
8. Option Valuation
___________________________________________________

8.1  Mathematical Background

Stochastic Processes: Basic Definitions1

The development of options pricing theory is intimately related to notions associated with stochastic processes.

The first important work on options pricing, Louis Bachelier's (1900) doctoral dissertation, also represents a

significant early contribution to the theory of Brownian motion.  Bachelier's work predates and anticipates

Einstein's work on Brownian motion five years later.  Unfortunately, Bachelier's thesis passed largely unnoticed

and was only 'rediscovered' by Paul Samuelson around 1954, following the 'rediscovery' by Leonard Savage of a

(1914) Bachelier publication on speculation and investment (Bernstein 1992).  Bachelier entered the mainstream

of financial economics in the mid-1960's when his thesis was included in Cootner's (1964) seminal book of

readings on the random behavior of stock prices.2

     The theory of stochastic processes, proper, has a much longer history.  One possible starting point would be

the work of Abraham de Moivre in the 1730's where he derived the normal distribution as the limit of the skew

binomial.  A more traditional starting point dates back to 1827 when the English botanist R. Brown observed that

small particles, suspended in a liquid, exhibited "ceaseless irregular motions".  This observation was subsequently

applied to behavior of various other physical objects, such as smoke particles suspended in the air.3  The important

modern contributions in stochastic processes can be traced to N. Wiener in 1918.4  His role is recognized in the

use of the term Wiener process to signify the fundamental building block of the theory of stochastic differential

equations.  In recognition of the early work of Brown, the term Brownian motion is often used synonymously.

Important later contributions were made by Kolmogorov and Feller.  Excellent representations of the modern state

of the theory can be found in Cox and Miller (1965), Gihman and Skorohod (1975, 1979), Arnold (1974), Karatzas

and Shreve (1988), Karlin and Taylor (1981), and Rogers and Williams (1987).

    Formally, a stochastic process can be defined:

Definition: Let {X(t)} be a family of random variables indexed by the linear (index) set T, where

t , T.  Then {X(t)} is said to be a stochastic process.

The terms stochastic (random) process and time series are often used interchangeably.  Following Karlin and

Taylor (1975, p.32), "a stochastic process may be considered as well defined once its state space, index parameter

and family of joint distributions are prescribed."  Similar approaches can be found in Goldberger (1964, p.142):

"...a stochastic process is defined by a family of random variables {X(t)}....such that for all finite sets of choices

of t ... a joint probability distribution is defined for the random variables X(t)1, X(t)2,....,X(t)n"; and, Dhrymes (1974,

p.383): "The probability characteristics of a stochastic process {X(t)} are completely specified if we determine the

joint density function of a finite number of members of the family of random variables comprising the process."

     Heuristically, the theory of stochastic processes describes the behavior of random variables, the X's, over time,

t , T.  A random variable is a function that maps from a prespecified domain, or sample space, to some portion

of the real line, R1.  In certain financial applications, e.g., where X refers to an asset price, X takes values only on

the positive, half line.  In this case as well as when the X values are allowed to assume any value along the real line,

it is conventional to assume that there is a zero probability of X being equal to plus or minus infinity.  When t is

fixed at a given point, X(t) has the conventional interpretation of a random variable, with associated (one-

dimensional) probability density function.  Specification of the stochastic process for X requires further

specification of the joint density functions that relate X's at different points in time: the joint densities provide a

probabilistic specification of how X evolves over time.  This potentially complicated mapping can involve various
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combinations of discrete or continuous observation on X and t.  While in financial applications X is usually

continuous, time can be either.  The terms discrete stochastic process and continuous stochastic process are used

to refer to the time intervals at which X(t) is observed.  Applications of stochastic processes have contributed

significantly in numerous fields, e.g., engineering, physics, biology and statistics.

  A number of important notions from stochastic processes have received considerable attention in financial

economics.  While martingales and random walks are possibly the most familiar,5 most of the literature on options

pricing is developed using diffusion processes.  These concepts are all closely related.  Diffusions are (strong)

Markov processes, continuous in both X and t.  In turn, diffusions are constructed from Wiener processes that are

the continuous time representation of a discrete time random walk.  Both types of processes obey the martingale

property.  The essential concept of a Markov process is most readily illustrated in discrete time.  Using the

conditional probability distribution P[@], then the Markov property can be stated:

P[ X(t+1) = j | X(0)=a, X(1)=b, X(2)=c......., X(t)=s] = P[ X(t+1) = j | X(t)=s]

In effect, the Markov process is "memory less", the past and future are statistically independent when the present

is known.

   While there are a number of subtle technical issues associated with the precise definition of Markov process,

Markov families and diffusions (e.g., Wentzel 1981), for current purposes it is sufficient to define a diffusion

process as a Markov process in which both time and the state variable X are continuous.  When expressed in the

form of a stochastic differential equation, diffusions can be used to concisely specify the joint density functions

for the stochastic process.  To adequately motivate stochastic differential equations, it is necessary to develop the

basic concept of a Wiener process as the limit of a discrete "normal" random walk, defined by a stochastic

difference equation.  The discrete random walk , without drift, has the form:

X(t+1) = X(t) + Z(t+1)    where X(0) = 0, and t , {1,2,3.....}

where Z(1), Z(2), Z(3).... form a stochastic process of independent random variables with the standard normal

probability distribution: Z(t) - N[0,1].  In other words, over the unit time interval () t = 1) Z(t) is a normal random

variable with mean 0 and variance of one.

Types of Diffusions

     Consider what happens to normal random walk as the time interval )t shrinks.  In this case, Z(t + )t) is no

longer N[0,1], but rather N[0,)t] where the random walk now has the form:

X(t+)t) = X(t) + Z(t + )t) = X(t) + Z(t) /)t

Reexpressing in difference form and using:

Gives the stochastic differential equation for the standard Wiener process:

dX(t) = Z(t) /dt     Y     dX(t) = dW(t)

W(t) is usually referred to as a standard Wiener process with a unit variance parameter.  The ensemble of sample

paths for X(t) conform to the evolution of a random variable that is standard normal on the unit time interval.  

   Geometrically, the behavior of the Wiener process can be illustrated in two dimensions by taking X(t) on the

vertical axis and time on the horizontal axis.  Starting from X(0), which is a predetermined point, the Wiener

process specifies an infinite number of possible paths originating from X(0).  The pattern of these paths conform
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to N[0,)t].  To see this, select any time t1 > 0, take a 'slice' across the X paths and plot the distribution of the paths.

The distribution of the paths will be a normal distribution, centered at X(0), with variance t1.  Similarly, doing the

same 'slicing' operation for another time t2 > t1 and evaluating the density associated with the ensemble of X time

paths will again produce normal distribution, centered at X(0), but with a larger dispersion.  In this fashion, it is

possible to make a connection with the distribution theory, familiar from traditional statistics, which is concerned

with variables at a given point in time.  The SDE technique is a method of describing the evolution over time of

random variables that are function of the class of normal random variables.

     The Wiener process can be immediately generalized to allow for non-zero drift and variance that differs from

)t.  When a trend or "drift" term : and standard deviation F (� 1) are admitted then the arithmetic Gaussian

stochastic process (with constant coefficients : and F) is defined:

dX(t) = : dt + F dW(t)

This constant coefficient process is also referred to as an arithmetic or absolute Brownian motion.  This ensemble

of time paths for this process are also normal but differ from the standard Wiener process by allowing for a

different amount of variation around a constant trend.  The basic Wiener process can be used to construct a wide

range of stochastic differential equations, each of which is associated with a different specification for the joint

density of the stochastic process.  The construction of the Wiener process requires these densities to be functionally

connected to the normal.

     In general, the drift and standard deviation can be functions of both the state variable and time, such that "[x,t]

is the drift and $[x,t]  is the volatility.  Consider, a simple form of state dependence, where "[x,t] =  :X and $[x,t]

= FX, with : and F being constants:

dX(t) = : X dt + F X dW(t)  Y  dX(t)/X = : dt + F dW(t)

In this case, the instantaneous rate of change (dX/X) follows a Gaussian process.  For this reason, the terms

geometric Gaussian process or geometric Brownian motion are sometimes used to identify this process.  It can

be shown that for the geometric Gaussian process the paths of X(t) correspond to  a process that is log-normally

distributed at each point in time.  This is important for cases where X(t) refers to prices that, like log-normal

variables, cannot be negative (for X(0) > 0).6

     The geometric Brownian motion has an important position in option pricing theory.  Black and Scholes (1973)

use the geometric Gaussian process to describe the behavior of the stock price in deriving their option pricing

formula.  The process is often encountered in a variety of option pricing situations because geometric Brownian

motion usually leads to a relatively simple closed form solution.  While the empirical validity of this assumption

can be questioned, the process is sufficiently close to real world processes that in many cases a reasonable

approximation is provided.7  In addition, recent work by Nelson (1990) has shown that allowing for : = :[X] and

F = F[X] produces the result that the geometric Gaussian process is the continuous limit of the popular GARCH

discrete stochastic process.

     For various reasons, it is useful to know the mean and variance of an assumed diffusion process.  For example,

a key step in the risk neutral valuation of the European option requires this result.  For geometric Brownian motion:

While not difficult, the derivation of these results is left to Appendix III.

      Other important processes that are exploited in the pricing of options include variations of the regular

Ornstein-Uhlenbeck (OU) process:8

dX(t) = " X dt + F dW(t)
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In financial applications, the OU process is often presented as a mean reverting process:

dX(t) = "[: - X] dt + F dW(t)

where " can be interpreted as the speed of adjustment of X(t) to the steady state mean :.  Different variations of

the OU process have appeared.  For example, Brennan and Schwartz (1979) and many others use the process:

dX(t) = "[: - X] dt + F X dW(t)

In this case, dX/X  reduces to a mean-reverting OU.

    Unlike the geometric and arithmetic Brownian motions, the X(t) distribution associated with the OU process

changes over time.  At any time t, X(t) is governed by a non-steady state distribution that is normal but with

conditional means and variances that are time dependent, e.g., Cox and Miller (p.225-27).  For the regular OU:

Asymptotically, as t 6 4 then the OU converges to a normal steady state distribution with mean zero and variance

F2/2".  This damping behavior of the OU is different from the geometric Brownian motion that increases

indefinitely as t 6 4.  Similarly, the mean-reverting OU has conditional parameters:

As t 6 4 then the mean-reverting OU converges to a steady state normal distribution with mean : and variance

F2/2".       Cox, Ingersoll and Ross (1985) and others use a diffusion process, the square root process, in which

volatility depends on the square root of X.  In mean-reverting form, the SDE for this process is represented:

dX(t) = "[: - X] dt + F /X dW(t)

This process can be shown to be the continuous limit of a non-central chi-squared distribution.  In turn, the square

root process is a special case of the more general constant elasticity of variance (CEV) process:

dX(t) = "X dt + FX$/2 dW(t)

where $ , [0,2).  Unlike the other diffusions examined to this point, the CEV model describes a class of processes

defined over the range of $.  For $ = 1, the CEV process is equivalent to a square root process.  For $ = 2, the

process is lognormal.

    The Brownian bridge process is a development on the Brownian motion process that incorporates a drift term

which forces the process to a fixed endpoint.  For a Brownian bridge process that starts at zero and ends at zero,

the unit variance process takes the form:

dX(t) = -X(t)/(T - t) dt + dW(t)

The Brownian bridge process has been used in a number of papers, e.g., Ball and Torous (1983), Chiang and

Okunev (1993), to model the bond price process.  For this purpose, the Brownian bridge is attractive because the

bond price converges to par value at the term to maturity endpoint.  Cheng (1991) explores problems that assuming

a Brownian bridge has for arbitrage free pricing.

