence
of arbitrage is satisfied.

The risk neutral solution for the geometric Brownian motion proceeds much as with the arithmetic Brownian
solution:

‘“[St *
X Prob[S, » X] = X Nl
oyt*
HS, IS, > X] = [ (S, ev "+ oV 2y n[z) dz

(XS] - wt*Yov/t*

Galsp «w* |

f n[Z] dZ

-

e + o’ t*

= (S, e Z)MM+0\/F]

oft*

From the discussion in Appendix I, the risk neutral valuation approach now permits the result that the riskfree
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interest rate (r) can be used for continuously compounded rate of return on the stock (o). Thisproducesr = « =
u + 0%2 to be used to make a substitution for u (= r - 6%/2). Collecting all these results into (8.1) gives:

C®) = e ™ {EIS(T) | S(1)>X] - X Prob[S, > XI} = e ™ {S(t) e"" NId)] - X NId,]}

Taking the discounting operator exp{-rt*} through gives the Black-Scholes formula.
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8.4 Extending the Black-Scholes M odel

Sincetheintroduction of the basic Black-Scholes model, various extensions have been developed. Thisincludes:
permitting dividends on the stock; allowing early exercise, by valuing American options; assuming different
diffuson processes for the stock price, such as the CEV process; alowing interest rates or volatility to be
stochastic; applying the modd to commoditiesother than stocks, including optionsthat permit delivery of the spot
commodity or future contracts; applying the mode to warrants instead of exchange traded options, allowing
optionsto have special features such as"look back" or multiple delivery specifications; introducing transactions
and short selling costs; and, developing different anal ytical methodol ogiesfor solving the option pricing problem.
This Section provides an overview of the work that has been done on some of these topics. However, except in
a limited number cases, relaxing the basic Black-Scholes framework produces significant complications. For
example, when American options are introduced, this produces path dependence in the option price effectively
eliminating the possibility for aclosed form solution to the valuation problem. Similarly, using other (potentially
more realistic) diffusion processes than the log-normal again make it difficult to derive a closed form solution.
For this reason, evaluation of option prices for more complicated situations typically involves application of
techniques from numerical analysis.

Incorporating Dividends

Various methods are available for incorporating dividends into the Black-Scholes model. When the European
assumption isretained and the timing and size of future dividend payments are known, only minor modifications
arerequired to theformula.®* The most direct method of incorporating dividends without undermining the basic
Black-Scholes framework is to assume that the dividend payment is paid continuously, as a constant fraction or
proportion (8) of the value of the stock price, D = 8S. Itisalso possible to be more general and assume that 6 =
0[S t], but this complicates the derivation of the closed form. In the constant proportional dividend case, the
Black-Scholes formula is altered to permit the stock price to be discounted using the dividend payment rate to
produce the constant proportional dividend call option pricing formula

C = S exp{-06t"} N[d|] - X exp{-rt*} N[d,]

where:
S 1
In{= -8) + —o*}t*
n{X}+{(r )+20}

oyt*
d, =d - oft*

This formulawould be applicable to firms with stated dividend policies given in terms of yields as opposed to a
fixed dollar payment. While not common, therearefirmsthat follow such policies. M oreimportantly, thisformula
can be readily extended to options on other types of securities, such as currencies.

To derive the constant proportional dividend call option formula requires modifying the return on the riskless
hedge portfolio to be:

d, =

av=15-Llra-ssd=(S-8) - Srar
Cy c.

In words, the net investment of fundsin the riskless hedge portfolio must earn therisklessrate of interest adjusted
for thedividend paymentsreceived. Becausethe dividend payment only entersinto thereturn on therisklesshedge
portfolio, the relevant partial differential equation becomes:



26 Risk Management, Speculation and Derivative Securities

2
a—C=rC—(r—6)Sa—C—la—C
ot oS 2582

It can be verified by direct differentiation that the constant proportional dividend call option pricing formula
satisfies this PDE.

Incorporating known, discrete dividends follows in asimilar fashion. Recalling the approach used in Sec. 6.1,
when payment dates and amounts for dividends are known with certainty all that isrequired isto adjust the stock
position in theriskless hedge portfolio by the appropriately discounted value of the dividends occurring between
the purchase date and the expiration date. For asingle dividend payment D, paid at timet*, (t* > t*, > 0), this
leads to:*®

C =[S - D, exp{-rt*}] NId|] - X exp{-rt*} N[d,]

where:

S - D, exp{-rt*
d = In 1 XU 1
X exp{-rt*} 2

dzl = dll - 0\/7*

Similarly, incorporating multiple dividend payments occurring at timest* , t*,, t*, involvestaking the discounted
value of each dividend payment from the relevant payment dates, and subtracting these values from the current
stock price. Theimplication of thisresultfor option pricesisthat European optionson dividend paying stockswill
have lower call prices and higher put prices when compared with European optionsidentical in X and t* except
that the stock does not pay a dividend. While seemingly an artificial method of introducing dividends, given the
short maturities(9 monthsand | ess) for many exchangetraded options, combined with the typicaly stabledividend
payout patterns of many stocks, this approach can often provide reasonable approximations to observed option
prices.”®

Application of the Black-Scholes formula with Dividends

Consider the following information observed for a dividend paying stock on February 8, 1988 with call
optionexpiringon March 25, 1988 (aleap year): S=$51.70, X = $52, r =5.61%, t* = 46/366 = 0.125683,
o = 0.1235. Assume that a quarterly dividend payment of $1.50 is expected on March 15, 1988: t*, =
36/366 = 0.09836. Substituting this value into the call option pricing formula adjusted for dividends
gives: C = {51.7 - 1.5 exp{ (-.0561)(0.09836)} N[d,'] - 52 exp{(-.0561)(.125683)} N[d,]. Evaluating
N[‘] givesN[d,] = 0.271 and N[d,'] = 0.2546. This produces C = $0.37. This result can be contrasted
with the same parameters, excluding the dividend payment. In this case, C = 51.7 N[d,] - 52 exp{(-
.0561)(0.125683)} N[d,] . Observing that d, =.290611 and d, = .248026 and eval uating gives C = $0.937.
Hence, this example demonstrates that dividends can have a significant impact on option pricing.

