
7. Option Concepts
___________________________________________________

7.1  Basic Option Properties

Some Distribution Free Properties of Options1

The celebrated Black-Scholes option pricing formula depends fundamentally on the assumption: that stock prices

are log-normally distributed.  While it is not possible to develop an option pricing formula without making a

distributional assumption, there are still a number of distribution free properties that can be identified.  A number

of these basic properties of options have already been developed in previous Chapters.  For example, the max[@]

function associated with the expiration value of an option describes one distribution free property of options.  Put-

call parity is another property.  For completeness, even those properties already derived will be listed here.

   Given the notation listed in Sec. 1.1, unless otherwise stated, the following Properties are stated for the case of

a non-dividend paying stock (or deliverable commodity that does not earn a carry return).  This case is examined

for traditional reasons, early statements of the distribution-free properties of options, e.g., Merton (1973), used this

case.  Extensions to other cases, such as options on dividend paying stocks, spot commodities and futures

contracts, are provided when appropriate, either in this Section are in other Sections, e.g., in the discussion of early

exercise of American currency options in Section 8.4.  The distribution-free properties rely on conventional perfect

markets assumptions: no transactions costs, no taxes and riskless lending and borrowing at the constant riskless

interest rate.

Property 1:  Non-negative prices

C[S,J,X], $ 0, CA[S,J,X] $ 0, P[S,J,X] $ 0, PA[S,J,X] $ 0

This property holds for every t # T.

Property 2: Expiration date value

CA[S(T),0,X] = C[S(T),0,X] = max[0, S(T) - X] 

PA[S(T),0,X] = P[S(T),0,X] = max[0, X - S(T)]

As with other Properties stated in this Section, this property ignores transactions costs and other related expenses

such as taxes.

Property 3: Non-Negative Value to Exercising:

CA[S,J,X] $ C[S,J,X]        PA[S,J,X] $ P[S,J,X]

This property can also be expressed as:

CA[S,J,X] = C[S,J,X] + EEPC[S,J,X] and PA[S,J,X] = P[S,J,X] + EEPP[S,J,X]

where EEP[S,J,X] is the early exercise premium with the subscripts C and P referring to calls and puts

respectively.  Property 3 then implies that EEP $ 0 with equality almost surely for deep out-of-the-money options.
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This is because early exercise is only rational if the option is in-the-money and the probability of a deep out-of-the-

money option being exercised is negligible.  Hence, the prices of European and American calls will be

approximately equal for deep out-of-the-money options.  For calls and puts with the same exercise value and time

to maturity, increasing (decreasing) EEPC implies decreasing (increasing) EEPP.

Property 4: No Exercise Arbitrage Profits:

CA[S,J,X] $ S(t) - X           PA[S,J,X] $ X - S(t)

The value of the American option is bounded below by the exercise value.  This is not a property that applies to

European options, though it is possible for European options on dividend paying securities to trade below the

intrinsic exercise value S(t) - X for calls and X - S(t) for puts (see Sec. 8.4).

Property 5: Non-negative Value to Earlier Exercise

CA[S,J1,X] $ CA[S,J2,X]               for J1 > J2

PA[S,J1,X] $ PA[S,J2,X]               for J1 > J2

The right of earlier exercise has a non-negative value.

Property 6:  Exercise Prices and Options Premiums, for X1 > X2

 C[S,J,X1] # C[S,J,X2]     CA[S,J,X1] # CA[S,J,X2]

 P[S,J,X1] $ P[S,J,X2]     PA[S,J,X1] $ PA[S,J,X2]

The lower the exercise price the more (less) valuable is the call (put) option.

Property 7: Calls with Zero Stock Prices:     CA[0,J,X] = C[0,J,X] = 0

The right to purchase a stock or commodity with no value has no value.

Property 8: Perpetual American Call with Zero Exercise Price:     CA[S,4,0] = S

The perpetual property requires the American early exercise feature.  Given this, the spot commodity (e.g.,

common stock) can be described as a perpetual option with a zero exercise price.  This is one sense in which the

common stock can be described as an option.2  This property is a special case of the price for perpetual American

call options, the only general case where a pricing formula for American call options is generally available.

Property 9: Put Premium Upper Bound:         X $ PA[S,J,X] $ P[S,J,X]

While call option values are unbounded above, put options prices are bounded above by X because the stock price

can only fall to zero, due to limited liability.  This property of put options is important in distinguishing American

put and call options.  Unlike American calls, there is an additional incentive to exercise American put options

early: when the stock price is sufficiently close to zero, the value of the potential interest on the exercise premium

exceeds the expected gain from holding the put option until expiration.

Property 10:  Let PV[r,J] = the present value of $1 to be paid in J days discounted at the discrete annualized

interest rate r.  In discrete form PV[J] can be expressed:
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In continuous form, with continuous (annualized) interest rate r:

where t* is the fraction of the year remaining on the security (see Appendix I).