    Unfortunately, the number of diffusion processes for which readily interpretable conditional probability densities

can be derived is limited.  While the density function for the general CEV process has been derived, the formula

is complicated.  In addition to the processes already described and immediate extensions, such as the Brownian
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bridge, the only other class of processes that have manageable density functions are Bessel processes which, in

squared form, have the representation: dX(t) = " dt + 2 /X dW(t).  This form of the Bessel process is typically

used, e.g., Geman and Yor (1993), because the associated densities are stable under convolutions, a useful property

not shared by geometric Brownian motion.  While not always the best empirical fit to the distribution for financial

random variables, the analytical advantages of diffusion processes have played important roles in the application

of stochastic processes to problems in finance and economics.9

     With relatively little analytical complication, the general SDE model can be extended to include jump

processes.  One of the properties of the diffusion is the continuity of its sample paths.  This property can be

generalized to permit certain types of jumps in the state variable to take place, usually modeled as a Poisson event

process.  In other words, the sample paths of the diffusion are continuous except at a countable number of

discontinuity points, where the jumps are generated by a Poisson process.  In this case, the SDE can be written:

dX(t) = "[x,t] dt + F[x,t]  dW(t) + v[x,t]  dQ(t)

where v[x,t] obeys the same technical conditions imposed on " and F, and dQ(t) is a Poisson process assumed to

be distributed independently of W(t).10  For this type of SDE, there is a generalized form of Ito's lemma, e.g.,

Malliaris and Brock (1982, p.122).  The usefulness of this result in applications is that it, theoretically, permits the

valuation of jumps in the underlying process, e.g., Merton (1976), Cox and Ross (1976).

     Another complication that can be introduced to the SDE is to impose absorbing or reflecting barriers on the

process.  An absorbing barrier occurs when the process vanishes at a specific point.  A natural example of this

occurs for price processes that vanish when the price process reaches zero.  The absorbing barrier is imposed by

requiring the transition probability density to equal zero when the state variable equals the absorbing value.  The

resulting solution for the absorbed transition density typically has a solution that is the difference of the

unrestricted density and the density associated with the paths that are absorbed, e.g., Karlin and Taylor (v.1, p.355).

Situations where a reflecting barrier is imposed on the SDE have less immediate natural application in Finance.

The imposition of a reflecting barrier involves restrictions on the partial derivative of the transition density with

respect to the state variable.  The restricted transition density will be the difference between the unrestricted density

and the density associated with the transients induced by the reflecting barrier, e.g., Cox and Miller (1965, p.224).

The Chapman-Kolmogorov Equations

Associated with a general SDE of the form dX(t) = "[X,t] dt + F[X,t] dW(t), together with an initial condition X(0)

= c, is an integral solution for X(t):

Considerable analysis has been done on identifying the conditions under which X(t) can be derived from the SDE,

e.g., Malliaris and Brock (1982, Chap. 2).  The existence and uniqueness of such a solution depends on a number

of technical conditions being satisfied, primarily associated with the behavior of " and F.11  Heuristically, the most

commonly used form of these conditions, the Lipschutz and growth conditions, can be interpreted as restrictions

that the coefficients cannot grow faster than the random variables.

     Given a specific solution, X(t), for the SDE, a number of important analytical results apply.  One essential

feature of a diffusion process is that the transition probability density, the probability law that determines how X(t)

evolves through time, will be Markov.  If X(t) is a solution to the SDE then, subject to the satisfaction of a number

of technical conditions, the transition probability density P[X0,t0;X,t]  can be obtained from " and F using the

Kolmogorov forward and backward equations that are PDE's which the transition probability density obeys.  For

the arithmetic Gaussian process, that features constant coefficients, the forward or Fokker-Planck equation is:
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In financial applications, this PDE equation is usually subject to the initial condition P[X0,t0; X,t] = *(X - X0).

     The forward equation is so-named because the solution process starts from the initial values X0 and t0 and solves

for the density function of the future values of X(t).  This is the usual method of solving valuation problems in

finance.  The forward equation for transition densities that have non-constant coefficients is:

Related to the forward equation is the backward equation, that is similar in appearance to the forward equation,

and is used to derive the density function of X0 starting from the density associated with X(t).  A demonstration

of how to apply the forward equation to solve for specific functional form of a transition probability density for

the OU and other processes in given in Cox and Miller (1965) and other sources.

7.2  Ito's Lemma

Univariate Ito's Lemma

Calculus is an important mathematical technique with numerous useful applications.  As conventionally presented,

calculus is applied to functions that are deterministic.  In effect, the familiar rules associated with dy/dx, such as

y = x2 6 dy/dx = 2x, only apply when x is known.  When x is a random variable the usual rules of calculus no

longer apply.  The importance of Ito's lemma is that it specifies the procedures for applying calculus to functions

which contain random variables.  More precisely, Ito's lemma provides a method for evaluating the total derivative

of a function of a stochastic variable that follows a Markov diffusion process.  As discussed in 7.1, the diffusion

class includes a wide range of stochastic processes.  Given this, the univariate form of Ito's Lemma can be stated:12

Ito's Lemma:  Let u(x,t) be a continuous random function mapping from R1 x [0,T] 6 R1 with

continuous partial derivatives ut, ux, and uxx.  If x(t) is a random process with a stochastic

differential equation obeying a diffusion of the form:

dx(t) = a(t) dt + v(t) dW(t)

where W(t) is a standard Wiener process and a(t) and v(t) are the drift and volatility of the

diffusion, then the function y(t) = u(x(t),t) also has a differential on [0,T] given by:

dy(t) = {ut + ux a(t) + 1/2 uxx v(t)2} dt + ux v(t) dW(t)

This form of Ito's lemma generalizes in a natural fashion to the case where x is multidimensional, e.g., Malliaris

and Brock (p. 85-6).13

   While Ito's lemma has had numerous applications in financial economics, perhaps the most well-known is the

Black-Scholes application to call option valuation.  In this case, the non-dividend paying stock price is assumed

to follow a log-normal diffusion:

dS = " S dt + F S dW

In this case, a(t) = "S and v(t) = FS where " and F are constants.  The functional relationship between the call

option price (C) and the stock takes the form: C = C[S,t; X].  Application of Ito's lemma gives:
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dC = {C t + CS " S + 1/2 CSS F
2 S2} dt + {CS F S} dW

This solution plays a central role in the derivation of the Black-Scholes price of a European call.  In particular,

Black-Scholes are able to use the riskless hedge portfolio construction to provide an additional condition that

permits elimination of the dW term.  In this fashion, the call option pricing problem is transformed from an SDE

problem that is not solvable in closed form with standard techniques, into a deterministic partial differential

equations (PDE) problem that can be solved.  However, complications associated with solving PDE's are such that

closed form solutions are not always possible.  This has at least two implications.  Firstly, there is an emphasis on

problem specifications that can be solved in closed form, e.g., Black-Scholes, even though such solutions may not

be fully realistic.  And, secondly, there is the need to apply numerical simulation to 'solve' problems in which a

precise specification of the problem is required.

    Ito's lemma can also be used to transform one type of SDE into another.  One useful example involves the

function G(S) = ln[S] when the SDE for S is geometric Brownian motion.  Application of Ito's lemma provides

the SDE for G(S), specified using the drift and volatility parameters for S.  More precisely, Gt = 0, GS = 1/S and

GSS = -(1/S)2.  Using Ito's lemma it follows that:

dG = {0 + " - 1/2 F2} dt + F dW = (" - 1/2 F2}dt + F dW

The result that the log of a log-normally distributed random variable follows an arithmetic Brownian process is

not surprising, but the specification of the drift is not obvious.

    A straight forward extension to the case of functions of two variables (and time) is provided by Fischer (1975)

which examines the stochastic behavior of the real bond price q = B/P where B is the nominal price of a riskless

bond and P is the price level.  In this case, the rate of change in the price level (dP/P) and the return on a zero-

coupon continuously compounded nominal bond (dB/B) can be specified:

dP/P = B dt + F dW            dB/B = R dt

Observing that when q = u(B,P) = B/P :       

 ut = 0     uBP = -{1/P}2    uBB = 0    uB = 1/P   uP = -{B/P2}     uPP = 2{B/P3}

It is now possible to apply the multivariate form of Ito's lemma to get:14

Factoring out B/P gives the desired result:

dq/q = {R - B + F2} dt - F dW

More developed applications of the multivariate form of Ito's lemma can be found in various sources, e.g., Gibson

and Schwartz (1990) and Schwartz (1982).

Multivariate Ito's Lemma

It is useful to proceed by example to illustrate the multidimensional form of Ito's Lemma. Briys and Solnik (1992)

provide an interesting application to the case where x is multidimensional, involving two random variables.  This

requires a more involved form of Ito's lemma.  The Briys and Solnik example involves the domestic currency value

of a foreign asset, V* = VS, where V is the random foreign currency value of the foreign asset and S is the random
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spot exchange rate, producing V* which is the random domestic currency value of the foreign asset.  In this case,

processes are given for dV and dS with dV* to be calculated using Ito's lemma.

     To evaluate Ito's lemma for this case requires application of the associated multivariate total derivative.  The

resulting solution for the two random variable case, y(t) = u[t, {x(t)}] = u[t, {x1(t), x2(t)}], takes the form:

where G is the variance-covariance matrix of the state variables and tr[@] is the trace operator.  Because there are

n state variables in the general form, ux is a n x 1 column vector containing the first partial derivatives, dx is a row

vector containing the diffusion processes and uxx is a symmetric n x n matrix of the second partial derivatives.

    In the Briys and Solnik example, dy = dV* and V and S are assumed to follow the log-normal diffusions:

The covariance between dWS and dWV per unit time, cov(dWS,dWV) = DVS dt.  It follows that FVS = DVS FV FS.

Recognizing that y = u(x,t) in this case is V* = VS, it follows that:

Because there are now two state variables, V and S, the variance-covariance matrix G is 2 x 2 with variances on

the diagonal and covariances on the off-diagonal.  Remembering from the univariate log-normal example that v(t)2

= F2 S2, evaluating 1/2 tr[@] for this case gives:

Using the result that 1/2 tr[@] = FVS VS.  The solution to the total derivative is found to be:

Given dV and dS, this is dV*, the SDE for the domestic currency value of the foreign asset.
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The Black-Scholes Assumptions

The Black-Scholes assumptions are:

a) Non-dividend paying stock.

b) European option.

c)  The instantaneously riskless continuous interest rate r is constant over time (with a flat term

structure).

d) The model has only one source of randomness, the single state variable,  the price of the stock

that follows a log-normal diffusion process.   This log normal process is defined only over  S , [0,4].

e) No transactions costs or taxes.

f) No penalties on short selling.

g) Riskless lending and borrowing at r.

h) Continuous trading.

Assumptions e)-g) are the conventional perfect markets assumptions.

8.2  Deriving the Black-Scholes Option Pricing Formula15

Deriving the Formula

The seminal paper by Black and Scholes (1973) directly addresses the problem of providing a practical, closed

form expression for the price of a call option on a common stock prior to the maturity date.  Extensions to options

on futures and spot commodities follow with appropriate adjustments.  Recognizing that a considerable amount

of research effort preceded the development of Black-Scholes, e.g., Cootner (1964), what is most significant about

this contribution is that the formula depends only on observable inputs: the stock price, the exercise price, time

to expiration, the interest rate and the variance of the stock price.  With suitable choice of estimator for the

variance, the accuracy of the formula has proved to be robust across a wide range of option pricing situations.

Extensions of this option pricing approach can be used to value: the debt and common stock of the firm; bond

features such as callability, convertibility and retractability; and, tax and investment policy.  As initially derived,

the formula applies to a "perfect markets" world for a European call on a non-dividend paying stock.  The

techniques used to derive the formula are consistent with the material on stochastic processes covered previously.

With appropriate transform of variables, Black and Scholes were able to show that the call option pricing problem

reduces to solving a special case of the heat equation from mathematical physics. 

  The Black-Scholes argument proceeds by implementing the essential concept of a hedge portfolio.  Recognizing

that there is both a long and a short hedge portfolio, the long portfolio involves combining a long stock position

with " written call options on the stock.  The hedge is created by selling just enough calls to offset changes in the

value of the stock position.  This portfolio will involve a net investment of funds because the premium income

received from writing the calls will not be sufficient to purchase the stock position.  Similarly, the short hedge

portfolio involves shorting the stock, buying call options to hedge the position against upward changes in the stock

price, and investing the balance of the funds in a riskless asset.  Observe that, for both the long and short hedge

portfolio, as the stock price changes the option hedge has to be continuously adjusted to maintain the hedge

position.

   For ease of exposition, consider the long hedge portfolio.  In order to determine the number of call options to

sell, let V = S - $C be the value of the hedge portfolio.  From the hedge portfolio construction:
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Given this specification for $, the change in the value of riskless hedge portfolio will earn the riskless rate of

interest.  (This follows from the assumption that interest rates are riskless).  In terms of arbitrage portfolios, this

condition is necessary in order to prevent the execution of arbitrage trades by either borrowing at the riskless rate

and buying the hedge portfolio or selling the hedge and investing the funds at the riskless rate.  It follows that there

are two dV conditions that have to be satisfied:

At this point, Ito's lemma can be applied to solve for dC:

The solution for dV can be derived as:

Dividing through by -{dt/CS} gives the fundamental partial differential equation for a European call on a

nondividend paying stock:

With appropriate transformation of variables, this equation reduces to the heat equation.