Given the formulae for incorporating known dividend payments, an important practical question concernsthe
extent to which these model s capture actual option pricesfor dividend paying stocks, particularly for longer dated
options such as warrants and LEAPS. This is currently an active research area, e.g., Lauterbach and Schultz
(1990). In general, extending the Black-Scholes model to include uncertain dividend streams is not possible
because this introduces a path dependent payoff. While it is possible to introduce a stochastic process for
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dividends, producing a model with two state variables, the resulting option pricing solutions are complicated.
(Rabinovitch (1989) provides a workable solution for the related two state variable case with stochastic interest
rates.) In addition, the stochastic process generating dividends is not typically the same as for variables such as
interest rates and volatility.

Optionson Futures and Forward Contracts

Thetechniquesandissues associated with dividends arise naturally when the Black-Schol esframework isextended
to options on futures contracts, e.g., Black (1976), Wolf (1982), Brenner, et al. (1985), Shastri and Tandon (1986),
Ramaswamy and Sundaresan (1985), Hull (1989, Chap. 6). Starting from the Black-Scholes assumptions, the
futures option pricing model can be derived most expediently by assuming that the commodity underlying the
futures contract does not pay a carry return, this permits the relationship between spot and futures prices to be
expressed as: F(t) = S(t) exp{r t*}.%" In general, when a carry return isadmitted: F(t) = S(t) exp{bt*}, wherebis
the net carry return, the continuous carry cos rate minus the continuouscarry return rate. When the stock or spot
commodity priceis assumed to follow a lognormal diffusion: dS= «Sdt + ¢SdW, then dF = (« - b)F dt + oF
dW.® Given this, the riskless hedge portfolio used to derive the PDE for futures option contains one futures
contract and (3C/0F)™* written options positions:

V=-B,C = dV=[-PB,C]lradt where: B, = [=] =

Unlike stock (or spot commodity) options, the futures contract can be assumed not to involve a net investment of
funds.” The only relevant cash flow is the income received on the written options position.

The derivation of the Black-Scholes formula for futures options, the fundamental PDE for a call option on a
futures or forward contract can be derived as:

2
9k _ o - 19C g
ot 2 9F?
where C is the price of a call option on a futures contract. This PDE differs substantively from that for a call

option on the stock. This PDE can be compared with the fundamenta PDE for a stock that pays a continuous
dividend at rate 6 given previously:

2
X e - -85 - 10C e
ot S  258?

Comparing thetwo PDEs revealsthat, when r = 9, there is an approximate equivalence relationship. From this
isfollowsthat the formulafor pricing optionson futures contracts can beinferred fromtheformulafor the constant
proportional dividend option pricing formula, under the condition that r = §:

C = exp{-rt"}{F(,]) N[d|] - X N[4,]}
where:

7Dy o (T

d =
oft*

1
Thevalidity of thisformuladepends on the noted assumptionsabout both the relationship between futuresand spot
prices as well as the constancy of the futures price volatility. Extensions of this model appear in a number of
sources, e.g., Ramaswamy and Sundaresan (1985) and Brenner, et.al. (1985).

d, = d, - oyt*
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American Options

To this point, the extensions to Black-Scholes considered have permitted closed form solutions. Unfortunately,
for many extensions of practical value, closed form solutionsare not possible. The problem of path dependence
has already been encountered in the analysis of introducing dividend payments and the American option feature.
Because of the possibility for early exercise, the price of American puts aswell as American calls on dividend
paying stocks cannot be precisely determined for afinite expiration date. Whether early exercise actually occurs
will depend on the specific path that the stock price follows, hence the problem of path dependence. Given this,
Roll (1977), Geske (1979) and Whaley (1981) show that it is possible to approximate the value of an American
call by valuing hypothetical portfolios of European options that capture the American option payoff. Various
analytical approximation methods have also been proposed, e.g., Brennan and Schwartz (1977), Geske and
Johnson (1984), and Barone-Adesi and Whdaey (1987). Tilley (1993) is an important recent contribution.
Comparison of the American pricing modelswith the appropriately adjusted Black-Scholesformula, e.g., Shastri
and Tandon (1986), reveas a significant, but not dramatic improvement in pricing accuracy.

Formal analysis of American options begins with McKean (1965) where the American option pricing problem
isformulated as a solution to the heat equation subject to afree boundary condition. McKean demonstrated that
the American option price can be determined but only by introducing a function that has cometo be called the
optimal stopping boundary. Hence, the American option pricing problem can be formulated as an optimal
stopping problem where the stopping boundary i s determined by the benefits of early exercise. Asaconsequence,
the price of an American option can be formally decomposed into the value of a European option plus the early
exercise premium, producing afunctional representation for Property 3. Since McKean, the optimal stopping
representati on has been devel oped considerably and other sol ution techniques such asvariational inequalitieshave
been introduced. Myneni (1992) provides an overview of these developments. One important implication of
formalizing American option pricing as a free boundary problem occurs when the option is a perpetual. In this
case, time does not directly enter the PDE problem and a closed form solution is available. Thisinsght hasbeen
used to price other typesof perpetual s suchasthe Russian option, e.g., Gerber and Shu (1994), Shepp and Shirayev
(1993).

Recognizing that the A merican option price can be represented as the sum of the European price and the early
exercise premium provides some intuitiveinsight. When the early exercise premium is zero, then the European
option pricing formula can be used to value the American option. Because the right of early exercise combined
with non-negative prices prevents the American option price from falling below max[ 0, S(t) - X] for a call and
max| 0, X - S(t)] for aput, early exercise cannot occur when the European option priceis greater than these val ues,
even when the early exercise premiumiszero. It will be rational to sell the option instead of exercising. Because
the European option achieves these values when t=T, it follows that one general factor involved in the early
exercise decision is the time to expiration. However, even though the early exercise premium goes to zero as the
timeto expiration goes to zero, higher values of the time to expiration imply alarger time value for the European
option. Recognizing that early exerciseinvolvesforegoing the time val ueon the option, the preci seimpact of time
to expiration is not obvious.

Under what conditions will American options be exercised early? Rationality requires that the option be
exercised only when the price received by selling the option islessthan the value when exercised. Hence, one
limited answer to this question is obvious: only in-the-money optionswill be exercised. Another early exercise
Property that has already been provided is: American calls on non-dividend paying stocks will not be exercised
early. Thiswasan implication of Property 10in Sec. 7.1. The European option priceprovidesalower bound form
the American price. The arbitrage supporting the European call pricepreventsthat pricefrom falling below {St) -
X}. Hence, early exercise for calls has something to do with dividends or, in the case of commodities other than
stocks, with carry returns.®

Take the case of a stock with one dividend paying remaining prior to the expiration date on the option, the
arbitrage support for the European call price requires the stock price to be adjusted for the dividend payment:
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CASt.X] > C[ST,X] > Max[0, S(t) - (D PV[r,1,]) - XPV[r,T]]

The requirement of adjusting the stock pricefor thereceipt of the dividend payment creates a situation where the
lower bound to the A merican call price provided by the European call priceisnot necessarily greater than or equal
to S(t) - X. Foragivent andr, thelarger isthe dividend payment, the farther below S(t) - X isthe European bound
on the American. Foragivenr and D, the same result applied for smaller t. The implication is that short dated
American optionson stocksexpecting asizabledividend will tend to be exercised early. The case of early exercise
for continuous dividend payments is discussed in Sec. 8.4.