   With appropriate specification of the continuous or discrete r:

C[S,J,X] $ Max[0, S(t) - X PV[r,J]]

This condition has considerable practical value.  Demonstrating this result requires a specific portfolio: the

portfolio shorts the spot commodity generating S(t).  For the short position, in all states of the world at time T, -S(T)

is the payoff.  The portfolio involves taking the money from the short and purchasing a call option with exercise

price X and J days to maturity as well as buying a pure discount bond that has J days to maturity and a par value

of X.  Whenever S(T) < X, then the call will expire worthless and the portfolio will earn only the maturing value

of bonds, X, and -S(T), the cost of the short.  In this case, the terminal value of the portfolio is positive, by

construction.  When S(T) > X, the call will have value S(T) - X which, when combined with the maturing value

of the bond and the short gives a value of zero.  Hence, because the call option and lending portfolio has a greater

value than the short stock position in one state of the world and the same value in the other state, the portfolio must

involve a net investment of funds at t such that C + X PV[r,J] - S $ 0.  Manipulating and combining this condition

with Property 1 gives the desired result.

   In practice, this Property can provide a mechanism for "replicating" the return on the stock position: the value

of the call plus lending will be close to the value of the stock, providing a viable trading opportunity.3  In other

words, instead of buying the stock and holding for some horizon J, it is also possible to invest in bonds and buy

calls.  From put-call parity arbitrage, the cost of this position will exceed the cost of buying the stock by the cost

of buying a put with exercise price X and time to expiration J.  It follows that a call plus bond portfolio will have

the same payoff as an 'insured' stock portfolio.  The advantages and disadvantages of this strategy will be discussed

in Sec. 9.3.  Recognizing that transactions costs for puts and calls will be approximately the same, insofar as

execution costs for bonds are lower than for stocks, the call plus bond strategy will be preferred.

   A Property 10 condition is available for puts.  In this case, the relevant portfolio involves a long stock position

combined with buying a put with exercise price X and time to maturity J with the funds obtained by borrowing X

using a pure discount bond from t until T.  In all the future states of the world where S(T) > X, the stock will be

worth S(T), the put will expire worthless and the borrowing will be worth -X.  This is positive by construction.

In the future state of the world where S(T) # X the put will be worth X - S(T), the stock S(T) and the borrowing -X,

for a portfolio value of zero.  The implication is that at time t, the value of the put plus the stock minus borrowing

must be positive: P + S - X PV[r,J] $ 0.  Manipulating and combining with Property 1 produces:

P[S,J,X] $ Max[0, X PV[r,J] - S(t)]

As with the call plus bond portfolio, the implication is that a portfolio of a stock with a put must sell for more than

a bond with par value equal to X.  From put-call parity the difference will equal the amount paid for an appropriate

call.

   Another practical implication of Property 10, follows from combining this result with Property 3 to get:

CA[S,J,X] $ C[S,J,X] $  Max[0, S(t) - X PV[r,J]] $ S(t) - X
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This result fills in the inequality given in Property 4.  Upon some consideration, it is apparent that, except in

extreme cases such as described in Property 7, the value of the American call option at any time t will almost surely

be greater than the exercise value, S(t) - X.  Colloquially, "the American call on a non-dividend paying stock is

always worth more alive than dead", it will always be worth more to the call option holder to sell an American

call rather than to exercise prior to maturity.

Property 11: American and European Call and Put Options On Non-dividend Paying Stocks

   Property 10 raises a quandry, if the American call on a non-dividend paying stock will never rationally be

exercised early, what value does the right of early exercise have in this case?  This leads to the following property:

CA[S,J,X] = C[S,J,X]

This result follows directly from Property 10 because, for J > 0, Max[0, S(t) - X PV[r,J]] $ S(t) - X PV[r,J]  >

S(t) - X.  Recognizing that S(t) - X is the immediate exercise value of the American call, the value of the American

call on a non-dividend paying stock is always strictly greater than the exercise value.  Hence, the value of the early

exercise premium is zero because the call will never be exercised early.  Property 11 is specific to calls and does

not extend to either American put options on non-dividend paying stocks or to American call options on dividend

paying stocks.  The latter cases are examined in Sec. 7.3.

   Early exercise for American puts can be motivated by examining the European put condition from the discussion

in Property 10:

P[S,J,X] $ Max[0, X PV[r,J] - S(t)]

For puts that are in-the-money, it is not the case that Max[0, X PV[r,J] - S(t)] $ X - S(t).  Because the value of the

American put is not supported by portfolio trading involving long the stock, long the put combined with borrowing

X PV[r,J], as the put goes deeper in the money the put price will fall to the early exercise boundary of X - S(t).4

In this case, if the put is exercised the holder will receive X - S(t) that can be invested at r to provide (X - S(t))

exp{rt*} on the expiration date.  If the put is held to maturity, the holder will receive max[0, X - S(T)].

   Comparing (X - S(t)) exp{rt*} with max[0, X - S(T)] reveals that the early exercise decision for the put depends

on the tradeoff between the interest income associated with exercising immediately and the potential gain

associated with expected falls in the stock price.  In the extreme case S(t) = S(T) = 0 and the decision is obvious

(for X > 0).  There is no possibility for further gain from spot price changes and rationality requires immediate

exercise of the put option.  Once the put price has reached the arbitrage boundary of X - S(t), the general condition

for early exercise of the American put on a non-dividend paying stock is: X(exp{rt*} - 1) > S(t) exp{rt*} - E[S(T)].