   The Black-Scholes option pricing formula is derived by solving the fundamental PDE, subject to appropriate

boundary and terminal conditions: C[S,0,X] = Max[0, S(T) - X]; C[0,J,X] = 0.  If Laplace transforms are used

in the solution procedure, the condition CS[4,J,X] = 1 is also used.  As it turns out, solving the PDE problem

involves considerable analytical manipulation.  The ultimate solution is the Black-Scholes formula:16

C[S,t*;X,r,F] = C = S N[d1] - X e-rt* N[d2]

where N[@] is the cumulative standard normal distribution evaluated at the appropriate argument and:17
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The formula for pricing puts follows from put-call parity:

This follows from observing that N[d] - 1 = N[-d]  (see Appendix 3).

   Manual evaluation of the Black-Scholes formula requires familiarity with the calculation of specific values for

N(d), the cumulative normal distribution function evaluated at d (see Table 8.1).  Though it is easiest to work

directly with N(d), it is also possible to work with n(d), the normal probability density function and to construct

N[d] values from n[d] tables.  This is possible because the value of the cumulative normal distribution function

evaluated at x, N[x] , is the area under the normal density function between -4 to x.

   To evaluate the Black-Scholes formula using the standard normal probability density table, refer to Tables 8.1

and 8.2 that have both N[d] and n[d].  The potentially simple exercise of producing the required cumulative N[d]

values is complicated by the form in which the n[d] table is presented.  To illustrate the use of the table, observe

that when the calculated value d in N[d] is greater than zero, the value in the n[d] table is added to .5 = N[0].

Similarly, when d < 0, then the value in the n[d] table is subtracted from .5.  In the example provided, d1 was

approximately -.25.  To identify the appropriate N[@] value, look down the vertical axis in the n[d] table to find

the first digit, in this case .2, and then read across to get the second digit, in this case .05.  Examining the table the

value in that cell is .0987.  Subtracting this value from .5, because d1 < 0, gives .4013, the value used in the

example.  Evaluating d2 at -.50 gives a Table value of .1915 and N[d2] = .3085.  These are the same values as

those obtained by working directly from N[d].  This method of calculating d using the relevant standard normal

densities can be used because the distribution is symmetric, making the values for one half of the distribution

redundant.  Presenting the table using only half of the distribution information as in the Table allows a larger

number of 'useful' cells to be presented.

Interpreting the Formula

The first step in interpreting the Black-Scholes formula involves interpreting N[d], particularly as S and X change.

Consider an at-the-money option, S=X, where t* is small.  In this case, ln [S/X] = ln[1] = 0 and, due to small t*,

the remaining values will be small and N[d] 6 N[0] = .5.  Similarly, when the option is deep in-the-money, S >>

X and N[d] 6 N[+4] = 1, which implies that, for an European call option on a non-dividend paying security, C

6 S - X exp[-rt*] > S - X.  Observing that S - X is the early exercise value, it follows that European call options

on non-dividend paying securities will, if the Black-Scholes formula is correct, not be exercised early.  For puts,

deep in-the-money requires X >> S where N[-d] 6 N[+4], which implies for a put option that: P 6 X exp[-rt*] -

S < X - S.  It follows that European puts on non-dividend paying securities can be rationally exercised early.  This

asymmetry is an artifact of the upper bound on the value of the put position resulting from the restriction that S

$ 0.  If the spot price falls far enough, the expected loss of interest due to early exercise will exceed the expected

possible gains due to further price declines.

   It has been demonstrated that as an option goes deeper into the money, the ln [S/X] term in d1 and d2 tends to

dominate the value of d.  The same is true as the options goes deeper out of the money.  For the call option, deep
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Application of the Black-Scholes Formula

   Assume the following: S(t) = $36, X = $40, J = 3 months Y t* = .25, r = .05, F = .5.  Both the

interest rate and standard deviation are expressed in annualized form.  For sigma, this requires

estimating the standard deviation over the relevant sampling frequency and then annualizing as

appropriate.  Given this:

 

   d1 = {ln[36/40] + (.05 + .5(.5)2) .25} / {.5 (/.25)} � -.25

   d2 = {ln[36/40] + (.05 - .5(.5)2) .25} / {.5 (/.25)} � -.50

Evaluating the N[@] values: N[-.25] = .4013 and N[-.50] = .3085 and exp{(.05)(.25)} = .9877, it is

possible to solve for the Black-Scholes call option price:

    C = S [.4013] - X [.9877] [.3085]  = 14.4468 - 12.1882 = $2.26

out-of-the-money requires X >> S.  This produces: N[d] 6 N[-4] because ln[0] = -4.  Hence, as the spot prices

goes to zero then: C 6 0.  A similar result holds for puts, with the proviso that deep out-of-the-money requires 

S >> X for puts.  In this case N[-d] = N[-(+4)] = 0.  Similar intuition can be used to evaluate the formula as t*

6 0.  In this case, only the term involving ln [S/X] matters, due to the t* cancellation of /t* leaving a /t* term to

multiply (r + .5 F2).  If the option is in-the-money on the expiration date than C = S - X, whereas if the option is

out-of-the-money then C = 0.  This is a verification that the formula satisfies the boundary condition that:

C[X,t=T] = max[S - X, 0].

   Other basic interpretations of the formula are associated with the relevant partial derivatives.  Analytically, the

partial derivatives:

of the fundamental PDE, together with other partial derivatives of the Black-Scholes formula, are demonstrated

in Sec. 8.2 to play a central role in applications to the management of portfolios.  As it turns out, for portfolios

containing derivative securities, one or more of the partial derivatives become choice variables.  To illustrate

possible applications, consider the riskless hedge portfolio.  In this case, the delta of the portfolio is constructed

to have MV/MS = 0.  

   Another simple example is a portfolio containing only a call option.  By setting, say, M2C/MS2 = 0 by choosing

to write only options that are deep in-the money, the fundamental PDE provides restrictions on the remaining two

partial derivatives of the form:

Recognizing that MC/MS = 1 when the option is deep in-the-money provides a solution for MC/Mt in terms of the

interest expense of the funds invested in the position.  Chapter 10 provides numerous more developed extensions

of this approach to the construction of portfolios containing options.
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Table 8.1 Values of the Cumulative Normal Distribution Function
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Table 8.2   Value of the Normal Density Function

Note: For x > 0, add .5 to the value in the Table.  For x < 0, subtract the value in the Table from .5
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Malz (2000) on OTC Foreign Currency Option Trading

In foreign exchange markets,  options are traded among dealers using the delta as a metric for exercise price and the
Black-Scholes volatility as a metric for price.   The volatility smile can then be represented as a schedule of implied
volatilities of options on the same underlying and with the same maturity but different deltas.  This convention is
unambiguous, since a unique exercise price corresponds to each call or put delta and a unique option premium in
currency units corresponds to each implied volatility.  The most liquid option markets are for at-the-money forward
and for 25-delta calls and puts.  There are also somewhat less actively traded markets in 10-delta calls and puts.

Implied Volatility

Practical application of the Black-Scholes formula requires some method of estimating the variance, F2, of the

continuously compounded rate of return on the stock (dS/S).18  Unlike the other values required to calculate the

Black-Scholes option price, (S,X,r,J), the value for volatility is not directly observed.  Some method of estimating

F is required.  Starting with the first empirical studies on Black-Scholes, it has been recognized that using the past

history of returns to estimate volatility can produce undesirable results, e.g., inconsistency between Black-Scholes

and observed option prices, e.g., Latane and Rendleman (1976), Macbeth and Merville (1979).19  Lauterbach and

Schultz (1990) reports: "...our findings indicate that the constant equity variance assumption is the most serious

deficiency in the Black-Scholes model."  Over time it has been recognized that, given an observed call option

price, Black-Scholes can be "inverted" and used to solve for an estimate of volatility.  In other words, given S,X,r,J

and C it is possible to use Black-Scholes to solve for F.  For this purposes, computer programs that solve for

Black-Scholes prices also provide a routine for solving the implied standard deviation or implied volatility (IV).20

   Not surprisingly, the behavior of implied volatility has been intensely studied from a number of different angles.

From the beginning, study of implied volatility has revealed that Black-Scholes is not a formula for pricing options

but, rather, because the traded call price is observed and the only unobserved variable in the Black-Scholes model

is the volatility, Black-Scholes is more appropriately viewed as a formula for determining an estimate of the

underlying spot price (S) volatility.21  Various properties of the implied volatility have been examined in numerous

studies.  One property of interest is the ability of the implied volatility to predict future volatility, typically using

the most advanced econometric volatility predictor, e.g., GARCH, as a benchmark.  This type of comparison can

be found in Stein (1989), Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrepes (1993),

Heynen, Kemna and Vorst (1994), Takezawa (1995) and Xu and Taylor (1994, 1995), Sabatini and Linton (1998),

Dumitru (1999).

   Volatility forecasts have a number of potential uses, including being used as input for market markers

determining appropriate bid/offer quotes for option trading or as inputs to Value at Risk calculations.  For a

number of reasons, it is difficult to formulate definitive tests of implied volatility performance in forecasting future

spot volatility.  Given this, there is conflicting evidence as to whether IV's from option pricing models provide

superior forecasts to those obtained from spot data using appropriate econometric techniques (such as GARCH

estimators).  Some studies, such as Takezawa (1995), Canina and Figlewski (1993) and Stein (1989) find that the

IV's tend to be poor forecasts of future realized volatility compared to econometric estimators.  Among other

reasons, this is attributed to implied volatilities 'over reacting' to volatility surprises.  Other studies, such as Xu and

Taylor (1994) find that implied volatilities are the best predictors of future volatility.

   One difficulty in identifying the forecasting properties of implied volatilities concerns the sampling windows

being used.  On the IV side, there is the problem of how best to combine IV information.  Implied volatilities

change over time and numerous studies have demonstrated that averages, including weighted averages, of past IVs,

have better performance than using just the previous IV, e.g, Schmalensee and Trippi (1978), Latane and

Randleman (1976), Beckers (1981).  IVs from at-the-money options are also found to be better predictors than

deep out-of-the-money and, where applicable, deep in-the-money options.  Short dated options and options written
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on extremely high or low volatility spot markets also have poor performance.  There is also the question of how

to combine the estimates from options on the same security, with the same time to expiration but different exercise

prices.  Another complication concerns the variable being forecasted.  Is accuracy in pricing subsequent options

the criteria, or is it the tracking of actual spot market volatility, or is it profitability of a trading strategy based on

option mispricing, e.g., Galai (1977)?  All these questions are complicated by non-simultaneity of option and spot

quotes, as well as the problem of accounting for the bid/offer spread, e.g., Rubinstein (1985). 

   From these early results, the study of implied volatilities progressed to the detailed comparison of volatilities

extracted from different options for the same commodity or security, concentrating on currencies and stocks.  More

precisely, at any point in time, a number of options with varying term to maturity and exercise price are available

for the same spot commodity.  The implied volatilities for the different option prices reveal a significant degree

of heterogeneity.  In particular, comparing implied volatilities for different exercise prices reveals a volatility smile

or volatility smirk when currency option prices are used to calculate the IVs.22  The IV is lowest for at-the-money

options, with the IV having progressively higher values as the option price moves in-the-money or out-of-the-

money, e.g., Heynen (1994), Dumitru (1999), Taylor and Xu (1994), Malz (2000).23  This empirical result for

currency options is stylized and the precise shape of the smile varies across time and currencies.  For example, a

smirk is sometimes observed where the IVs for at-the-money and in-the-money are approximately equal while the

out-of-the-money options have higher IVs.

   The IV smile of currency options does not carry over to stock and stock index options where a volatility skew

is observed, e.g., Dumas et al. (1998).  In a volatility skew, IV decreases as the strike price increases.  Low strike

price options, where the call is deep in-the-money and the put is deep out-of-the-money have the highest IVs.  IV

declines progressively reaching the lowest levels for high strike price options, where the put is deep in-the-money

and the call is deep out-of-the-money.  For both currency and stock options, differences in calculated IVs are also

observed when different terms to expiration are used, with the shorter maturity options typically exhibiting higher

IV's.  All this variation in empirical IV has led to considerable theoretical analysis, attempting to explain the IV

variation.