The early exercise incentive for an American call on adividend paying stock is even more complicated than the
European lower bound indicates. Asdiscussed in Sec. 7.1, the European lower bound is derived by comparing
the expiration datereturns for a European call with a portfolio that combines a long stock position financed by a
borrowing with maturity value of X. When thereisdividend payments on the stock, the cost of the purchasing the
portfolio is reduced by the appropriately discounted value of the dividends received. The American option
provides the flexibility to exercise the call just prior to the ex-dividend date, thereby receiving the dividend and
avoiding the expected fall in the stock price typically occurring on the ex-dividend date. This result can be
intuitively seen by comparing the European lower bound on the ex-dividend date, Max [0, S(t+1) - X PV[r,t+1]],
with the value on the previous cum-dividend date, Max [0, S(t) - (D PV[r,t,]) - X PV[r,t]].

Early exercise for puts on nondividend paying stocks is different than the case for calls. Consider the extension
of Property 10 to puts:

PSt.X] = P[St,X] = Max0, X- St)] = Max[0, X PV[r,1] - S(t)]

Unlike calls, the impact of PV[‘] acts in the opposite direction on X making the possibility of early exercise for
puts on nondividend paying stocks (or commaodities where the carry return is less thanr) alikely possibility.

Because the conditions developed from Property 10 are only lower bounds, American put prices will typically
be higher than the lower bound. Theintuition for early exercise follows from recogni zing that for the stock price
paths going close to zero, the put will be deep-in-the-money. Thisimpliesthat N[-d] - 1and P - (PV[] X- 9
< X-S. Ingtead of selling the put for (PV[:] X - S), the American put holder will exercise the put and receive X -
S. In practice, exercise of aput requires that the stock be delivered in exchange for X. Hence, early exercise will
be done by traders holding stock in combination with a put. The essential point to recognize is that Property 10
of Sec. 7.1 applied to puts provides an arbitrage strategy that bounds the European option price. Because this
bound is below the exercise value, holders of American optionswill choose to exercise the put rather than to sell
the option at a lower price. Hence, deep in-the-money American puts will tend to be exercised early.

In addition to establishing early exercise of the American put using the distribution-free arbitrage bounds, the
optimal stopping boundary for American puts can be used to motivate early exercise activity related to deep in-the-
money puts. Puts are in-the-money because the stock price has fallen below the exercise price. At some point it
is no longer profitable to hold the put because the possibility of further profits due to lower stock pricesis more
than offset by the loss of interest income on the exercise value, together with the interest opportunity cost of
holding anon-dividend paying stock (spot) position. Thisleadsto the simplest optimal stopping boundary: at any
time between purchase and expiration, exercise the American put on a non-dividend paying stock when the loss
of interest income on the exercise value plus the opportunity cost of holding the spot position exceeds the
difference between the current put price and the exercise value.

The need to adjust for the difference between the put price and the exercise value isthat selling the put isan
alternativeto early exercise. Whereastock and aput position areinvolved, asisrequired for exercise, transactions
costs will impact the exercise decision. Selling the put will incur transactions costs in both option and stock
markets, while exercise only involves delivery. When the put is exercised, there is some loss because the time
premiumislost. Thispremium reflects that maximum future gain from the expected drop in stock prices between
the current date and the expiration date. When the option goes deep-in-the-money or when t - 0 and the option
iscloseto expiration, thisadditional premium will be near zero. Thisbrings out another important feature of early
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exercise: put options that are in-the-money and close to expiration may get exercised early.
Option Valuation with Alter native Diffusion Processes

Empirically, thereislittle support for the hypothesis that financial prices conform to the log-normal assumption
that is essential to deriving the Black-Scholes option pricing formula. However, log-normality does have the
desirablefeaturethat non-negative val uesare not admitted, consistent with financial prices, and thedeviation from
observed pricesis not dramatic. There are better distributional fits to the data, but log-normality does typically
provide a useful first approximation. Unfortunately, making the distributional assumption more realistic also
underminesthe ability to deriveaclosed form option pricing formula. Thisissue ismade even more complicated
by alack of agreement over which distributional assumption has the best goodness of fit with observed prices.
In addition, itis not clear how much of anincrease in pricing accuracy can be gained by over the Black-Scholes
solution if more complexity is introduced.

Closed form solutions are available for a limited number of other distributional assumptions. The simplest
solution occurs when it is assumed that prices follow arithmetic Brownian motion: dS = « dt + ¢ dW.
Progressively more complicated solutions can be obtained for: a stochastic process which is a combination of a
diffusion process and a Poisson jump process (Merton 1976); the constant-€d asticity of variance process (Cox and
Ross 1976); and the Bessel process (Geman and Y or 1993). Solutionsfor related processes, such asthe Brownian
bridge (Ball and Torous 1983) are also available. Jarrow and Rudd (1983) collects many relevant results.

In the arithmetic Brownian case, it is the changein prices follows an arithmetic Brownian motion, not the rate
of return as in the log-normal case. Reasons for selecting geometric over arithmetic Brownian motion were
advanced at |east as early as Samuelson (1965) and some of the studiesin Cootner (1964). In reviewing previous
objections, Goldenberg (1991) recognizesthree of practical importance: (i) anormal processadmitsthe possibility
of negative values, aresult that is seemingly inappropriate when a security price isthe relevant state variable; (ii)
for asufficiently largetimeto expiration, the value of an option based on arithmetic Brownian motion exceeds the
underlying security price; and, (iii) as arisk-neutral process, arithmetic Brownian motion without drift implies a
zero interest rate. Taken together, these three objections are relevant only to an unrestricted, risk-neutral
"arithmetic Brownian motion" that isdefined to have azero drift. Assuch, some objectionsto arithmeticBrownian
motion are semantic, avoidable if the process is appropriately specified.