 It follows that if S(t) is expected to stay the same, then the put will be exercised.

Property 12: Exercise and Call Prices

C[S,J,X1] - C[S,J,X2] # PV[r,J] {X2 - X1}    where X2 > X1  

This implies that a $1 increase in the exercise price reduces the value of the option by less than $1.  The proof of

this condition is given as an assignment in the end of Chapter questions.

   A combination of Properties 8, 7, 2, 10 and 12 can be used to motivate a graphical presentation of call option

price behavior.  Without Property 10, a plausible relationship between the call option price and the stock price is

given in Graph 7.1.5  While the precise shape of the C[S;@] function will be examined in Sec. 7.2, it is sufficient

to know that:
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Graphs 7.1-7.2   Basic Properties of Call Option Prices

Source: Hull (2000, p.176)

Source: C o x  a n d

Rubinstein (1985, p.185)
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Graph 7.3   A Collection of Expiration Date Profit Diagrams

Source: Sharpe, Investments (1985, p.490)
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The inclusion of Property 10, combined with the above restriction on C[@], produces Graph 7.2 that illustrates the

type of inter-temporal behavior associated with the call option.  One of the applications arising from the Black-

Scholes formula is the analytical expression that can be derived to capture the precise nature of the call price, as

various parameters are allowed to change (see Sec. 9.1).

Expiration Date Profit Diagrams

Exchange traded stock options differ substantively from warrants insofar as exercise of an exchange traded option

does not have any implications for the amount of common stock outstanding, i.e., there is no dilution of the

common stock associated with exchange traded stock options.  For analytical purposes, it is most expedient to

assume exchange traded options for illustrating the relevant option payoff functions using the expiration date

profit diagram technique.  While the presentation may differ from source to source, the relevant profit function

is usually derived by subtracting the option premium paid from the max[@] function that gives the value of the

option at expiration.  For a call option, the value of the call option, C(@), depends on the expiration date T and

exercise price X.  At expiration, the value of the call option C(T,X) is:

C(T,X) = max[0, S(T) - X]

For the put option price, P(T,X):

P(T,X) = max[0, X - S(T)]

It follows that the profit function for the call purchaser is: B = C(T,X) - {call premium}, and for the put purchaser,

B = P(T,X) - {put premium}.  While it is theoretically correct to include an allowance for foregone interest on the

premium over the life of the option, this issue is ignored at this point for simplicity. 

   The combination of puts and calls with writers and purchasers leads to four versions of the expiration date profit

diagram for naked option positions.  Graph 7.3 is a collection of the various elementary expiration date profit

diagrams.  Be careful to observe that the expiration date profit is being plotted against the expiration date stock

price.  The diagrams of the profit functions for the written positions are a mirror image of the diagrams for the

purchased positions, because the gains (losses) on written positions are the losses (gains) of the associated

purchased positions.  (Following the definitions given in Sec. 1.1, written positions are “short” positions and

purchased positions are “long”.)  Given this, these diagrams are best interpreted as describing the payoff for a t=0

option trader planning to hold the position until t=T.  This suppresses certain essential elements of the option

valuation problem, e.g., how the premium is determined or admitting the possibility of early exercise.  While

perhaps most descriptive of the earlier OTC-style options, the diagrams do illustrate the essential features of naked

options: the purchased call (put) has value when the stock price at expiration is above (below) the exercise price;

the maximum possible loss on the purchased option is loss of premium; possible losses (gains) on a written

(purchased) call are unbounded; and, possible loss (gain) on a written (purchased) put is the exercise price minus

the premium.

Evaluation of Different Positions

While of limited analytical value when applied to naked positions, expiration date profit diagrams are of greater

value when applied to more complicated options positions.  For example, consider the case of a covered, as

opposed to naked or uncovered, options position.  In this case, the option is purchased in conjunction with some

spot position, e.g., long (short) IBM stock combined with an IBM options position.  To see this, consider the

associated expiration date profit diagram for a long position in a non-dividend paying stock: B = Q{S(T) - S(0)}.

Both the long and short spot position expiration date profit diagrams are given in Graph 7.3.  If dividend payments
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are permitted, the profit function for the long (short) will shift up (down) by the amount of the dividends received

(paid).  As with the payment of interest, this complication will be ignored for present purposes.  It is now possible

to derive the diagrams for covered positions by geometrically combining the profit functions for the two

components of the relevant covered position.  Because each of the four uncovered positions can theoretically be

combined with either a long or a short cash position, this gives rise to eight different possible scenarios.  Graphs

7.4-7.7  provide the four most commonly encountered cases.

   Analysis of the expiration date profit diagrams for covered positions reveals some of the fundamental replication

properties of options.  Consider the standard strategy of using purchased puts to insure the value of a cash position

against downside moves, Graph 7.4.  Subject to the caveats associated with transactions costs, size of premium,

dividends and interest on the cash position and so on, when X = S(0) the payoff on this covered position is identical

to the payoff on a purchased uncovered call position with exercise price X.  Similarly, the covered position that

combines short-the-cash with a purchased call (X = S(0)) is shown to be equivalent to an uncovered purchased put

with exercise price X, Graph 7.5.  The replication strategies for naked written positions follow appropriately, long-

the-cash combined with a written call replicates a written put, Graph 7.6, and short-the-cash combined with a

written put replicates a written call, Graph 7.7.  The remaining four types of covered positions do not produce

replication.6  Rather, these positions will tend to increase exposure to volatility of the underlying cash position.