   If the Black-Scholes model were perfect, then volatilities derived from option prices would be the same

irrespective of the expiration date and exercise price of the option used to derive the IV.  However, in practice,

volatilities derived from in- at- and out-of-the-money options differ, sometimes the IV plot reveals a smile when

implied volatility is plotted against moneyness of the option, e.g., Heynen (1994), and sometimes the plot reveals

a smirk or a skew.  A first possible step in dealing with observed IV behavior is to evaluate the vega risk of the

position.  For a position containing only one option, the vega risk can be approximated by taking the derivative,

with respect to F, of the appropriate Black-Scholes formula, e.g., Hull and White (1987), Malz (2000).  This

approach is discussed in Chapter 9.  It is possible to incorporate vega risk into VaR calculations.

   Another possible approach to accounting for observed IV behavior is to model the stochastic behavior of

volatility directly.  This involves introducing an additional stochastic process into the model.  Unfortunately, the

presence of two random variables, volatility and commodity price, significantly complicates the modelling process,

e.g., Scott (1987, 1997), Hull and White (1987, 1988), Heston (1993), Ball and Roma (1994), Duan (1995),

Ritchken and Trevor (1999).  The basic problem of introducing volatility is captured by Ball and Roma: "Since

volatility is not spanned by assets in the economy, the volatility risk may not be eliminated by arbitrage methods.

Therefore, its market price of risk explicitly enters into the PDE."  Hull and White (1987) were able to partially

circumvent this problem by taking volatility to be uncorrelated with the commodity price, allowing the Black-

Scholes price to be determined by integrating over the probability distribution of the average variance during the

life of the option.

   The Hull and White approach can be motivated using a power series expansion of the option price.  Ball and

Roma (1994) demonstrate the the Hull and White approach can be extended "to any security price process that is

conditionally log-normal and for which the MGF of the average variance possesses a known analytical form".  This

follows because, if a tractable stochastic process for volatility has been specified, it is possible to solve for the

expected variance by direct integration.  This approach can be extended to demonstrate how stochastic volatility

leads to a smile effect (Ball and Roma 1994, p.662).  To see this, expand the option price in a univariate Taylor
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series, expanded in volatility around the expected value of the true variance of the underlying process.  Ignoring

terms higher than second order gives:

where C* is the true option price that takes account of stochastic volatility, C is the Black-Scholes price, E[F^ 2]

= S is the expected value of the average variance, and var[F^ 2] is the variance of the average variance.

   From this point, it is possible to adapt an argument similar to that in used in Sec. 2.1 to capture the cost of risk.

Recall that IV is the implied volatility calculated from the Black-Scholes formula using the observed option price.

While it is conventional to solve for IV using observed option prices, it is also possible to solve for the IV

associated with the option price calculated from the pricing model that accounts for stochastic volatility.  With this

in mind, let IV* = S + T; the implied volatility calculated from the Black-Scholes model using the option prices

determined by the stochastic volatility model is equal to the expected variance of the true process generating the

commodity price plus any deviation of IV* from the expected variance of the process that accounts for stochastic

variance.  It follows that the first order Taylor series approximation gives:

The relationship between the deviations of the implied volatilities calculated from Black-Scholes prices, on the

same commodity, using the different prices available, can now be determined by directly evaluating the derivatives

C" and C'.

   Ball and Roma give an approximation to the solution for T as:

Solving this for at-the-money reveals T < 0.  As Ball and Roma observe: "This is not surprising since the Black-

Scholes option price is only everywhere concave in variance for at-the-money options and, hence, a straightforward

application of Jensen's inequality implies that the stochastic volatility option is priced below the Black-Scholes

counterpart evaluated at the mean of average variance."  With this result the presence of a smile effect in the

calculated IV using actual option prices can now be determined by observing that there are different Ts for the

various exercise prices.  Some caution is needed in applying these results due to the initial assumption that the

randomness in volatility is uncorrelated with randomness in commodity prices.  Failure of this assumption

contributes to the volatility skew in equity option IVs.

   Ultimately, only so much can be accomplished by dealing with F, which is just one parameter from the

underlying commodity or security price distribution.  It is natural that attention has also focused on modeling or

extracting the complete distribution for the underlying commodity price process.  Improving pricing accuracy by

better modeling the distribution of commodity prices has been of interested almost since Black-Scholes (1973).

One potential approach along these lines is to empirically evaluate the commodity price distributions to assess

which empirical assumption is most appropriate.  For example, Bates (1996)and others examine the empirical fit

of jump diffusion, stochastic volatility and mixed jump-stochastic volatility models.  One inherent difficulty with

this approach is that the distributional model which has the best goodness of fit, e.g., the skew-stable, may not be

manageable theoretically, especially if the objective is a closed form solution.

   Once it is recognized that there are only a few cases where closed forms can be derived, approximation methods

gain appeal.  Various approximation techniques, including Edgeworth expansions, Hermite-Fourier expansions

Chiarella et al. (1999), Laguerre expansions (Dufresne 2000), and Gram-Charlier expansions, have been examined,

e.g., Jarrow and Ruud (1982), Shimko (1994), Corrado and Su (1996).  However, these methods are decidedly in

the direction of numerical evaluation of option prices, e.g., using finite difference methods.  While these methods

can be used to accurately solve for option prices, the intuition and appeal of the closed form solution is lost.
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Another related approach is to estimate the volatility surface directly, e.g., Derman and Kani (1994), Jackwerth

and Rubinstein (1996), Avellaneda et al. (1997).  To date, this approach has been found to be "no better than an

ad hoc procedure that merely smooths Black-Scholes implied volatilities across exercise prices and times to

expiration" (Dumas et al. 1998, p.2059).

8.3  Solving the Black-Scholes PDE

Possible Methods of Solving Black-Scholes

There are at least six methods available for deriving the Black-Scholes option pricing formula from the

fundamental PDE.  These methods are, in no particular order of importance: the original approach proposed by

Black-Scholes, that involves making relevant substitutions into available solutions to the heat equation derived

using Fourier series methods; the risk-neutral valuation approach of Cox-Ross, that involves solving the discounted

expected value of the option's expiration date payoff function; evaluating the PDE as the limit of the binomial

process; taking Laplace transforms; the Feynman-Kac approach, closely related to the risk-neutral valuation

approach, that involves expressing the solution of the fundamental PDE as the expected value of a functional of

Brownian motion; and, finally, by direct verification that the derivation of the Black-Scholes formula satisfies the

PDE and boundary condition.  While the last suggested method is consistent with 'proof by knowledge of the

solution', it is also consistent with the ad hoc method, sometimes used in mathematical physics and engineering,

of guessing a solution and then verifying that the proposed solution satisfies the PDE.

   The method that has been found to have useful applications to a range of pricing situations, particularly where

the solution to the pricing problem is not apparent, is the risk-neutral valuation method proposed by Cox and Ross.

For the European call option on a non-dividend paying stock, this method involves directly evaluating the

expectation:

where t* = T - t, E[@] is the time t expectation taken with respect to the risk neutral density Prob[@] (see Appendix

3).  Stoll and Whalley (1993) provide a worked solution for this problem.

   As for the 'proof by knowledge of the solution' method of solving the Black-Scholes call option pricing formula,

while this method is not conceptually satisfying, it is immensely practical in many situations.  The method proceeds

by examining the solutions for PDE problems with similar structure.  As discussed in texts on PDEs, e.g., Berg

and McGregor (1966), there is an elaborate classification scheme for PDE problems that facilitates this exercise.

Having determined the solution to a closely related problem, a solution to the pricing problem is then guessed and

derivatives of the pricing problem are taken to verify whether the PDE and boundary conditions are satisfied.  This

starts an iterative process that combines intuition and brute force to arrive at a solution.  This method relies on the

guidance of the existence and uniqueness theorems for PDEs from advanced mathematical analysis to determine

when a solution will be available and if that solution is unique.  Of course, a trivial variation of this method is to

now the solution at the start and verify that it satisfies the PDE and boundary condition.

   Yet another method to solve the Black-Scholes PDE involves applying the technique of Laplace transforms.

Applied to the function f[t], this transform is defined as:
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Solutions to the Laplace transform for a wide range of functions are available.  After making an appropriate

transformation of variables, the Laplace transform technique permits the fundamental PDE to be converted to an

ordinary differential equation (ODE) that is easier to solve.  In the Black-Scholes case, the Laplace transform

solution involves the erf[@] function, that often appears in Laplace transformations involving probability

distributions.  The Laplace transform method is quite tedious and, without prior knowledge of the solution

provided by Black-Scholes, it is not obvious how to proceed to the desired solution.  Though widely used in

engineering, the Laplace transform approach is not common is finance applications, e.g., Buser (1986).

The Original Black-Scholes Solution

The original notation in Black and Scholes (1973) differs somewhat from what is currently in common use.  To

retain the flavor of the Black-Scholes discussion, some of the original notation will be adopted.  In Black-Scholes

(1973), the notation used for the call price was w (to refer to warrants) and the PDE has the form:

where <2 is the variance of the stock price.  This PDE is also subject to the boundary condition applicable to the

exercise value of the option on the maturity date T:

       w(S,T) = S(T) - X    for   S(T) $ X    and    w = 0  otherwise   (S(T) < X)

At this point it is possible for analysis to proceed with 'proof by knowledge of the solution'.  In other words, the

Black-Scholes solution is "proved" by verifying that the Black-Scholes call option pricing function satisfies the

PDE.  This exercise will be carried out in Sec. 9.1.  Restrictions imposed on the state space then make it possible

to infer that the Black-Scholes solution is the unique solution to the PDE problem.

   However, not knowing the solution to the PDE, Black and Scholes found it necessary to proceed by solving the

boundary value problem directly.  The method used is cumbersome and has since been superceded by other

solution methodologies, such as direct evaluation of the discounted expectation problem used in risk neutral

valuation.  To better appreciate the more difficult and direct method of solving the PDE used by Black and

Scholes, consider the following guide provided by Black and Scholes as to the method of finding a solution (p.643-

4):

________________________________________________________________________________________

   To solve this differential equation, we make the following substitution:

With this substitution, the differential equation and boundary condition become:
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This differential equation is the heat-transfer equation of physics, and its solution is given by Churchill (1963, p.155).  In our notation,
the solution is:

______________________________________________________________________________________________________

Substituting (this result) back into equation (9) from the Black-Scholes derivation, and simplifying provides the

Black-Scholes formula.

   The general method selected by Black-Scholes is to use a change of variable and scale to transform the

fundamental PDE for the European call into a variation of the heat equation, e.g., Berg and McGregor (1966).

This permits Fourier series results to be applied.  In particular, Black and Scholes reference the solutions to the

heat equation from Churchill (1963, p.155).  This approach requires a complicated substitution to transform the

Black-Scholes PDE into a form of the heat equation for which accessible solutions are available.  Once this

substitution is available, it is still not easy to derive a solution from the results in Churchill, and it is not

immediately obvious that the form of the solution will involve density functions.  Substantial effort is required to

proceed from the solution derived from Churchill, given in terms of y, to the Black-Scholes call option pricing

formula, that is given in terms of the call price w.  It is the objective of this Section to provide that solution.

   Churchill (1963, p.155) states a solution, derived using Fourier series methods, for the heat equation subject to

a boundary condition of the kind applicable to Black-Scholes.  The notation in Churchill differs from that used in

Black and Scholes.  Remembering that Black-Scholes did a change of variable transform from w(S,t) to y(u,s),

Churchill provides:

To match up this notation, change the dummy variable of integration to q’.  Also observe that k=1 in Black-

Scholes and g(x,t) is written as y(u,s).  These substitutions produce:

It is now possible to exploit the properties of the boundary condition provided by the max[A] function to restrict

the region of integration.

   To do this, observe that y(u,0) = 0 for u < 0 and y(u + 2q‘/s, 0) = 0 for u = -2q’ /s.  This can be solved for the

dummy variable q’ to get: q’ < - u /(2/s).  It follows that the lower limit of integration can be set to produce, in

the Black-Scholes notation:
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In effect, the Black-Scholes solution involves a change of variable from w to y to transform the PDE to a form that

is comparable to a type for which solutions are more readily derived.  This change of variable imposes specific

solutions on the boundary condition associated with y(u,0).  The properties of y(u,0) are used to restrict the range

of integration and provide a solvable problem. Changing the variable of integration q' to be (q //2) reproduces the

Black-Scholes result.