Smith (1976) defines arithmetic Brownian motion to be driftless and provides an option pricing formulathatis
attributed to Bachelier (1900) and is subject to all of the three objections. Smith (p.48) arguesthat objection (ii)
for the formulais due to the possibility of negative sample paths, though this objection can also be avoided by
imposing an appropriate drift. Goldenberg (1991) reproducesthe Smith-Bachelier formula and proceeds to alter
the pricing problem by replacing the unrestricted driftless process with an arithmetic Brownian motion that is
absorbed at zero. The resulting option pricing formula avoids the first two objections. The third objection is
addressed by setting thedrift of the arithmetic Brownian process equal to therisklessinterest ratetimesthe security
price, consistent with an OU process. Using this framework, Goldenberg generalizes an option pricing result in
Cox and Ross (1976) to alow for changing variances and interest rates. With the use of appropriate
transformations for time and scale, Goldenberg argues that a wide range of European option pricing problems
involving diffusion prices can be handled using the absorbed-at-zero arithmetic Brownian motion approach.

The Bachelier option prices derived here use the same perfect market and continuous trading assumptionsasin
Black and Scholes (1973). Bachelier options for three types of underlying securities are considered: a non-
dividend paying asset; an asset with proportional dividend payments; and, afuturescontract. For the non-dividend
paying asset, the security price is assumed to follow an unrestricted arithmetic Brownian motion:

dasS =o dt + o dW

At thispoint, thedrift « and volatility o are assumed to be constant, though thisassumption will be demonstrated
as incompatible with absence-of-arbitrage. Exploiting the riskless hedge portfolio construction leads to the
following PDE associated with the Bachelier option:
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that is subject to theterminal boundary condition C[S;] = max[ 0, S; - X]. Solving the general valuation problem
leads to the following:

Proposition 8.1: Absence-of-Arbitrage Formula for the Bachelier Option®

Assuming perfect markets and continuous trading, if the non-dividend paying security price follows the
unrestricted arithmetic Brownian motion, then the solution to the absence-of-arbitrage valuation problemis given

by:
CS, t5 7,0, X) = e™'{(S, e™ - X) NIgl + o \/t* nlg]}
where:

Ste”* -X

g:_
o 4t*

C, isthe price of the general Bachelier call option, and N[g] and n[g] represent the cumulative normal density
and normal probability function, respectively, evaluated at g.

Wilcox (1990) adaptsthisform of the Bachelier option to provideasolution to the spread option pricing problem.
It is possible to generalize the analysis to include constant proportional dividend payments (D) of the form:

D = 8S. Following market convention, the option contract is assumed to be not dividend-payout protected. To

derive a Bachelier option that both satisfies the PDE associated the riskless hedge portfolio and incorporates

proportional dividend payments, itissufficient torestate the arithmetic Brownian motion as an OU process of the

form:

dS =(r - 0)Sdt +o,dW
The associated PDE for the riskless hedge portfolio problem has the form:

2
9C _,.c- r - 6)S_8C _1 o2 oC
ot os 2 382

Even though thedrift does not enter the PDE directly, it doesalter both thevariance of the process and, asreflected
in Proposition I, the expected future spot price. It follows that:

Proposition 8.2: Absence-of-Ar bitrage Valuation Formula for the Bachelier Option, with Dividends

Assuming perfect markets and continuous trading, if the proportional dividend paying security price follows the
arithmetic Brownian motion with continuous proportional dividends, then the absence-of-arbitrage solution to the
valuation problem is given by:

CS, 1757, 0, X) = (S, ¢ - Xe™ ) NI + V nlh]

where:
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and N[h] and n[h] represent the cumulative normal density and normal probability function, respectively,
evaluated at h.

The proof of Proposition 8.2 involvesdirect differentiation of the option pricing formulato verify that thissolution
does satisfy the PDE for the riskless hedge portfolio problem.

Despite certain similarity, there are substantive differences in option prices derived using geometric and
arithmetic Brownian motion. For example, the PDE for the riskless hedge portfolio associated with options on
futures contracts for arithmetic Brownian motion involves setting r = & in the SDE for the OU process:

a_C =rC - 1 0'2 a2_C

ot 2 oF?

where F isthe price for the relevant futures contract. A similar result holds for the geometric case. However,
when it comesto solving for the option price formula, the simplification available for the geometric case (setting
r = & in the option price formulafor stocks with proportional dividends) is not available in the arithmetic case due
to asingularity in the Proposition 8.2 solution at r=5. The appropriate solution is:

Proposition 8.3: Absence-of-Arbitrage Valuation for the Bachelier FuturesOption

Assuming perfect marketsand continuoustrading, if the futures pricefollows an arithmetic Brownian motion, then
the absence-of-arbitrage solution to the European call option valuation problem is given by:

C{F, t*57, 0, X) = e ™ {(F, - X ) NIk] + o \t* nlkl}
where:

Lo FoX
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C.isthepriceof the Bachelier futurescall option, and N[ K] and n[k] represent the cumulative normal density and
normal probability function, respectively, evaluated at k.

Proposition 8.3 isuseful both for pricing optionson futures spreadsand for comparing the normal and log-normal
prices of exchange options.

The question of whether arithmetic Brownian motion is an appropriate stochastic process for asset pricing is
complicated. In any event, conventional wisdom maintainsthat an important limitation of the OU and arithmetic
Brownian processesis that the state variable has a non-zero probability of taking on negative values. Because
prices are often the state variables in continuous time models, some method of bounding the variable at zero is
needed. Thelog-normal process, geometric Brownian motion, has a natural boundary at zero. A nother possible
method of imposing non-negative state variable values is to impose an absorbing barrier at zero. A solution to
the option pricing problem using absorbed Brownian motion was initially presented by Cox and Ross (1976) and
later extended by Goldenberg (1991).

Converting an unrestricted arithmetic Brownian motion by imposing an absorbing barrier at zero on the/ process
isnot asdifficult asit might seem.3 All those paths that hit zero end and, from that point, do not contribute to the
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ensembl e of pathsthat combineto determinethedistribution at any future pointintime. The solutionto thisoption
pricing problem was given by Cox and Ross (1976, p.162-3):

Proposition 8.4: Absence-of-Arbitrage Valuation for the Absorbed Brownian Option

Assuming perfect markets and continuous trading, if the proportional dividend paying security price follows the
arithmetic Brownian motion of Proposition 8.3 subject to an absorbing barrier at zero, then the absence-of-
arbitrage solution to the valuation problem is given by:

CoStsr0,X) = (S, e - Xe™ )N[h] + (S, e + Xe™) NIh,] + V (n[h,] - nlh,))

where:

*

- Xe™
h, =
|4

w8 hy =

S e =&t _ Xe -rn* 28t _ -2rt* —S e ad
1 V=0 e e
4 4

and N[h] and n[h] represent the cumulative normal density and normal probability function, respectively,
evaluated at h.