   The final group of (uncovered) replication strategies to consider involve using options to replicate either a long

or a short position in the underlying commodity or stock (Graph 7.8).  In order to replicate a long stock position,

Graph 7.8, a purchase call is combined with a written put with the same X and time to expiration.  Taking the

premiums on the call and put at t=0 to be C[0] and P[0], the expiration date profit diagram (again ignoring

foregone interest on premiums) is:

B[T] = P[0] - C[0] + max[0, S(T) - X] - max[0, X - S(T)]

Similarly, for the replicated short stock position that combines a put purchase with cash outflow of P[0] with a

written call cash inflow of C[0]:

B[T] = C[0] - P[0] + max[0, X - S(T)] - max[0, S(T) - X]

The replicated long stock position is represented in Graph 7.8.  The replication of the short stock position is left

as an exercise (see end of Chapter Questions). The combination of the max[@] functions provide 45o lines through

X.  In interpreting these diagrams, the net premium terms shifts the 45o line along the horizontal axis.  Due to

differences in the time premium for puts and calls this operation will not typically produce a payoff that is anchored

exactly centered at S(0), even when X = S(0) as may appear to be the case in the diagrams.7  This point is also

important for interpreting these replication strategies when the options involved are not at the money.

   To understand this, consider the nature of the payoffs on a replicated long stock position when X = 50 and S(0)

= 60.  In this case, the combination of max[@] functions produce a 45o line through X = 50.  The call premium will

generate a cash outflow that is a combination of intrinsic expiration value ($60 - $50 = $10) and a time premium.

The cash inflow from the put will depend solely on the time premium, as an out of the money put has zero

expiration value.  In this case, as discussed in Sec. 8.1, the time premiums for the put and call will not be equal.

Given this, the net cash outflow at t=0 will be $10 plus the difference in the call and put time premiums.  This will

shift the 45o line to the right by this amount, producing a replicated long stock (spot commodity) position that has

a breakeven close to, but not precisely, S(0).  Similarly, for the short stock position, with X = 50 and S(0) = 60,

the written call will generate a cash inflow of $10 plus the difference in the call and put time premiums.  This will

result in a shift of the 45o line to the right by the amount of the net cash inflow.8  A similar analysis holds when

the put is in the money and the call is out of the money.  In this case, the 45o lines will shift to the left by the

amount of the expiration value of the put plus the net time premiums.  While, in all cases, a payoff is created that

is approximately centered at S(0), as illustrated in Sec. 8.2, there will be substantive differences between the

sensitivity to changes in stock prices of the various possible in and out of the money positions.
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Graphs 7.4   Long the Stock, Buy a Put                        Graph 7.5 Short the Stock, Buy a Call

Graph 7.6   Long the Stock, Write a Call                     

Graph 7.7   Short the Stock, Write a Put

         

      

Source: Hull (2000, p.186)
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Graph 7.8   Expiration Date Profit Diagram Approach to Put-Call Parity

Buy a Call, Write a Put  
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Hedging with Options and Hedging for Options

The expiration date profit diagrams illustrate the wide range of possible payoffs that are constructed by combining

options with options or options with spot positions.  In the specific context of using options in stock portfolios,

Bookstaber and Clarke (1983, p.5) observe: "Potentially, the use of options in combination with a portfolio of

stocks can provide the investor with a portfolio containing a wide range of return characteristics.  The use of

options allows the investor to 'mold' the return distribution of the portfolio to fit a given set of investment

objectives.  Indeed, the range of returns that can be created through the use of the option market makes the two-

dimensional tradeoffs of conventional mean-variance portfolio theory obsolete." (p.5)  This observation can be

readily extended to commodities other than stocks.  In general, the presence of options substantively complicates

analysis of the hedging decision, compared to the case where only futures contracts are available.  

   A significant difference between using options and futures for hedging purposes is that options involve the

payment of a premium at t=0 while futures do not involve any initial cash flow (ignoring margin and transactions

costs).  In addition, the sensitivity of options and futures prices to spot price changes also differs.  While it is

possible to use options to 'replicate' a futures position, this will involve incrementally adjusting (dynamically

trading) the size of the options position to account for changes in the spot price.  To see this, consider a hedge

portfolio in stocks involving one unit of stock and $ units of written call options.  The net value of this portfolio,

V, will depend on the cash outflow associated with the price of the stock, S, and the cash inflow associated with

selling $ units of call options at price C.  In order to replicate the payoff for a hedge portfolio using options to

hedge the stock position, it is necessary to determine $ such that MV/MS = 0.  

   For the option hedge portfolio: V = S - $cC.  In this equation, V is the net investment in the portfolio and S is the

value of the stock position that, for pedagogical purposes, can be taken to be one unit of stock.  Observing that C

is the price of a call option on the one unit of stock, $c is the number of written call options per unit of stock.  The

value of $cC enters with a minus sign because the written options position generates a cash inflow that can be used

to partially offset the cost of buying the stock.  Because )S is the only source of randomness in the portfolio, the

hedge portfolio condition can be used to determine the value of $c:

Because the value of a call option will change as the stock price changes, it is necessary to dynamically determine

$c, the appropriate number of options to write to maintain the hedge portfolio.  One of the useful analytical features

of the Black-Scholes option pricing formula is that $ can be solved in closed form.