   What remains is to do as Black-Scholes suggests and “substitute back into (9)”.  The first step is to rewrite y(u,s)

to get:

Given this, the operation of substituting involves unbundling the change of variable.  Observing that the y(u,s)

specified by Black-Scholes in (9) provides the relevant definitions for u and s, the lower limit of integration can

be solved as:

Using this result, the second term in y(u,s) becomes:

The connection with the Black-Scholes formula is now apparent.

     The first term of y(u,s) follows appropriately.  Examining the numerator in the exponential, the following terms

can be solved:

Using this the first term can now be written:
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What follows is a considerable amount of manipulation.  Using the following two results:

This produces for the first term:

What remains is to change the variable of integration:

Substituting the first and second terms into (9) from Black-Scholes reproduces the famous formula.

Risk-Neutral Valuation

For exposition purposes, it is instructive to consider two solutions to the risk-neutral valuation problem: the

solution to the Black-Scholes option pricing problem, which assumes geometric Brownian motion for the state

variable; and, the solution to the Bachelier option pricing problem, which assumes arithmetic Brownian motion

for the state variable (Poitras 1998b).  The solution to the risk-neutral Black-Scholes valuation problem for

geometric Brownian motion is available in several sources, e.g., Stoll and Whalley (1995).  The general risk neutral

valuation problem, given in equation (8.1) starts by considering the valuation problem for a European call option

on a non-dividend paying stock.  In words, (8.1) indicates that the value of the call option depends only on the

paths where ST $ X.  The density associated with ST < X, that includes the potentially negative price paths, does

not directly enter the valuation.  While there is some difference in the shape of the upper portions of the normal

and log-normal distributions, this difference provides a basis for contrasting the performance of the Bachelier and

Black-Scholes options.  Given that neither assumption generally provides a particularly close fit to observed price

distributions, it does not follow that lognormality will necessarily provide better pricing accuracy than normality

in all situations.  This issue must be addressed empirically.

     Evaluation of (8.1) requires the integration of variables that follow the standard normal distribution.  Two

different specifications are needed to do this, one for the arithmetic Brownian motion and the other for geometric

Brownian motion.  For the case of arithmetic Brownian motion, over the time interval starting at t and ending at

T, with t* = T - t:
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where Z is N(0,1).  The standard normal specification associated with geometric Brownian motion is stated in

Appendix III.

     Evaluating (8.1) for the arithmetic Brownian motion case gives:

Observing that risk neutrality requires that (St + "t*) = St exp[r t*], substituting these results into (8.1) gives the

closed form solution for the Bachelier call option pricing formula.  To verify that this is the absence-of-arbitrage

consistent solution requires the derivatives of the fundamental PDE for the Bachelier call option formula stated

in Proposition 8.1 to be evaluated and then substituted in the fundamental PDE for the Bachelier option.

Determining that the PDE, together with the boundary and terminal conditions, is satisfied, ensures that absence

of arbitrage is satisfied.

     The risk neutral solution for the geometric Brownian motion proceeds much as with the arithmetic Brownian

solution:

From the discussion in Appendix III, the risk neutral valuation approach now permits the result that the riskfree
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interest rate (r) can be used for continuously compounded rate of return on the stock (").  This produces r = " =

: + F2/2 to be used to make a substitution for : (= r - F2/2).  Collecting all these results into (8.1) gives:

Taking the discounting operator exp{-rt*} through gives the Black-Scholes formula.



25Option Valuation

8.4  Extending the Black-Scholes Model

Since the introduction of the basic Black-Scholes model, various extensions have been developed.  This includes:

permitting dividends on the stock; allowing early exercise, by valuing American options; assuming different

diffusion processes for the stock price, such as the CEV process; allowing interest rates or volatility to be

stochastic; applying the model to commodities other than stocks, including options that permit delivery of the spot

commodity or future contracts; applying the model to warrants instead of exchange traded options; allowing

options to have special features such as "look back" or multiple delivery specifications; introducing transactions

and short selling costs; and, developing different analytical methodologies for solving the option pricing problem.

This Section provides an overview of the work that has been done on some of these topics.  However, except in

a limited number cases, relaxing the basic Black-Scholes framework produces significant complications.  For

example, when American options are introduced, this produces path dependence in the option price effectively

eliminating the possibility for a closed form solution to the valuation problem.  Similarly, using other (potentially

more realistic) diffusion processes than the log-normal again make it difficult to derive a closed form solution.

For this reason, evaluation of option prices for more complicated situations typically involves application of

techniques from numerical analysis.

Incorporating Dividends

Various methods are available for incorporating dividends into the Black-Scholes model.  When the European

assumption is retained and the timing and size of future dividend payments are known, only minor modifications

are required to the formula.24  The most direct method of incorporating dividends without undermining the basic

Black-Scholes framework is to assume that the dividend payment is paid continuously, as a constant fraction or

proportion (*) of the value of the stock price, D = *S.  It is also possible to be more general and assume that * =

*[S,J], but this complicates the derivation of the closed form.  In the constant proportional dividend case, the

Black-Scholes formula is altered to permit the stock price to be discounted using the dividend payment rate to

produce the constant proportional dividend call option pricing formula:

This formula would be applicable to firms with stated dividend policies given in terms of yields as opposed to a

fixed dollar payment.  While not common, there are firms that follow such policies.  More importantly, this formula

can be readily extended to options on other types of securities, such as currencies.

   To derive the constant proportional dividend call option formula requires modifying the return on the riskless

hedge portfolio to be:

In words, the net investment of funds in the riskless hedge portfolio must earn the riskless rate of interest adjusted

for the dividend payments received.  Because the dividend payment only enters into the return on the riskless hedge

portfolio, the relevant partial differential equation becomes:
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Application of the Black-Scholes formula with Dividends

  Consider the following information observed for a dividend paying stock on February 8, 1988 with call

option expiring on March 25, 1988 (a leap year): S = $51.70, X = $52, r = 5.61%, t* = 46/366 = 0.125683,

F = 0.1235.  Assume that a quarterly dividend payment of $1.50 is expected on March 15, 1988: t*1 =

36/366 = 0.09836.  Substituting this value into the call option pricing formula adjusted for dividends

gives: C = {51.7 - 1.5 exp{(-.0561)(0.09836)} N[d1'] - 52 exp{(-.0561)(.125683)} N[d2'].  Evaluating

N[@] gives N[d1'] = 0.271 and N[d2'] = 0.2546.  This produces C = $0.37.  This result can be contrasted

with the same parameters, excluding the dividend payment.  In this case, C = 51.7 N[d1] - 52 exp{(-

.0561)(0.125683)} N[d2].  Observing that d1 = .290611 and d2 = .248026 and evaluating gives C = $0.937.

Hence, this example demonstrates that dividends can have a significant impact on option pricing.

It can be verified by direct differentiation that the constant proportional dividend call option pricing formula

satisfies this PDE.  

   Incorporating known, discrete dividends follows in a similar fashion.  Recalling the approach used in Sec. 6.1,

when payment dates and amounts for dividends are known with certainty all that is required is to adjust the stock

position in the riskless hedge portfolio by the appropriately discounted value of the dividends occurring between

the purchase date and the expiration date.  For a single dividend payment D1 paid at time t*1 (t* > t*1 > 0), this

leads to:25

Similarly, incorporating multiple dividend payments occurring at times t*1, t*2, t*3 involves taking the discounted

value of each dividend payment from the relevant payment dates, and subtracting these values from the current

stock price.  The implication of this result for option prices is that European options on dividend paying stocks will

have lower call prices and higher put prices when compared with European options identical in X and t* except

that the stock does not pay a dividend.  While seemingly an artificial method of introducing dividends, given the

short maturities (9 months and less) for many exchange traded options, combined with the typically stable dividend

payout patterns of many stocks, this approach can often provide reasonable approximations to observed option

prices.26

   Given the formulae for incorporating known dividend payments, an important practical question concerns the

extent to which these models capture actual option prices for dividend paying stocks, particularly for longer dated

options such as warrants and LEAPS.  This is currently an active research area, e.g., Lauterbach and Schultz

(1990).  In general, extending the Black-Scholes model to include uncertain dividend streams is not possible

because this introduces a path dependent payoff.  While it is possible to introduce a stochastic process for
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dividends, producing a model with two state variables, the resulting option pricing solutions are complicated.

(Rabinovitch (1989) provides a workable solution for the related two state variable case with stochastic interest

rates.)  In addition, the stochastic process generating dividends is not typically the same as for variables such as

interest rates and volatility.

Options on Futures and Forward Contracts

The techniques and issues associated with dividends arise naturally when the Black-Scholes framework is extended

to options on futures contracts, e.g., Black (1976), Wolf (1982), Brenner, et al. (1985), Shastri and Tandon (1986),

Ramaswamy and Sundaresan (1985), Hull (1989, Chap. 6).  Starting from the Black-Scholes assumptions, the

futures option pricing model can be derived most expediently by assuming that the commodity underlying the

futures contract does not pay a carry return, this permits the relationship between spot and futures prices to be

expressed as: F(t) = S(t) exp{r t*}.27  In general, when a carry return is admitted: F(t) = S(t) exp{bt*}, where b is

the net carry return, the continuous carry cost rate minus the continuous carry return rate.  When the stock or spot

commodity price is assumed to follow a lognormal diffusion: dS = "S dt + FS dW, then dF = (" - b)F dt + FF

dW.28  Given this, the riskless hedge portfolio used to derive the PDE for futures option contains one futures

contract and (MC/MF)-1 written options positions:

Unlike stock (or spot commodity) options, the futures contract can be assumed not to involve a net investment of

funds.29  The only relevant cash flow is the income received on the written options position.

   The derivation of the Black-Scholes formula for futures options, the fundamental PDE for a call option on a

futures or forward contract can be derived as:

where C is the price of a call option on a futures contract.  This PDE differs substantively from that for a call

option on the stock.  This PDE can be compared with the fundamental PDE for a stock that pays a continuous

dividend at rate * given previously:

Comparing the two PDEs reveals that, when r = *, there is an approximate equivalence relationship.  From this

is follows that the formula for pricing options on futures contracts can be inferred from the formula for the constant

proportional dividend option pricing formula, under the condition that r = *:

The validity of this formula depends on the noted assumptions about both the relationship between futures and spot

prices as well as the constancy of the futures price volatility.  Extensions of this model appear in a number of

sources, e.g., Ramaswamy and Sundaresan (1985) and Brenner, et.al. (1985).
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American Options

To this point, the extensions to Black-Scholes considered have permitted closed form solutions.  Unfortunately,

for many extensions of practical value, closed form solutions are not possible.  The problem of path dependence

has already been encountered in the analysis of introducing dividend payments and the American option feature.

Because of the possibility for early exercise, the price of American puts as well as American calls on dividend

paying stocks  cannot be precisely determined for a finite expiration date.  Whether early exercise actually occurs

will depend on the specific path that the stock price follows, hence the problem of path dependence.  Given this,

Roll (1977), Geske (1979) and Whaley (1981) show that it is possible to approximate the value of an American

call by valuing hypothetical portfolios of European options that capture the American option payoff.  Various

analytical approximation methods have also been proposed, e.g., Brennan and Schwartz (1977), Geske and

Johnson (1984), and Barone-Adesi and Whaley (1987).  Tilley (1993) is an important recent contribution.

Comparison of the American pricing models with the appropriately adjusted Black-Scholes formula, e.g., Shastri

and Tandon (1986), reveals a significant, but not dramatic improvement in pricing accuracy.

   Formal analysis of American options begins with McKean (1965) where the American option pricing problem

is formulated as a solution to the heat equation subject to a free boundary condition.  McKean demonstrated that

the American option price can be determined but only by introducing a function that has come to be called the

optimal stopping boundary.  Hence, the American option pricing problem can be formulated as an optimal

stopping problem where the stopping boundary is determined by the benefits of early exercise.  As a consequence,

the price of an American option can be formally decomposed into the value of a European option plus the early

exercise premium, producing a functional representation for Property 3.  Since McKean, the optimal stopping

representation has been developed considerably and other solution techniques such as variational inequalities have

been introduced.  Myneni (1992) provides an overview of these developments.  One important implication of

formalizing American option pricing as a free boundary problem occurs when the option is a perpetual.  In this

case, time does not directly enter the PDE problem and a closed form solution is available.  This insight has been

used to price other types of perpetuals such as the Russian option, e.g., Gerber and Shu (1994), Shepp and Shirayev

(1993).