Extensionsof the absorbed arithmetic Brownian motion, e.g., to allow for volatility being a deterministic function
of time, can be found in Goldenberg (1991).

In the discussion of implied volatility, it was observed that it was possible to construct pricing results using two
stochastic processes, one for the commadity price and another for volatility. Hull and White (1987), Heston
(1993), Scott (1997) have demonstrated that it is possible to obtain closed form solutions for the case of two
random variables. However, analytical solutions are substantively simplified in cases where the two random
processes are assumed to be uncorrelated. This approach isnot restricted to volatility. For example, in addition
to random exchange rates, currency option pricing can also model the randomness in the foreign and domestic
interest rates, pricing theoption written on threestochastic processes. Other exampleswould include: introducing
a stochastic dividend yield to price a stock index option; using a stochastic short interest rate processto price a
Thond option; and, using a stochastic convenience yield to price an option on oil futures. In general, it is only
possible to achieve closed form solutions for a very small class of stochastic processes.

Rabinovitch (1983) is an example of a case where the two stochastic processes are chosen carefully enough to
permit aclosed form solution to be derived. Asin Black-Scholes, Rabinovitch assumesthat the stock pricefollow
alog-normal diffusion: dS= « Sdt + ¢ SdW,. In addition, thereis asingle default-free interest rater that is also
permitted to be stochastic, to follow a mean-reverting OU (Ornstein-Uhlenbeck) process of the form:

dr = g(m-r)dt+ vdw,

where gq(m - r) is the instantaneous expected change in the short-term rate, v* is the instantaneous variance for the
interest rate. The parameter m is the unconditional expected interest rate to which the current rate, r, revertsto
at speed proportional to q. This type of process is also (descriptively) called a mean-reverting process.*® The
presenceof thetwo Wiener processes, dW, and dWj requires specification of acontemporaneous covariance, {dW,
dWg} = p dt. From the Markov construction, lagged correlations are zero. Within this framework, it is possible
to derive a closed-form expression for the call price that is similar in form to Black-Scholes. However, in order
to do this, it is necessary to convert the information in the stochastic interest rate into aformula for the discount
bond price. Theresulting solutions, while expressible in the same form as Black-Scholes, are significantly more
complicated.
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8.4 Application: Foreign Currency Options

The Institutional Background
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- currency options trading than the IMM,
© important currency futures exchange. The PHLX was
*. something of aninnovator in optionstrading practices.

" options
- proportional dividend version of the Black-Scholes

3
Est.Vol. 1,500, Prev.Vol 5087, Prev.Openlnt. 9,967

A ligting of themost important exchangetraded foreign
currency option contractsinthe US given in Table 8.3.
" Unlike exchange traded options for most other
commodities, the major US exchange for trading

- currency optionswas, for many years, not also amajor
"~ commodity futures exchange. This situation has now

changed and comparison of the volume and open
interest available for the currency options reveals that
the futures options on the IMM division of the CME
now iswell in excess of the volume and option interest
on the Philadelphia Stock Exchange (PHLX) which

"~ was previously the most important exchange trading
¢ currency option contracts. This is consistent with the

usual result that the futures exchange trading the
highest volume of options contracts significant to
the most

In addition to the offering American currency futures

options, the PHL X also offers European spot currency

options.

". The Currency Option Pricing Formula

Derivation of the pricing formulafor foreign currency
involves an adaption of the constant

model. It is assumed that the spot exchange rate

. follows a log-normal diffusion, where the domestic
~interestrate, r, and theforeigninterest rate, r*, together

with the ingantaneous standard deviation o of the spot

exchange rate are all constants. Thisleads to the following formulafor a European currency call option on spot

exchange:

C = S exp{-r"t*} N[d|] - X exp{-rt"} N[d,]

where:

In{— }+(r—r

dy=d

Aswith previous call option pricing results, the formula for currency put optionsis obtained by substitution into

the put-call parity condition for currency options:
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P = X exp{-rt"} N[-d)] - § exp{-r*t*} N[-d]
where:
m{%(} R

—d2:—d1+0\/F

Close examination of the put and call pricing formulaereveals afundamental feature of currency options: theright
to put currency A for currency B at X isidentical to the right to call currency B in exchange for currency A at X.
Unlike other commoditiesthat involve the exchange of some commodity for money, currency optionsinvolve the
exchange of two monies with the numeraire being arbitrary.

While the European currency option pricing formula can be derived by following much the same approach as
for the Black-Scholes call option on a stock with a constant proportional dividend, because the single source of
randomness is now a spot exchange rate, the conceptualization of the hedge portfolio is somewhat different. The
riskless hedge portfolio requires an investment in a pure discount (zero coupon) foreign bond that maturesto a
maturity value of one unit of foreign currency. In foreign currency terms, the continuoustime representation for
thepriceof thisbond is: exp{-r*t*} = PV*[r*,t]. Thevalue of thisbond isthen converted to adomestic currency
value by multiplying by the spot exchange rate to get: S(t) exp{-r*t*}. As currency options are typically priced
as though the domestic bond is US, this implies that the exchange rate is measured in US direct terms. The
objective of the riskless hedge portfolio is to protect (hedge) the domestic currency value of the foreign bond
position.

The riskless hedge portfolio is now constructed by writing B currency call options to protect the domestic
currency value of the foreign bond against changes in the spot exchange rate. However, in this case, p has a
slightly different interpretation than for the option on the non-dividend paying stock:

oV e 8C et 3

- = r - = 0 ESd = = d

s ¢ S B ac {N4, 1}
oS

More precisely: V(t) = t) exp{-r*t*) - BC where S(t) is the spot exchange rate at timet. Much asin the constant
proportional dividend case, the riskless return associated with the net investment in the portfolio must now be
adjusted to reflect the return earned on the foreign bond:

av = {8@) e -BCyrdt - {(S@) e} r* dt

=S e’ (r-r*dt - BCradt

Following the usual procedure of evaluating Ito's Lemma:

*

-r*t

AV -emdS - & dC - e [dS - -1 de] = et [as - 9C
ac ac c
as a8

dS = aSdt + oSdW  dC = [C, + CuS + %CSS o® §% dt + CoS dw

Equating the two conditions for dV, canceling and manipulating where appropriate produces:
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Ct=rC—S(r—r*)CS—%ozS2CSS
Thisisthe fundamental PDE for a European spot currency call option.