   The above discussion involved hedging with options.  The inverse problem is encountered by option market

makers: how many units of stock to hold in order to hedge a book of traded options positions.  As option books

usually involve written option positions, the problem of hedging for options involves the value equation: V = *cS -

C.  The choice variable in the hedge is the *c, the number of units of stock to purchase (short) to hedge a written

(purchased) call option written on one unit of stock.  The associated solution for the hedge ratio is:

The last equality is solved in Chapter 9 and is included here to illustrate the pedagogical basis for using the

hedging-for-options formulation of the riskless hedge portfolio.

   Similar conditions can be derived for puts, which can also be used to dynamically hedge the stock position.  In

this case, purchased puts are used and the hedge portfolio has the form: V = S + $pP, where P is the price of a put

option and $p is the number of puts needed to be purchased in order to hedge one unit of stock.  The hedge

portfolio condition can now be applied to solve for the number of puts:
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Anticipating the discussion in Chapter 9, the Black-Scholes formula can be used to show that the number of

purchased put options is directly related to the number of written call options required to construct the two hedge

portfolios.  In particular, it will be demonstrated that $p = $c - 1.

   The dynamic hedging of the options hedge portfolio can be contrasted with the case of the futures hedge

portfolio, where the spot position is approximately hedged without further need for dynamic adjustment once a

futures position has been established.  However, like the hedge portfolio with puts or calls, it could be necessary

to dynamically adjust a hedge portfolio created with futures.  Using the hedging for futures formulation, the futures

hedge has the value function: V* = $*S - F.  Assuming that the spot commodity is the same as the commodity

underlying the futures hedge, then it is possible to construct a delivery hedge.  Using the cash-and-carry arbitrage

condition, F = (1 + ic)S, it follows that:

The sensitivity of the futures position is not one-to-one with the spot position, though the futures sensitivity is

considerably different than the sensitivity of the call option to changes in the stock price, where the delta of the

call determines the size of the hedge.  As demonstrated in Chapter 9, the delta of a call option will be bounded

between 0 and 1, making $, the inverse of the delta, a positive number greater than 1.

Do Replicated Positions Differ?

The basic replication properties for covered and uncovered option positions can be illustrated using expiration date

profit diagrams.  Because this technique suppresses accurate accounting for the foregone interest associated with

the option premium, it is possible to provide more precise statements of the replication strategies.  Heuristically,

the basic insights can be illustrated by considering two possible approaches to capturing the payoff of a long (short)

spot position.  One approach is to directly take a long (short) spot position.  The alternative approach to capturing

the long spot payoff given by the expiration date profit diagram approach is to buy a call and write a put with the

same T and X = S(0).  However, the investment required to purchase a stock position is significantly larger than

the call plus put alternative.  Hence, combining a purchased call plus a written put does not provide accurate

replication of a long stock position.  (From put-call parity, for P = C it is equivalent to buying stock using 100%

margin borrowing).

   Invoking an absence-of-arbitrage approach, it is possible to identify the accurate replication trading strategy.

More precisely, if the call and put options are correctly priced, investing the remaining balance between the stock

price and the net premium on the put and call options in a fixed income security maturing on the expiration date

of the options will equate the initial cost of the two approaches.  In order for the expiration date payoff on the

purchased call plus written put plus fixed income position to be exactly equal the payoff on the long stock position,

the maturity value of the fixed income security must be X.  This is the basis of put-call parity arbitrage.  There are

alternative ways of specifying the transactions involved in the arbitrage, such as using the cost of buying the spot

position and an appropriate put option for comparison.  For absence-of-arbitrage, the cost of purchasing this

position is just equal to the price of an appropriate call option combined with an investment of the balance in an

appropriately dated fixed income position, with maturity value equal to the exercise price.

   Perhaps the most useful application of put-call parity is to specify the relationship between the price of a call and

a put.  Once the value of the call is determined, the put-call parity arbitrage condition provides the price of the put

having the same X and T.  As discussed in Sec. 9.3, it is possible to use the put-call parity condition to develop

similar but more complicated strategies applicable to replicating the payoff on naked options positions that use

dynamic hedging strategies involving active trading of fixed income and spot positions.  One important instance
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of the dynamic strategies involves replicating the payoff on a long stock position combined with a purchased put,

in other words portfolio insurance.  This payoff can be replicated by actively trading a portfolio that contains only

stocks and bonds, with no derivatives.  Because many institutional investors already possess stock/bond portfolios

and are often involved in making active trading decisions, the dynamic trading approach is appealing.  The

advantages of using one particular approach over another will be examined in later Sections.