   Recognizing that the American option price can be represented as the sum of the European price and the early

exercise premium provides some intuitive insight.  When the early exercise premium is zero, then the European

option pricing formula can be used to value the American option.   Because the right of early exercise combined

with non-negative prices prevents the American option price from falling below max[0, S(t) - X] for a call and

max[0, X - S(t)] for a put, early exercise cannot occur when the European option price is greater than these values,

even when the early exercise premium is zero.  It will be rational to sell the option instead of exercising.  Because

the European option achieves these values when t=T, it follows that one general factor involved in the early

exercise decision is the time to expiration.  However, even though the early exercise premium goes to zero as the

time to expiration goes to zero, higher values of the time to expiration imply a larger time value for the European

option.  Recognizing that early exercise involves foregoing the time value on the option, the precise impact of time

to expiration is not obvious.

   Under what conditions will American options be exercised early?  Rationality requires that the option be

exercised only when the price received by selling the option is less than the value when exercised.  Hence, one

limited answer to this question is obvious: only in-the-money options will be exercised.  Another early exercise

Property that has already been provided is: American calls on non-dividend paying stocks will not be exercised

early.  This was an implication of Property 10 in Sec. 7.1.  The European option price provides a lower bound form

the American price.  The arbitrage supporting the European call price prevents that price from falling below {S(t) -

X}.  Hence, early exercise for calls has something to do with dividends or, in the case of commodities other than

stocks, with carry returns.30

   Take the case of a stock with one dividend paying remaining prior to the expiration date on the option, the

arbitrage support for the European call price requires the stock price to be adjusted for the dividend payment:
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CA[S,J,X] $ C[S,J,X] $  Max[0, S(t) - (D PV[r,J1]) - X PV[r,J]] 

The requirement of adjusting the stock price for the receipt of the dividend payment creates a situation where the

lower bound to the American call price provided by the European call price is not necessarily greater than or equal

to S(t) - X.  For a given J and r, the larger is the dividend payment, the farther below S(t) - X is the European bound

on the American.  For a given r and D, the same result applied for smaller J.  The implication is that short dated

American options on stocks expecting a sizable dividend will tend to be exercised early.  The case of early exercise

for continuous dividend payments is discussed in Sec. 8.4.

   The early exercise incentive for an American call on a dividend paying stock is even more complicated than the

European lower bound indicates.  As discussed in Sec. 7.1, the European lower bound is derived by comparing

the expiration date returns for a European call with a portfolio that combines a long stock position financed by a

borrowing with maturity value of X.  When there is dividend payments on the stock, the cost of the purchasing the

portfolio is reduced by the appropriately discounted value of the dividends received.  The American option

provides the flexibility to exercise the call just prior to the ex-dividend date, thereby receiving the dividend and

avoiding the expected fall in the stock price typically occurring on the ex-dividend date.  This result can be

intuitively seen by comparing the European lower bound on the ex-dividend date, Max [0, S(t+1) - X PV[r,J+1]],

with the value on the previous cum-dividend date, Max [0, S(t) - (D PV[r,J1]) - X PV[r,J]].

   Early exercise for puts on nondividend paying stocks is different than the case for calls.  Consider the extension

of Property 10 to puts:

       PA[S,J,X] $ P[S,J,X] $  Max[0, X - S(t)] $  Max[0, X PV[r,J] - S(t)]  

Unlike calls, the impact of PV[@] acts in the opposite direction on X making the possibility of early exercise for

puts on nondividend paying stocks (or commodities where the carry return is less than r) a likely possibility.

   Because the conditions developed from Property 10 are only lower bounds, American put prices will typically

be higher than the lower bound.  The intuition for early exercise follows from recognizing that for the stock price

paths going close to zero, the put will be deep-in-the-money.  This implies that N[-d] 6 1 and P 6 (PV[@] X - S)

# X - S.  Instead of selling the put for (PV[@] X - S), the American put holder will exercise the put and receive X -

S.  In practice, exercise of a put requires that the stock be delivered in exchange for X.  Hence, early exercise will

be done by traders holding stock in combination with a put.  The essential point to recognize is that Property 10

of Sec. 7.1 applied to puts provides an arbitrage strategy that bounds the European option price.  Because this

bound is below the exercise value, holders of American options will choose to exercise the put rather than to sell

the option at a lower price.  Hence, deep in-the-money American puts will tend to be exercised early.

   In addition to establishing early exercise of the American put using the distribution-free arbitrage bounds, the

optimal stopping boundary for American puts can be used to motivate early exercise activity related to deep in-the-

money puts.  Puts are in-the-money because the stock price has fallen below the exercise price.  At some point it

is no longer profitable to hold the put because the possibility of further profits due to lower stock prices is more

than offset by the loss of interest income on the exercise value, together with the interest opportunity cost of

holding a non-dividend paying stock (spot) position.  This leads to the simplest optimal stopping boundary: at any

time between purchase and expiration, exercise the American put on a non-dividend paying stock when the loss

of interest income on the exercise value plus the opportunity cost of holding the spot position exceeds the

difference between the current put price and the exercise value.

   The need to adjust for the difference between the put price and the exercise value is that selling the put is an

alternative to early exercise.  Where a stock and a put position are involved, as is required for exercise, transactions

costs will impact the exercise decision.  Selling the put will incur transactions costs in both option and stock

markets, while exercise only involves delivery.  When the put is exercised, there is some loss because the time

premium is lost.  This premium reflects that maximum future gain from the expected drop in stock prices between

the current date and the expiration date.  When the option goes deep-in-the-money or when J 6 0 and the option

is close to expiration, this additional premium will be near zero.  This brings out another important feature of early
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exercise: put options that are in-the-money and close to expiration may get exercised early.

Option Valuation with Alternative Diffusion Processes

Empirically, there is little support for the hypothesis that financial prices conform to the log-normal assumption

that is essential to deriving the Black-Scholes option pricing formula.  However, log-normality does have the

desirable feature that non-negative values are not admitted, consistent with financial prices, and the deviation from

observed prices is not dramatic.  There are better distributional fits to the data, but log-normality does typically

provide a useful first approximation.  Unfortunately, making the distributional assumption more realistic also

undermines the ability to derive a closed form option pricing formula.  This issue is made even more complicated

by a lack of agreement over which distributional assumption has the best goodness of fit with observed prices.

In addition, it is not clear how much of an increase in pricing accuracy can be gained by over the Black-Scholes

solution if more complexity is introduced.

   Closed form solutions are available for a limited number of other distributional assumptions.  The simplest

solution occurs when it is assumed that prices follow arithmetic Brownian motion: dS = " dt + F dW.

Progressively more complicated solutions can be obtained for: a stochastic process which is a combination of a

diffusion process and a Poisson jump process (Merton 1976); the constant-elasticity of variance process (Cox and

Ross 1976); and the Bessel process (Geman and Yor 1993).  Solutions for related processes, such as the Brownian

bridge (Ball and Torous 1983) are also available.  Jarrow and Rudd (1983) collects many relevant results.

   In the arithmetic Brownian case, it is the change in prices follows an arithmetic Brownian motion, not the rate

of return as in the log-normal case.  Reasons for selecting geometric over arithmetic Brownian motion were

advanced at least as early as Samuelson (1965) and some of the studies in Cootner (1964).  In reviewing previous

objections, Goldenberg (1991) recognizes three of practical importance: (i) a normal process admits the possibility

of negative values, a result that is seemingly inappropriate when a security price is the relevant state variable; (ii)

for a sufficiently large time to expiration, the value of an option based on arithmetic Brownian motion exceeds the

underlying security price; and, (iii) as a risk-neutral process, arithmetic Brownian motion without drift implies a

zero interest rate.  Taken together, these three objections are relevant only to an unrestricted, risk-neutral

"arithmetic Brownian motion" that is defined to have a zero drift.  As such, some objections to arithmetic Brownian

motion are semantic, avoidable if the process is appropriately specified.

   Smith (1976) defines arithmetic Brownian motion to be driftless and provides an option pricing formula that is

attributed to Bachelier (1900) and is subject to all of the three objections.  Smith (p.48) argues that objection (ii)

for the formula is due to the possibility of negative sample paths, though this objection can also be avoided by

imposing an appropriate drift.  Goldenberg (1991) reproduces the Smith-Bachelier formula and proceeds to alter

the pricing problem by replacing the unrestricted driftless process with an arithmetic Brownian motion that is

absorbed at zero.  The resulting option pricing formula avoids the first two objections.  The third objection is

addressed by setting the drift of the arithmetic Brownian process equal to the riskless interest rate times the security

price, consistent with an OU process.  Using this framework, Goldenberg generalizes an option pricing result in

Cox and Ross (1976) to allow for changing variances and interest rates.  With the use of appropriate

transformations for time and scale, Goldenberg argues that a wide range of European option pricing problems

involving diffusion prices can be handled using the absorbed-at-zero arithmetic Brownian motion approach.

   The Bachelier option prices derived here use the same perfect market and continuous trading assumptions as in

Black and Scholes (1973).  Bachelier options for three types of underlying securities are considered: a non-

dividend paying asset; an asset with proportional dividend payments; and, a futures contract.  For the non-dividend

paying asset, the security price is assumed to follow an unrestricted arithmetic Brownian motion:

At this point, the drift " and volatility F are assumed to be constant, though this assumption will be demonstrated

as incompatible with absence-of-arbitrage.  Exploiting the riskless hedge portfolio construction leads to the

following PDE associated with the Bachelier option:
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that is subject to the terminal boundary condition C[ST] = max[0, ST - X].  Solving the general valuation problem

leads to the following:

________________________________________________________________________________________

Proposition 8.1: Absence-of-Arbitrage Formula for the Bachelier Option31

Assuming perfect markets and continuous trading, if the non-dividend paying security price follows the

unrestricted arithmetic Brownian motion, then the solution to the absence-of-arbitrage valuation problem is given

by:

where:

CG is the price of the general Bachelier call option, and N[g] and n[g] represent the cumulative normal density

and normal probability function, respectively, evaluated at g.

________________________________________________________________________________________

Wilcox (1990) adapts this form of the Bachelier option to provide a solution to the spread option pricing problem.

   It is possible to generalize the analysis to include constant proportional dividend payments (D) of the form: 

D = *S.  Following market convention, the option contract is assumed to be not dividend-payout protected. To

derive a Bachelier option that both satisfies the PDE associated the riskless hedge portfolio and incorporates

proportional dividend payments, it is sufficient to restate the arithmetic Brownian motion as an OU process of the

form:

The associated PDE for the riskless hedge portfolio problem has the form:

Even though the drift does not enter the PDE directly, it does alter both the variance of the process and, as reflected

in Proposition I, the expected future spot price.  It follows that:

________________________________________________________________________________________

Proposition 8.2: Absence-of-Arbitrage Valuation Formula for the Bachelier Option, with Dividends

Assuming perfect markets and continuous trading, if the proportional dividend paying security price follows the

arithmetic Brownian motion with continuous proportional dividends, then the absence-of-arbitrage solution to the

valuation problem is given by:

where:
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and N[h] and n[h] represent the cumulative normal density and normal probability function, respectively,

evaluated at h.

_______________________________________________________________________________________

The proof of Proposition 8.2 involves direct differentiation of the option pricing formula to verify that this solution

does satisfy the PDE for the riskless hedge portfolio problem.

   Despite certain similarity, there are substantive differences in option prices derived using geometric and

arithmetic Brownian motion.  For example, the PDE for the riskless hedge portfolio associated with options on

futures contracts for arithmetic Brownian motion involves setting r = * in the SDE for the OU process:

where F is the price for the relevant futures contract.  A similar result holds for the geometric case.  However,

when it comes to solving for the option price formula, the simplification available for the geometric case (setting

r = * in the option price formula for stocks with proportional dividends) is not available in the arithmetic case due

to a singularity in the Proposition 8.2 solution at r=*.  The appropriate solution is:

________________________________________________________________________________________

Proposition 8.3: Absence-of-Arbitrage Valuation for the Bachelier Futures Option

Assuming perfect markets and continuous trading, if the futures price follows an arithmetic Brownian motion, then

the absence-of-arbitrage solution to the European call option valuation problem is given by:

where:

CF is the price of the Bachelier futures call option, and N[K] and n[k] represent the cumulative normal density and

normal probability function, respectively, evaluated at k.

________________________________________________________________________________________

Proposition 8.3 is useful both for pricing options on futures spreads and for comparing the normal and log-normal

prices of exchange options.