The original presentation of the currency call option formula was by Garman and Kohlhagen (1983), Grabbe
(1983) and Biger and Hull (1983). Though the formula presented was the same, the derivations provided in these
sourcesdid not follow the constant proportional dividend approach. For example, Grabbe (1983) showsthat aone
unit long position in the domestic bond can be hedged with (-«/B) unitsof the foreign bond combined with (-1/8)
written call positions, where ¢ and 3 are the appropriate partial derivatives. In effect, by creating a self-financing
riskless hedge portfolio, Grabbe utilized the concept of an arbitrage portfolio. Grabbe also provides a
generalization of theformulato admit deterministic changes in the volatility over time. Garman and Kohlhagen
also use a different approach relying on the equality of risk-adjusted excess returnsin an arbitrage free economy.
Chiang and Okunev (1993) demonstrate that the formula can be generalized to permit the foreign and domestic
bond prices to follow Brownian bridge processes.

The extension to options on currency futures and forwards follows by using the continuous time version of
covered interest parity. Recall from Sec. 4.2 that:

FT) = 1+ D) () = L+nr” NG
1 +r @D 1 +r*t”
- FtT) =e™ e 8S(t) = e~ 70" 8@) - S = e - F@,T)

Substituting for Sin the spot currency call option formula produces:

C =e™ {FtT) Nid,] - X N[d,]}

In[FETYX] + Lo? ¢
2 "
where: d| = d,=d -c¢ \/7

o t*

Comparison of this formula with the general formula for options on futures contracts reveals that the two results
are the same, confirming the application of the general model in the specific case of options on currency futures
and forward contracts.

Put-Call Parity and Early Exercise for Currency Options

Results for currency put options follow from put-call parity arbitrage condition for European Foreign Currency
Options. For spot currencies the condition is:

P[St,X] = C[St,X] - S(t) PV*[r*,t] + X PV[r,T]
Using the CIP condition and substituting for S, gives the put-call parity condition for futures contracts:
P[St,X] = C[St,X] + {(X - F(t,T)) PV[r,t]}
The put-call parity result for spot currency options can be derived in much the same fashion as put-call parity for
non-dividend paying stocks given in Sec. 7.3.
While there are a number of different possible portfolio pairings that could be compared for illustrating the

arbitrage, for present purposes the two relevant portfolios are: the domestic portfolio, a long (short) foreign
currency call with exercise price X and t daysto maturity combined with along (short) positionin adomestic zero
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coupon bond with maturity value of X; and, the foreign portfolio, a long (short) foreign currency put-- with the
sametermsasthe call-- combined with long (short) foreign zero discount bond yielding r* with maturity value of
one unit of foreign currency and term to maturity of ©.3* When S(T) < X, then the domestic portfolio hasavalue
equal to the maturity value of the bonds X, because the call expires worthless. The foreign portfolio will have
maturity value of S(T) plus (X - S(T)) that givesavalue of X. Similarly, when S(T) > X, the domestic portfoliowill
be worth S(T) because the call will be worth (S(T) - X) and the domestic bonds X. The foreign portfolio will be
worth the maturing value of the bonds S(T), with the put expiring worthless.

The put-call parity results have significant practical implications. For example, the notion of covered interest
arbitrage discussed in Sec.5.2 required that securities which were identical in all respects except currency of
denomination will have the same fully covered returns. In the put-call parity case, another somewhat more
complicated equivalence result is provided. More precisely, a foreign bond portfolio that is protected against
adverse currency movementshby purchasing currency put optionswill have the same return asadomestic portfolio
that combines along fixed income securities with purchased currency call options. Sec. 8.3 demonstrates how the
put call parity condition for currency options can be used to create insured portfolios of foreign bonds.

Early exercise for American currency options depends on the relationship between the foreign and domestic
interest rate. To see this, consider the extension of Property 10 of Sec. 7.1 to the continuous dividend case:

CASt,X] > C[STt,X] > Max[0, S(t)PV[r*,t] - X PV[r,T]]

where r* isthe continuousdividend payment, in thiscase paid in theform of interest on theforeign bond position.
If r* > r, then the European bound will be less than St) - X and there is an incentive for the American call option
to be exercised early. The extension to puts follows from observing that acurrency call option giving the right to
buy $D for $F at exchange rate X, is also a put option giving the right to sell $F for $D at X. When the call isin-
the-money, the put is out-of-the-money. Hence, if r > r* then the European bound for the put will be lessthan X -
S(t) and there is an incentive for the American put option to be exercised early.

To see how the extension of Property 10 translates into an early exercise condition, recall that when aoptionis
exercised early, the time value remaining in the option is given up. In practice, currency options are often
exercised early, sometimes long before the stated expiration date, e.g., Bodurtha and Courtadon (1995). The
incentivesto exercise early follow by examining the European option price when the option is deep in the money,
S>> Xforthecall and X >> Sfor the put. For the call, deep in-the-money impliesN[d] - 1andC - Se"" - Xe™
whichis< S- X whenr* > r. Similarly, N[-d] -~ 1 when X >> Swhich givesP - Xe™ - S”™" whichis< X- S
when r > r*. Hence, in these cases, the European option does not provide an effective lower bound for the
American option. Thereisno arbitrage supportin the market to prevent the American option from trading above
the exercise boundary, S(t) - X.

To see the rationale for exercise in the cases without support from the European boundary, let r* > r and have
Se" - Xe™ < S- X and the cdll optionin the money. If the option holder borrows X at r to buy Sand investsthis
one unit of foreign currency in the foreign bond at r*, then on the maturity date the early exercise strategy will
receive a profit of: S(T) exp{r*t*} - X exp{rt*}. If the option holder does not exercise then the profit will be:
max[ 0, S(T) - X]. Comparing these two values revealsthat, if the probability of the option finishing out-of-the-
money isignored, then early exercise will be optima. Hence, if the option is deep enough in the money that the
time value has gotten close enough to zero, then it will be optimal to exercise the call option early if r* > r. A
similar result holds for in-the-money putsif r > r*,

To compare the early exercise and hold-to-maturity values directly requires two observations. First, the call
option on the exercise dateisassumed to be sufficiently in-the-money that N[ d] - 1 and the val ue of the American
call has been forced to the exercise boundary S(t) - X. In practice, thereis little or no time value on deep-in-the-
money options because there is no demand to buy this type of security, only those wishing to sell. Hence, this
conditionis often observed in practice. Second, if the option is deep-in-the-money on the exercise date, the closer
this date is to the exercise date, the smaller the probability that the option will finish out-of-the-money. If the
option finishes out-of -the-money then the hol d-to-maturity strategy will be superior. Sothereisatradeoff between
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thetime to expiration and the difference between r* and r required to trigger early exercise. In the jargon of Sec.
8.5, early exerciseis, once again, an optima stopping problem.