   The possibility of using a number of different methods to achieve a given type of payoff raises some practical

considerations.  Speaking in the context of stock options, many of the relevant issues are captured by Gibson

(1991, p.179):

We cannot ignore the institutional characteristics of the stock, option markets, and trading restrictions that
investors in those markets are actually facing.  They are often in sharp contrast with the "perfect markets"
paradigm of most option pricing models... These models often ignore the transactions costs and bid/offer spreads
investors actually incur.  In addition, margin requirements,...short-selling restrictions...differences between the
lending and borrowing rates as well as tax considerations will also refrain investors from trading as frequently
as predicted.

In effect, practical considerations associated with actual execution costs may determine whether a specific

replication strategy is feasible.  The practical importance of the institutional characteristic should not be

underestimated.  For example, certain hedge funds, such as LTCM, can be characterised as: funds designed to

exploit inefficiencies that arise in the market valuation of either side in a specific replication strategy.  Firms

making markets in exotic and mark-to-model OTC derivatives are also attempting to profit by spanning market

inefficiencies.

7.2  Put-Call Parity

European Put-Call Parity without Dividends9

The most important of all the option replication strategies is the put-call parity arbitrage.  There a two possible

pedagogical approaches to demonstrating the supporting arbitrage transactions.  One approach, which has a history

predating the development of the Black-Scholes formula, involves demonstrating that the payoffs on two different

portfolios are the same in all future states of the world.  If the prices of the two portfolios differ, sell the overpriced

portfolio and buy the underpriced portfolio.  Hence, the two portfolios must sell for the same price.  The alternative

approach is more modern and involves specifying an arbitrage portfolio in which there is no net investment of

funds.  Much as in the discussion of arbitrages for forward and futures contracts, the equilibrium requirement that

there be no arbitrage opportunities provides the restriction needed to specify the put-call parity condition.  Figures

7.1 and 7.2 illustrate that both approaches provide identical results.

   The two portfolio approach demonstrates that the payoff functions for two different portfolios are equal for all

possible future outcomes.  The arbitrage portfolio approach combines the two portfolios into a single portfolio and

observes that the value of the portfolio is zero in all future states of the world.  Assuming perfect markets, it

follows that the cost of purchasing the two positions should be equal to avoid arbitrage profit opportunities.  For

a European option on a non-dividend paying stock, at t=0, the two portfolios are given in Figure 7.1.  In what

follows, PV(J) is a discounting function, which can be expressed in continuous (exp{-rt*}) or discrete (1/{1 + r

t*}) form where r is annualized and t* = J/365 = [(T-t)/365], the fraction of the year remaining to expiration.

Portfolio A is the call option position and Portfolio B is the replicating portfolio.
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Figure 7 .1  The Two Portfolio Approach

Strategy A:   –Buy a call for one unit of stock, with exercise price X and days to expiration T

Strategy B:   - Borrow X PV(J)

                 –Buy one unit of stock

        --Buy a put for one unit of stock, with same X and T as for the

In the arbitrage portfolio approach, described in Figure 7.2, there is only one portfolio, which satisfies the condition

that there is no net investment of funds in the position.

Figure 7.2  The Abitrage Portfolio Approach

The Short Arbitrage Portfolio

Strategy :    -- Buy a call for one unit of stock, with exercise price X and days to expiration T

      -- Invest X PV(J)

                    -- Short one unit of stock

                    -- Write a put for one unit of stock, same X and T as for the call.

The Long Arbitrage Portfolio

Strategy :    -- Write a call for one unit of stock, exercise price X and days to expiration T 

     -- BorrowX PV(J)

                   -- Buy one unit of stock

                   -- Buy a put for one unit of stock, same X and T as for the call

   Observing that the only admitted source of randomness is the stock price, what is significant about portfolios

A and B is the associated payoffs at time T, which are given in Figure 7.3.  Because there is only one random

variable in this world, the stock price,  all possible futures states of the world have been taken into account.  Figure

7.3 demonstrates that the two strategies have equal expiration date values.   Because market equilibrium requires

that portfolios with identical payoffs will sell at the same price, the relationship between the market price of puts

and calls is established.  This condition is specific to the particulars of the security involved in the arbitrage, which

is assumed to pay no dividends.  It is also specific to the type of option that is being traded, which is a European

option.  Hence, the condition which is derived is referred to European put-call parity for non-dividend paying

securities.
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Figure 7 .3  Two Portfolio Approach

All Possible Values of the Strategies At Expiration

    X $ S(T)                X < S(T)        

A:           0                     S(T) - X

______________________________________________

B:  Stock    S(T)                  S(T)

      Put      X - S(T)               0

      Loan     -X               -X       

Total B:       0                  S(T) - X 

The same outcome is achieved with the arbitrage portfolio.  

Figure 7 .4  Arbitrage Portfolio Approach

All Possible Values of the Long Strategy At Expiration

X $ S(T)                X <  S(T)        

Call           0                   S(T) - X

Stock        -S(T)                  -S(T)

Put        -(X - S(T))               0

Zero Bond      X                       X      

Total          0                     0

All Possible Values of the Short Strategy At Expiration

 X $ S(T)                X <  S(T)        

Call           0                     -(S(T) - X)

Stock         S(T)                   S(T)

Put         (X - S(T))               0

Zero Bond     -X                    - X      

Total          0                     0

   The put-call parity condition can now be expressed as:
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European Put-Call Parity for Non-Dividend Pay Securities

C(S,J,X) = P(S,J,X) + S(t) - [X PV(J)]

This relatively simple formula has a number of significant practical implications.  Taking the case where the

options are at the money (S = X), then the call will sell for more than the put because S = X > X e-rt*.  The rhs of

the put-call parity condition is sometimes referred to as a synthetic call.  It is possible to rearrange the put-call

parity condition such that any one of P, S, Xe-rt* or C appears on the lhs.  In each of these cases, the rhs is referred

as the synthetic position.  For example, a synthetic put would be short the stock, buy a call and invest in bonds.