   The question of whether arithmetic Brownian motion is an appropriate stochastic process for asset pricing is

complicated.  In any event, conventional wisdom maintains that an important limitation of the OU and arithmetic

Brownian processes is that the state variable has a non-zero probability of taking on negative values.  Because

prices are often the state variables in continuous time models, some method of bounding the variable at zero is

needed.  The log-normal process, geometric Brownian motion, has a natural boundary at zero.  Another possible

method of imposing non-negative state variable values is to impose an absorbing barrier at zero.  A solution to

the option pricing problem using absorbed Brownian motion was initially presented by Cox and Ross (1976) and

later extended by Goldenberg (1991).

   Converting an unrestricted arithmetic Brownian motion by imposing an absorbing barrier at zero on the/ process

is not as difficult as it might seem.32  All those paths that hit zero end and, from that point, do not contribute to the
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ensemble of paths that combine to determine the distribution at any future point in time.  The solution to this option

pricing problem was given by Cox and Ross (1976, p.162-3):

________________________________________________________________________________________

Proposition 8.4:  Absence-of-Arbitrage Valuation for the Absorbed Brownian Option

Assuming perfect markets and continuous trading, if the proportional dividend paying security price follows the

arithmetic Brownian motion of Proposition 8.3 subject to an absorbing barrier at zero, then the absence-of-

arbitrage solution to the valuation problem is given by:

where:

and N[h] and n[h] represent the cumulative normal density and normal probability function, respectively,

evaluated at h.

________________________________________________________________________________________

Extensions of the absorbed arithmetic Brownian motion, e.g., to allow for volatility being a deterministic function

of time, can be found in Goldenberg (1991).

   In the discussion of implied volatility, it was observed that it was possible to construct pricing results using two

stochastic processes, one for the commodity price and another for volatility.  Hull and White (1987), Heston

(1993), Scott (1997) have demonstrated that it is possible to obtain closed form solutions for the case of two

random variables.  However, analytical solutions are substantively simplified in cases where the two random

processes are assumed to be uncorrelated.  This approach is not restricted to volatility.  For example, in addition

to random exchange rates, currency option pricing can also model the randomness in the foreign and domestic

interest rates, pricing the option written on three stochastic processes.  Other examples would include: introducing

a stochastic dividend yield to price a stock index option; using a stochastic short interest rate process to price a

Tbond option; and, using a stochastic convenience yield to price an option on oil futures.  In general, it is only

possible to achieve closed form solutions for a very small class of stochastic processes.

   Rabinovitch (1983) is an example of a case where the two stochastic processes are chosen carefully enough to

permit a closed form solution to be derived.  As in Black-Scholes, Rabinovitch assumes that the stock price follow

a log-normal diffusion: dS = " S dt + F S dWS.  In addition, there is a single default-free interest rate r that is also

permitted to be stochastic, to follow a mean-reverting OU (Ornstein-Uhlenbeck) process of the form:

dr = q(m - r) dt + v dWr

where q(m - r) is the instantaneous expected change in the short-term rate, v2 is the instantaneous variance for the

interest rate.  The parameter m is the unconditional expected interest rate to which the current rate, r, reverts to

at speed proportional to q.  This type of process is also (descriptively) called a mean-reverting process.33  The

presence of the two Wiener processes, dWr and dWS requires specification of a contemporaneous covariance, {dWr

dWS} = D dt.  From the Markov construction, lagged correlations are zero.  Within this framework, it is possible

to derive a closed-form expression for the call price that is similar in form to Black-Scholes.  However, in order

to do this, it is necessary to convert the information in the stochastic interest rate into a formula for the discount

bond price.  The resulting solutions, while expressible in the same form as Black-Scholes, are significantly more

complicated.
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8.4 Application: Foreign Currency Options

The Institutional Background

A listing of the most important exchange traded foreign

currency option contracts in the US given in Table 8.3.

Unlike exchange traded options for most other

commodities, the major US exchange for trading

currency options was, for many years, not also a major

commodity futures exchange.  This situation has now

changed and comparison of the volume and open

interest available for the currency options reveals that

the futures options on the IMM division of the CME

now is well in excess of the volume and option interest

on the Philadelphia Stock Exchange (PHLX) which

was previously the most important exchange trading

currency option contracts.  This is consistent with the

usual result that the futures exchange trading the

highest volume of options contracts significant to

currency options trading than the IMM, the most

important currency futures exchange.  The PHLX was

something of an innovator in options trading practices.

In addition to the offering American currency futures

options, the PHLX also offers European spot currency

options.

The Currency Option Pricing Formula

Derivation of the pricing formula for foreign currency

options involves an adaption of the constant

proportional dividend version of the Black-Scholes

model.  It is assumed that the spot exchange rate

follows a log-normal diffusion, where the domestic

interest rate, r, and the foreign interest rate, r*, together

with the instantaneous standard deviation F of the spot

exchange rate are all constants.  This leads to the following formula for a European currency call option on spot

exchange:

As with previous call option pricing results, the formula for currency put options is obtained by substitution into

the put-call parity condition for currency options:
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Close examination of the put and call pricing formulae reveals a fundamental feature of currency options: the right

to put currency A for currency B at X is identical to the right to call currency B in exchange for currency A at X.

Unlike other commodities that involve the exchange of some commodity for money, currency options involve the

exchange of two monies with the numeraire being arbitrary.

   While the European currency option pricing formula can be derived by following much the same approach as

for the Black-Scholes call option on a stock with a constant proportional dividend, because the single source of

randomness is now a spot exchange rate, the conceptualization of the hedge portfolio is somewhat different.  The

riskless hedge portfolio requires an investment in a pure discount (zero coupon) foreign bond that matures to a

maturity value of one unit of foreign currency.  In foreign currency terms, the continuous time representation for

the price of this bond is: exp{-r*t*} = PV*[r*,J].  The value of this bond is then converted to a domestic currency

value by multiplying by the spot exchange rate to get: S(t) exp{-r*t*}.  As currency options are typically priced

as though the domestic bond is US, this implies that the exchange rate is measured in US direct terms.  The

objective of the riskless hedge portfolio is to protect (hedge) the domestic currency value of the foreign bond

position.

   The riskless hedge portfolio is now constructed by writing $ currency call options to protect the domestic

currency value of the foreign bond against changes in the spot exchange rate. However, in this case, $ has a

slightly different interpretation than for the option on the non-dividend paying stock:

More precisely: V(t) = S(t) exp{-r*t*) - $C where S(t) is the spot exchange rate at time t.  Much as in the constant

proportional dividend case, the riskless return associated with the net investment in the portfolio must now be

adjusted to reflect the return earned on the foreign bond:

Following the usual procedure of evaluating Ito's Lemma:

Equating the two conditions for dV, canceling and manipulating where appropriate produces:
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This is the fundamental PDE for a European spot currency call option.

   The original presentation of the currency call option formula was by Garman and Kohlhagen (1983), Grabbe

(1983) and Biger and Hull (1983).  Though the formula presented was the same, the derivations provided in these

sources did not follow the constant proportional dividend approach.  For example, Grabbe (1983) shows that a one

unit long position in the domestic bond can be hedged with (-"/$) units of the foreign bond combined with (-1/$)

written call positions, where " and $ are the appropriate partial derivatives.  In effect, by creating a self-financing

riskless hedge portfolio, Grabbe utilized the concept of an arbitrage portfolio.  Grabbe also provides a

generalization of the formula to admit deterministic changes in the volatility over time.  Garman and Kohlhagen

also use a different approach relying on the equality of risk-adjusted excess returns in an arbitrage free economy.

Chiang and Okunev (1993) demonstrate that the formula can be generalized to permit the foreign and domestic

bond prices to follow Brownian bridge processes.

   The extension to options on currency futures and forwards follows by using the continuous time version of

covered interest parity.  Recall from Sec. 4.2 that:

Substituting for S in the spot currency call option formula produces:

Comparison of this formula with the general formula for options on futures contracts reveals that the two results

are the same, confirming the application of the general model in the specific case of options on currency futures

and forward contracts.

Put-Call Parity and Early Exercise for Currency Options

Results for currency put options follow from put-call parity arbitrage condition for European Foreign Currency

Options.  For spot currencies the condition is:

P[S,J,X] = C[S,J,X] - S(t) PV*[r*,J] + X PV[r,J]

Using the CIP condition and substituting for S, gives the put-call parity condition for futures contracts:

P[S,J,X] = C[S,J,X] + {(X - F(t,T)) PV[r,J]}

The put-call parity result for spot currency options can be derived in much the same fashion as put-call parity for

non-dividend paying stocks given in Sec. 7.3.

   While there are a number of different possible portfolio pairings that could be compared for illustrating the

arbitrage, for present purposes the two relevant portfolios are: the domestic portfolio, a long (short) foreign

currency call with exercise price X and J days to maturity combined with a long (short) position in a domestic zero
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coupon bond with maturity value of X; and, the foreign portfolio, a long (short) foreign currency put-- with the

same terms as the call-- combined with long (short) foreign zero discount bond yielding r* with maturity value of

one unit of foreign currency and term to maturity of J.34  When S(T) # X, then the domestic portfolio has a value

equal to the maturity value of the bonds X, because the call expires worthless.  The foreign portfolio will have

maturity value of S(T) plus (X - S(T)) that gives a value of X.  Similarly, when S(T) > X, the domestic portfolio will

be worth S(T) because the call will be worth (S(T) - X) and the domestic bonds X.  The foreign portfolio will be

worth the maturing value of the bonds S(T), with the put expiring worthless.

   The put-call parity results have significant practical implications.  For example, the notion of covered interest

arbitrage discussed in Sec.5.2 required that securities which were identical in all respects except currency of

denomination will have the same fully covered returns.  In the put-call parity case, another somewhat more

complicated equivalence result is provided. More precisely, a foreign bond portfolio that is protected against

adverse currency movements by purchasing currency put options will have the same return as a domestic portfolio

that combines a long fixed income securities with purchased currency call options.  Sec. 8.3 demonstrates how the

put call parity condition for currency options can be used to create insured portfolios of foreign bonds.

   Early exercise for American currency options depends on the relationship between the foreign and domestic

interest rate.  To see this, consider the extension of Property 10 of Sec. 7.1 to the continuous dividend case:

CA[S,J,X] $ C[S,J,X] $  Max[0, S(t)PV[r*,J] - X PV[r,J]] 

where r* is the continuous dividend payment, in this case paid in the form of interest on the foreign bond position.

If r* > r, then the European bound will be less than S(t) - X and there is an incentive for the American call option

to be exercised early.  The extension to puts follows from observing that a currency call option giving the right to

buy $D for $F at exchange rate X, is also a put option giving the right to sell $F for $D at X.  When the call is in-

the-money, the put is out-of-the-money.  Hence, if r > r* then the European bound for the put will be less than X -

S(t) and there is an incentive for the American put option to be exercised early.

   To see how the extension of Property 10 translates into an early exercise condition, recall that when a option is

exercised early, the time value remaining in the option is given up.  In practice, currency options are often

exercised early, sometimes long before the stated expiration date, e.g., Bodurtha and Courtadon (1995).  The

incentives to exercise early follow by examining the European option price when the option is deep in the money,

S >> X for the call and X >> S for the put.  For the call, deep in-the-money implies N[d] 6 1 and C 6 Se-r*t* - Xe-rt*

which is < S - X when r* > r.  Similarly, N[-d] 6 1 when X >> S which gives P 6 Xe-rt* - S-r*t* which is < X - S

when r > r*.  Hence, in these cases, the European option does not provide an effective lower bound for the

American option.  There is no arbitrage support in the market to prevent the American option from trading above

the exercise boundary, S(t) - X.

   To see the rationale for exercise in the cases without support from the European boundary, let r* > r and have

Se-r*t* - Xe-rt* < S - X and the call option in the money.  If the option holder borrows X at r to buy S and invests this

one unit of foreign currency in the foreign bond at r*, then on the maturity date the early exercise strategy will

receive a profit of: S(T) exp{r*t*} - X exp{rt*}.  If the option holder does not exercise then the profit will be:

max[0, S(T) - X].  Comparing these two values reveals that, if the probability of the option finishing out-of-the-

money is ignored, then early exercise will be optimal.  Hence, if the option is deep enough in the money that the

time value has gotten close enough to zero, then it will be optimal to exercise the call option early if r* > r.  A

similar result holds for in-the-money puts if r > r*.