Empirical Studiesof Currency Options

A number of studieshave investigated the empirical validity of applying the Black-Scholes based currency option
pricing model aswell as competing alternatives. For example, Chesney and Scott (1989) use data on European
currency optionstraded in Genevato compare the Black-Scholes model with a model that allows for stochastic
variancewhich isamean-reverting diffusion. When an updated implied standard deviation isused to compute the
Black-Scholes option price, Black-Scholes outperforms the stochastic variance model. (Black-Scholes with
constant variance performed poorly). Limited evidence is found for significant mispricing. Similar results are
reported by Shastri and Tandon (1986) where a number of different methods of calculating the variance are
compared. Profit opportunities that were identified were found to be exhausted within one day. Using PHILX
optionsdata, Hilliard, et.al. (1991) compare the constant variance Black-Scholes model with amodel that admits
stochastic interest rates. W hile the stochastic rate model isfound to be more accurate, it would have been useful
if thisstudy had reported results for Black-Scholes using implied standard deviations, as in Shastri and Tandon
and other sources. Ritchken and Trevor (1999) is arecent effort along this line of research.

Other empirical studies have examined the performance of other option pricing models. For example, Bodurtha
and Courtadon (1987) examine the pricing accuracy of the American option pricing model and find: "...the
standard American option pricing model does not explain the pricing of foreign currency options as well as it
explainsthe pricing of stock options. In particular...this model under-prices out-of-the money options relative to
at-the-money options and in-the-money options." (p.165) As noted previously, Shastri and Tandon (1986) also
report pricing shortcomings when the European model is used to price American options. Finally, along a more
analytical line, Hull and White (1987) provideresults for various delta, delta+ gammaand delta+ sigma strategies
for hedging risks associated with writing foreign currency options. With reference to the discussion in Sec. 9.1,
delta + gammahedging isfound to perform relatively better only when the traded option hasarelatively constant
implied standard deviation and a short time to expiration. Typically, delta + sigma hedging is found to produce
superior results.

Questions

1. In Sec. 7.1, averbal description was provided to describe the geometry of the evolution of the Wiener process.
Construct the appropriate geometry.

2. The Black-Scholes solution to the fundamenta PDE for a European call on a non-dividend paying stock
requires achange of variables to transform the PDE into the general form of a parabolic PDE. Provide the steps
required to specify this change of variable.

3. Extend the discussion of Sec. 8.4 to derive the solution for the perpetual put option. Thisrequires a different
specification of 0 associated with the second root of the fundamental quadratic equation, e.g., Dixit and Pindyck
(1994, p.143).

4."A call option benefits from increasesin the stock price and these increases can be very large. A put option
benefits from stock price declines, but the stock price can only fall to zero. Therefore, if we have aput and a call
on the same stock with the same terms, the put must sell for less than the call." Do you agree or disagree?
Explain.
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5. Given the following information:
S=$47 X=$45 i = .12 ¢ = .40 (annual)
Calculate the three month call option price that is consistent with the Black-Scholes pricing model.
6. Outline the continuoustime derivation of the Black-ScholesModel. What assumptions are being to derive the
results? What are the limitations of applying the model to actual options prices? Under what conditions will

American calls be exercised early? What early exercise conditions apply to puts?

7. Using the two portfolio approach, devel op the trading strategy underlying Property 12 of chapter 7. How does
the argument work when puts are used?

8. Sec. 8.4 gatesthe following extension of Property 10 to the continuousdividend case: C,[St,X] > C[S,t,X]
Max[ 0, S(t)PV[r*,t] - X PV[r,t]]. Using the two portfolio approach, verify this condition.

v

6. Extend Property 15 of chapter 8 to demonstrate that it will not berational to exercise an American put just prior
the stock's ex-dividend date.

7. For currency options, there isa smile relationship between volatility and moneyness. Y et, implied volatilities
for equity options exhibit avolatility skew, that is downward sloping in moneyness. Discussthe possible reasons
for this differing behavior in implied volatility for these two commaodities.

NOTES

1. The scope of the material covered in this chapter is volumous. In addition to numerous books, journals, and other academic efforts, courses
in stochastic processesare part of the typical requirements for advanced degrees in mathematical statistics. Given this, it is not possibleto be
either fully comprehensive or adequately technical in treating this material. The development given here isaimed at introducing conceptsand
notions required to develop options pricing theory, no more.

2 Written for the centenary of the Theorie de la Speculation, Courtault et al. (2000) provides an excellent overview of Bachelier'slife.

3. One of Einstein's important contributions in this area was the observation that this random behavior could be explained by the perpetual
collision of the molecules between the suspending medium and the physical objects.

4. This pointisdebatable. The beginnings could arguably be traced to the devel opment of the Markov chain in 1907 by A. Markov. However,
thisresult was aimed at thesolution of aspecificproblem. Thework of Wienerinvolves acompletedeve opment of the mathematical foundation
for thetheory of Brownian motion. There isalso some disagreement about when Wiener's devel opment of arigoroustheory of Brownian motion
was developed, with Cox and Miller (p.203) using 1923 as the appropriate date.

5. Malliaris and Brock (1982) survey the range of applicationsin economics and finance.

6. To see thisis nat difficult. By construction, if y is lognormally distributed then for In[y] = x, x is normally distributed. A normally
distributed variable is areal variable that can take values ranging over thereal line from positiveto negative infinity. Observingexp{In[y]} =
y = exp{x}, if x takes the value of minus infinity, the lowest possible valuefor x on the real line, then y will take a value of zero. Hence, a
lognormal variable is defined on the positive half-line, ranging from 0 to positive infinity.

7. Theempirical literature on the distribution of security and derivative pricesisvoluminous. A useful introductionisincludedin Duffie (1989).