Similarly, a synthetic borrowing would be long the stock, long a put and write a call.

   Examining the actual execution of the arbitrage condition, when the call is expensive relative to the synthetic

portfolio or, put differently, the actual call is over priced relative to the synthetic call:

 C(S,J,X) + [X PV(J)] > P(S,J,X) + S(t)

In this case, the arbitrager would sell the call and borrow money, using these funds to purchase the put and the

stock.  This particular trade, which is aimed at exploiting call option mis-pricing, is referred to as a conversion.10

Assuming the "perfect markets" paradigm, the conversion would create an arbitrage profit on the expiration date

if the call is overpriced.11  When the inequality is reversed, the arbitrager would sell the put and short the stock,

using the funds to buy the call and invest the balance in zero coupon (pure discount) fixed income securities with

maturity date T days ahead.  This strategy is known as a reverse conversion or reversal.  The importance of the

practical qualifications involved in trading alluded to previously, such as transactions costs, is an important element

in determining the profitability of conversions and reversals.

   Consideration of the actual trading mechanics involved in the arbitrage reveals the importance of the issues

alluded to by Gibson (1991).  For example, allowing for significant differences between lending and borrowing

rates reduces the equality in put-call parity to a pair of inequality restrictions:

 S(t) + P(S,J,X) - X PV(J)B $ C(S,J,X) $ S(t) + P(S,J,X) - X PV(J)L

The upper boundary refers to the long arbitrage case considered in the last paragraph.  The lower bound is

associated with the short arbitrage.  Another important source of discrepancy that can arise between the short and

the long arbitrages, is short-selling costs.  This tends to weaken the applicability of the lower boundary.  For many

types of options, liquidity may be a consideration, affecting the bid/offer spread for the various transactions

involved in trading debt, stocks, and both the put and call options.  Together with other factors such as margin

requirements, marking-to-market, and tax, there is considerable scope for the distance between the put-call parity

boundaries to be substantial.12

European Put-Call Parity with Dividends

The discussion to this point has focused on European options on non-dividend paying stocks.  When discussing

the extension of European put-call parity to options on stocks, assets or commodities that pay dividends, it is

conventional to assume that the option contract does not allow for dividend payout protection.  Such protection

could be accomplished in a number ways, including delivering the stock plus all dividends paid during the life of

the option if the option is exercised.  Another method would be to adjust the exercise price for any dividends paid.

The absence of dividend payout protection benefits the option writer, who is entitled to receive any dividend

payouts during the life of the option.  Prior to the advent of the CBOE, it was common for options contract to

include dividend payout protections.  As option market makers typically write options, it is not surprising that the
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CBOE chose to use option contracts without dividend payout protection.

   Extending the specification of put-call parity to allow a known future dividend on the underlying stock, or more

generally a discrete carry return on the underlying commodity, is not a significant complication, as it only involves

adjusting the cash flows to account for the known dividends.  More formally, if D is taken to be the present value

of all known dividends to be paid between the current date and the options expiration date, T:

 S(t) + P(S,J,X) = X PV(J) + D + C(S,J,X)

In this case, the return on a position that is long (short) the stock combined with a purchased (written) put option

can be exactly financed by writing (purchasing) a call and borrowing (investing) X PV(J) + D.  At maturity, the

value of the stock plus accumulated dividends plus the expiration value of the put will just equal the maturity value

of the fixed income position, X + D FV(J), plus the expiration value of the call position, where FV(J) is the future

value function that corresponds to PV(J).

   In contrast to known dividend payments, introducing either the early exercise provision of American options or

unknown dividend payments undermines the ability to precisely determine the arbitrage transactions.  Formally,

these features violate requirements needed for path independence of the option price.  For example, at any time

t=0, if prices are measured continuously, there are a theoretically infinite number of possible paths that the spot

price can take.  Path independence requires that the payoff on the trading strategy does not depend on the specific

future time path that the spot price actually takes.13  Otherwise, the strategy is path dependent and will give a

payoff that is uncertain at the decision date, t=0.  For example, path dependence occurs with the American put

because some spot price paths will be sufficiently close to zero that it is profitable to exercise early.  As

demonstrated in Sec. 7.3, even when future dividend payments are known, early exercise can occur in certain

situations, e.g., just before the last ex-date for an American call.  Early exercise will also occur when the time

premium is negative.  Because the occurrence of these events is not known at t=0, the associated strategies are path

dependent.  Similarly for stock options, unknown dividends on the underlying stock means that the payoff on the

strategy cannot be determined at t=0 and again path dependence emerges.  