   To compare the early exercise and hold-to-maturity values directly requires two observations.  First, the call

option on the exercise date is assumed to be sufficiently in-the-money that N[d] 6 1 and the value of the American

call has been forced to the exercise boundary S(t) - X.  In practice, there is little or no time value on deep-in-the-

money options because there is no demand to buy this type of security, only those wishing to sell.  Hence, this

condition is often observed in practice.  Second, if the option is deep-in-the-money on the exercise date, the closer

this date is to the exercise date, the smaller the probability that the option will finish out-of-the-money.  If the

option finishes out-of-the-money then the hold-to-maturity strategy will be superior.  So there is a tradeoff between
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the time to expiration and the difference between r* and r required to trigger early exercise.  In the jargon of Sec.

8.5, early exercise is, once again, an optimal stopping problem.

Empirical Studies of Currency Options

A number of studies have investigated the empirical validity of applying the Black-Scholes based currency option

pricing model as well as competing alternatives.  For example, Chesney and Scott (1989) use data on European

currency options traded in Geneva to compare the Black-Scholes model with a model that allows for stochastic

variance which is a mean-reverting diffusion.  When an updated implied standard deviation is used to compute the

Black-Scholes option price, Black-Scholes outperforms the stochastic variance model.  (Black-Scholes with

constant variance performed poorly).  Limited evidence is found for significant mispricing.  Similar results are

reported by Shastri and Tandon (1986) where a number of different methods of calculating the variance are

compared.  Profit opportunities that were identified were found to be exhausted within one day.  Using PHILX

options data, Hilliard, et.al. (1991) compare the constant variance Black-Scholes model with a model that admits

stochastic interest rates.  While the stochastic rate model is found to be more accurate, it would have been useful

if this study had reported results for Black-Scholes using implied standard deviations, as in Shastri and Tandon

and other sources.  Ritchken and Trevor (1999) is a recent effort along this line of research.

   Other empirical studies have examined the performance of other option pricing models.  For example, Bodurtha

and Courtadon (1987) examine the pricing accuracy of the American option pricing model and find: "...the

standard American option pricing model does not explain the pricing of foreign currency options as well as it

explains the pricing of stock options.  In particular...this model under-prices out-of-the money options relative to

at-the-money options and in-the-money options." (p.165)  As noted previously, Shastri and Tandon (1986) also

report pricing shortcomings when the European model is used to price American options.  Finally, along a more

analytical line, Hull and White (1987) provide results for various delta, delta + gamma and delta + sigma strategies

for hedging risks associated with writing foreign currency options.  With reference to the discussion in Sec. 9.1,

delta + gamma hedging is found to perform relatively better only when the traded option has a relatively constant

implied standard deviation and a short time to expiration.  Typically, delta + sigma hedging is found to produce

superior results.

Questions

1.  In Sec. 7.1, a verbal description was provided to describe the geometry of the evolution of the Wiener process.

Construct the appropriate geometry.

2.  The Black-Scholes solution to the fundamental PDE for a European call on a non-dividend paying stock

requires a change of variables to transform the PDE into the general form of a parabolic PDE.  Provide the steps

required to specify this change of variable.

3.  Extend the discussion of Sec. 8.4 to derive the solution for the perpetual put option.  This requires a different

specification of 2 associated with the second root of the fundamental quadratic equation, e.g., Dixit and Pindyck

(1994, p.143).

4. "A call option benefits from increases in the stock price and these increases can be very large.  A put option

benefits from stock price declines, but the stock price can only fall to zero.  Therefore, if we have a put and a call

on the same stock with the same terms, the put must sell for less than the call."  Do you agree or disagree?

Explain.
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1.  The scope of the material covered in this chapter is volumous. In addition to numerous books, journals, and other academic efforts, courses
in stochastic processes are part of the typical requirements for advanced degrees in mathematical statistics.  Given this, it is not possible to be
either fully comprehensive or adequately technical in treating this material.  The development given here is aimed at introducing concepts and
notions required to develop options pricing theory, no more. 

2  Written for the centenary of the Theorie de la Speculation, Courtault et al. (2000) provides an excellent overview of Bachelier's life.

3.  One of Einstein's important contributions in this area was the observation that this random behavior could be explained by the perpetual
collision of the molecules between the suspending medium and the physical objects.

4.  This point is debatable.  The beginnings could arguably be traced to the development of the Markov chain in 1907 by A. Markov.  However,
this result was aimed at the solution of a specific problem.  The work of Wiener involves a complete development of the mathematical foundation
for the theory of Brownian motion.  There is also some disagreement about when Wiener's development of a rigorous theory of Brownian motion
was developed, with Cox and Miller (p.203) using 1923 as the appropriate date.

5.  Malliaris and Brock (1982) survey the range of applications in economics and finance.

6.  To see this is not difficult.  By construction, if y is lognormally distributed then for ln[y] = x, x is normally distributed.  A normally
distributed variable is a real variable that can take values ranging over the real line from positive to negative infinity.  Observing exp{ln[y]} =
y = exp{x}, if x takes the value of minus infinity, the lowest possible value for x on the real line, then y will take a value of zero.  Hence, a
lognormal variable is defined on the positive half-line, ranging from 0 to positive infinity.

7.  The empirical literature on the distribution of security and derivative prices is voluminous.  A useful introduction is included in Duffie (1989).

8.  In the form given, the OU process is a form of arithmetic Gaussian process.  Unlike the geometric case, this type of process admits the
possibility of negative values for X.  In certain cases, this difficulty can be rationalized away by arguing that only short term options are of
interest.  In other words, the probability of observing negative values increases with the length of the permissible time paths.  If these paths are
constrained to be short, then there will only be a negligible probability of observing negative values.

5.  Given the following information:

    S = $47  X = $45  i = .12  F = .40 (annual)

Calculate the three month call option price that is consistent with the Black-Scholes pricing model.

6. Outline the continuous time derivation of the Black-Scholes Model.  What assumptions are being to derive the

results?  What are the limitations of applying the model to actual options prices?  Under what conditions will

American calls be exercised early?  What early exercise conditions apply to puts?

7.  Using the two portfolio approach, develop the trading strategy underlying Property 12 of chapter 7.  How does

the argument work when puts are used?

8.  Sec. 8.4 states the following extension of Property 10 to the continuous dividend case: CA[S,J,X] $ C[S,J,X]

$  Max[0, S(t)PV[r*,J] - X PV[r,J]].  Using the two portfolio approach, verify this condition.

6.  Extend Property 15 of chapter 8 to demonstrate that it will not be rational to exercise an American put just prior

the stock's ex-dividend date.

7.  For currency options, there is a smile relationship between volatility and moneyness.  Yet, implied volatilities

for equity options exhibit a volatility skew, that is downward sloping in moneyness.  Discuss the possible reasons

for this differing behavior in implied volatility for these two commodities.

NOTES
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9.  Analytically, the admissibility of a given diffusion for arbitrage free financial pricing depends on satisfaction of conditions required for
Girsanov's theorem to hold.  A discussion and application of this point to using Brownian bridge process to model bond prices is provided in
Cheng (1991).

10.  Extending analysis to this type of process can be motivated by observing that a diffusion process can be created from the countable
combination of Poisson processes.  

11.  Included in these conditions are the Lipschutz condition:

(for admissible x and y) and the restriction on growth condition:

12.  Various technical conditions associated with the lemma are suppressed, e.g., restrictions on f[@] and F[@].  These details can be found in
various sources, e.g., Arnold (1974).  It should also be recognized that other approaches to differentiation and integration of stochastic functions
is possible, e.g., Meyer (1976).

13.  Cox (1987, p.348-9) motivates Ito's lemma using a Taylor series expansion and ignoring terms that are of order )t.

14.  Because the nominal bond price does not have a Brownian component, no cross product terms of the form {dB dP} appear.  This
simplification is what makes Fischer's derivation uncomplicated.

15.  Black (1989) discusses the process of developing and publishing the Black-Scholes formula.

16.  An interesting implication of the Black-Scholes formula is the solution for pricing the perpetual option.  When t approaches infinity, N[d1]
and N[d2] both go to one, with the result that the discounted value of the exercise price goes to zero.  The final result is that the value of the call
option equals the current stock price.  This seemingly incorrect result can be explained using the discussion of the perpetual option from Sec.
8.4.  When there is no dividend paid on the underlying stock, then the perpetual option will never be exercised because the optimal exercise
boundary occurs at infinity.  Hence, because the stock price will eventually grow well beyond the exercise price and the option will be deep-in-
the-money.  In this case the delta will be one and the perpetual call option price will move one-for-one with the stock price.  Effectively, the
perpetual call option price will behave the same as the stock price.  This explanation goes some, but not all, of the way to explaining the
seemingly incorrect result about the price of a perpetual option on a non-dividend paying stock.

17.  With some manipulation is possible to show:

This form is used in Gibson (1991) and other sources including Sec. 8.3.

18  In addition, a number of other more mundane issues associated with practical application remain.  For example, in some presentations of
the Black-Scholes formula, e.g., Turnbull (1987), monthly or quarterly frequencies are used for r and F.  This requires minor adjustments in
the form but not the substance of the formula.

19.  A useful study on the use of the implied standard deviations to predict future stock price variability is Beckers (1981).  In the case of
currency options, Shastri and Tandon (1986) demonstrate that implied standard deviations results in significantly more accurate Black-Scholes
prices than those based on historical estimates.  In particular, the historical standard deviation "yields model prices which are, on an average,
lower than market prices" (p.150)  Similarly, Chesney and Scott (1989) also confirm that the empirical performance of Black-Scholes model
using a constant variance "performs poorly". 

20.  Various studies have investigated the empirical validity of Black-Scholes and its immediate variants discussed in Sec. 7.3., e.g., Macbeth
and Merville (1979), Bhattacharya (1980), Bookstaber (1981), Geske and Roll (1984), Sterk (1983), Wiggins (1987) and Lauterbach and Schultz
(1990).  Most studies find some small sources of bias in the prices, usually associated with deep-in or deep-out-of-the-money options.

21  Reference to spot price is intended to include all underlying commodities, securities and assets upon which the option could be written.  This
also, implicitly, includes futures and forward prices.
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22.  In some cases, a volatility frown is observed, e.g., Wilmott (1998, p.290).

23.  Another stylized fact associated with implied volatility is "that the differences in implied volatilities becomes less pronounced as options
with greater time-to-maturity are considered" (Das and Sundaram 1997, p.2).

24.  In general, Black-Scholes requires path independence of the hedge portfolio in order for a closed form solution to be possible.  Hence, in
order to keep any modifications "simple", this property cannot be undermined.  This happens, for example, where the dividend payments are
uncertain or where the options are American puts or American calls on dividend paying stocks.

25.  This presentation uses the equivalent representation for d1, i.e., except for the inclusion of the dividend d1 is unchanged.  For further
discussion see the endnote associated with the specification of the Black-Scholes formula in Sec. 8.2.  In practice, the discrete dividend adjusted
model is easy to apply; all that is required is that the stock price be adjusted by subtracting the appropriately discounted dividend.

26.  The following example is taken from Gibson (1991, Chap. 5).

27.  While not realistic for many commodities to assume this full carry futures pricing model, extending to the case where the cash commodity
also pays a continuous carry return is straight forward.  The more complicated case where the carry return is stochastic is examined in Gibson
and Schwartz (1991).

28.  This formulation requires that b is, at most, a function of time, but not a function of S or any other stochastic variable.

29.  This is not technically because of margin, transactions and other costs.  In addition, over time variation margin will undermine this
assumption.  However, for present purposes, this assumption is not severe.

30.  Early exercise can also be related to exercise price adjustment.  Conditions for adjustment of the exercise price, such as stock splits or
mergers, are specified in the option contract.  Exercise price adjustments are not considered here.

31.  All proofs given in the Poitras (1998).

32.  The derivation of the transition probability density associated with the absorbed process is greatly facilitated thanks to the reflection
principle, e.g., Karlin and Taylor (vol.1).

33.  As, the OU suffers from the defect that there is a positive probability of negative interest rates.  While for short time paths such events will,
almost surely, only when the process starts close to zero, this does raise difficulties for long time paths.  Hence, valuation of long term options
may be problematic with this type of model.

34.  The foreign bond position can be illustrated by observing that PV*[r*,J] is denominated in foreign currency, say F$.  The maturity value
of the bond is F$1.  The domestic currency (D$) cost of acquiring this bond when the portfolio is created at time t is PV* S(t), where S(t) is
measured in domestic direct terms, D$/F$.  The domestic currency value of the foreign bond at maturity will be PV* S(T) = S(T).