8. In the form given, the OU processis a form of arithmetic Gaussian process. Unlike the geometric case, thistype of process admits the
possibility of negative values for X. In certain cases, this difficulty can be rationalized away by arguing that only short term options are of
interest. In other words, the probability of observing negative values increases with the length of the permissible time paths. If these paths are
constrained to be short, then there will only be a negligible probability of observing negative values.
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9. Analytically, the admissibility of a given diffusion for arbitrage free financial pricing depends on satisfaction of conditions required for
Girsanov's theorem to hold. A discussion and application of this point to using Brownian bridge process to model bond pricesis provided in
Cheng (1991).

10. Extending analysis to this type of process can be motivated by observing that a diffusion process can be created from the countable
combination of Poisson processes.

11. Incduded in these conditions arethe Lipschutz condition:
laltx] - alty]] + |oltx] - oltyll < K |x - y| Jor some K >0
(for admissible x and y) and therestriction on growth condition:

lalzx]]? + |oltx]]* < K*{1 + |x[*}

12. Various technical conditions associated with the lemma are suppressed, eg., restrictions on f[-] and o[‘]. These details can be found in
varioussources, eg., Arnold (1974). 1t should al so be recognized tha other approachesto differentiation andintegration of stochastic functions
ispossible, e.g., Meyer (1976).

13. Cox (1987, p.348-9) motivates Ito's lemma using a Taylor series expansion and ignoring terms that are of order At.

14. Because the nominal bond price does not have a Brownian component, no cross product terms of the form {dB dP} appear. This
simplification is what makes Fischer's derivation uncomplicated.

15. Black (1989) discusses the process of developing and publishing the Black-Scholes formula.

16. Aninteresting implication of the Black-Scholes formulaisthe solution for pricing the perpetual option. When t approaches infinity, N[ d,]

and N[d,] both go toone, with the result that the discounted value of the exercise price goesto zero. Thefinal result is that thevalue of the call

option equals the current stock price. This seemingly incorrect result can be explained using the discussion of the perpetual option from Sec.
8.4. When thereis no dividend paid on the underlying stock, then the perpetual option will never be exercised because the optimal exercise
boundary occurs at infinity. Hence, because the stock pricewill eventually grow well beyond the exercisepriceand the option will bedeep-in-
the-money. In this case the delta will be one and the perpetual call option price will move one-for-one with the stock price. Effectively, the
perpetual call option price will behave the same as the stock price. This explanaion goes some, but not all, of the way to explaining the
seemingly incorrect result about the price of a perpetual option on a non-dividend paying stock.

17. With some manipulation is possible to show:
__ s

_ Xexp{-rt"} | lo \/t—*
oyt o\t 2

Thisform isused in Gibson (1991) and other sources including Sec. 8.3.

m{)ﬁ(} - % ot Inf

18 In addition, a number of other more mundane issues associated with practical application remain. For example, in some presentations of
the Black-Scholes formula, e.g., Turnbull (1987), monthly or quarterly frequencies are used for r and 6. This requires minor adjustments in
the form but not the substance of the formula.

19. A useful study on the use of the implied standard deviations to predict future stock price variability is Beckers (1981). In the case of
currency options, Shastri and Tandon (1986) demonstratethat implied standard deviations resultsin significantly more accurate Black-Scholes
prices than those based on historical estimates. In particular, the historical standard deviation "yields model prices which are, on an average,
lower than market prices" (p.150) Similarly, Chesney and Scott (1989) also confirm that the empirical performance of Black-Scholes model
using a constant variance "performs poorly".

20. Various studies have investigated the empirical validity of Black-Scholes and its immediate variants discussed in Sec. 7.3., e.g., Macbeth
and Merville(1979), Bhattacharya(1980), B ookstaber (1981), Geskeand Roll (1984), Sterk (1983), Wiggins(1987) and Lauterbach and Schultz
(1990). Most studies find some small sources of bias in the prices, usually associated with deep-in or deep-out-of-the-money options.

21 Referenceto spot priceisintended to includeal | underlying commodities, securities and assets upon which theoption could be written. This
also, implicitly, includes futures and forward prices.
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22. In some cases, a volatility frown is observed, e.g., Wilmott (1998, p.290).

23. Another stylized fact associated with implied volatility is "that the differences inimplied volatilities becomes less pronounced as options
with greater time-to-maturity are considered" (Das and Sundaram 1997, p.2).

24. In general, Black-Scholes requires path independence of the hedge portfolio in order for a closed form solution to be possible. Hence, in
order to keep any modifications "simple", this property cannot be undermined. This happens, for example, where the dividend payments are
uncertain or where the options are American puts or American calls on dividend paying stocks.

25. This presentation uses the equivalent representation for d,, i.e., except for the inclusion of the dividend d, is unchanged. For further
discussion seethe endnote associated with the specification of the Black-Scholesformulain Sec. 8.2. In practice, the discrete dividend adj usted
model is easy to apply; dl that is required is that the stock price be adjusted by subtracting the appropriately discounted dividend.

26. Thefollowing example is taken from Gibson (1991, Chap. 5).

27. While not realistic for many commodities to assume this full carry futures pricing model, extending to the case where the cash commodity
also pays acontinuous carry return is straight forward. The more complicated case where the carry return is stochastic is examined in Gibson
and Schwartz (1991).

28. Thisformulation requires that b is, at most, a function of time, but not a function of Sor any other stochastic variable.

29. This is not technically because of margin, transactions and other costs. In addition, over time variation margin will undermine this
assumption. However, for present purposes, this assumption is not severe.

30. Early exercise can also be related to exercise price adjustment. Conditions for adjustment of the exercise price, such as stock splits or
mergers, are specified in the option contract. Exercise price adjustments are not considered here.

31. All proofs given in the Poitras (1998).

32. The derivation of the transition probability density associated with the absorbed process is greatly facilitated thanks to the reflection
principle, e.g., Karlin and Taylor (vol.1).

33. As, the OU suffers from the defect that thereis apositive probability of negative interest rates. Whilefor short time paths such eventswill,
almost surely, only when the process starts close to zero, this does raise difficulties for long time paths. Hence, valuation of long term options
may be problematic with this type of model.

34. Theforeign bond position can beillustrated by observing that PV*[r*,t] is denominated in foreign currency, say F$. The maturity value
of the bond isF$1. The domestic currency (D$) cost of acquiring this bond when the portfolio is created at time t is PV* t), where (t) is
measured in domestic direct terms, D$/F$. The domestic currency value of the foreign bond at maturity will be PV* ST) = (T).