European Put-Call Parity for Options on Forward and Futures Contracts

Put-call parity for options on forward and futures contracts retains all the features associated with options on spot

commodities, with the exception that the net investment in the position is different because, in perfect markets,

the forward or futures contract is theoretically costless to create.  This means that the net pure discount bond

position in the replicating portfolio is equal to the difference between the put and call premiums.  There is no

longer funds required for investment in the spot.  For replicating portfolios involving the spot commodity, the

portfolio always involved a pure discount loan if the spot position was long and a pure discount bond purchase if

the spot position was short.

   For options on forwards and futures contracts, the net investment is determined by the difference between F(t,T)

and X, which determines the relative size of the call and put premiums.  If F(t,T) > X, then the call is in-the-money

and the put is out-of-the-money.  Using the two portfolio approach, the small put premium has to be incremented

by a discount bond purchase to offset the size of the call premium.  Similarly, if F(t,T) < X, then the call is out-of-

the-money and the put is in-the-money.  The call premium in this case is small requiring the cost of the large put

premium to be financed by discount bond borrowing.  Using the arbitrage portfolio approach the argument is

messier to explain.  The long arbitrage portfolio will require a discount bond purchase when X > F(t,T) and a

discount bond borrowing when F(t,T) > X.

   A minor complication in the specification of the replicating portfolios using forward and futures contracts occurs

with the specification of the expiration date.  For example, many futures options involve delivery of a futures

contract on the expiration date, preventing the same T to be used for the delivery date of the future and the

expiration date of the option.  Option expiration date settlement involves delivery of the relevant futures contract

together with a cash payment reflecting the difference between the options expiration date futures price and the

option exercise price (max[0, F(T,T+1) - X]).  For other futures options, the expiration date of the futures and
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Figure 7.5  Two Portfolio Approach to Put-Call Parity for Options on Forward Contracts

F(t,T) > X, Call in-the-money, Put out-of-the-money

Strategy A:   Purchase a call option on a forward contract with option exercise price X and expiration

date T and forward contract delivery date T involving delivery of one unit of spot

commodity.

Strategy B:   --Lend (F(t,T) - X) PV(J)

              --Establish a long forward position at price F(t,T),requiring delivery of one unit of the spot

commodity.

              --Buy a put on the same forward contract with the same X and T as for the call.

options is the same.  In this case, the option payoff is a cash payment that reflects the difference between the

futures expiration date price and the option exercise price (max[0, F(T,T) - X]). For ease of illustration, forward

contracts with the same T as for the option will be assumed for the F(t,T) > X case and forward contract with

different T from the options for the F(t,T) < X case.  With appropriate modification, the replicating portfolio

argument also applies to the other cases as well as for futures contracts. 

   For the F(t,T) > X case, the call is in-the-money and the put is out-of-the-money.   The relevant theoretical

portfolios are described in the following schematic.  As before, Portfolio A is the call option position and Portfolio

B is the replicating portfolio.  After allowing for the cost of paying the put premium, equating the values of the

portfolios means that there will be money left over to lend in Portfolio B.  Using the result that F(T,T) = S(T), the

resulting payoffs at expiration are determined.

Figure 7.6  Two Portfolio Approach for Options on Forward Contracts, F(t,T) > X

All Possible Values of the Strategies At Expiration

           X $ S(T)                      X < S(T)

A:           0                              S(T) - X

__________________________________________________

B: Forward  S(T)-F(t,T)          S(T) - F(t,T)

    Put            X - S(T)                    0

    Lending     F(t,T) - X           F(t,T) - X   

Total B:              0                        S(T) - X 
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Figure 7.7  Two Portfolio Approach to Put-Call Parity for F(t,T+1)

F(t,T+1) < X, Call out-of-the-money, Put in-the-money

Strategy A:   Purchase a call option on a forward contract with exercise price X and expiration date T,  

              requiring delivery of one unit of a forward contract with delivery date T+ 1

Strategy B:   --Borrow (X - F(t,T+ 1)) PV(J)

              --Establish a long forward position, requiring delivery of one unit of the spot commodity,

at   Ft,T+ 1)

              --Buy a put on the same forward contract with the same X and T as for the call.

   For the F(t,T) < X case, the put is in-the-money and the call is out-of-the-money.  In order to equalize the value

of the two portfolios it will be necessary to borrow money in Portfolio B.  The relevant theoretical portfolios are

described in the following schematic.  As before, Portfolio A is the call option position and Portfolio B is the

replicating portfolio.  Because expiration date (T) delivery of this option involves a forward contract with delivery

at T+1, the resulting payoffs at expiration are determined.

All Possible Values of the Strategies At Expiration

          X $ S(T)                      X < S(T)

A:           0                              F(T,T+1) - X

__________________________________________________

B:  Forward  F(T,T+1)-F(t,T+1)         F(T,T+1) - F(t,T+1)

      Put X - F(T,T+1)                   0

      Invest    F(t,T+1) - X                 F(t,T+1) - X   

  The relationship between the price of puts and calls for forward and futures contracts is given in the following.

The two strategies have equal value on the expiration date:

European Put-Call Parity Condition for Options on Forwards

C(S,J,X) =  P(S,J,X) +  [F(t,T) - X] PV(J)

This is the put-call parity condition for forward and futures contracts.
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American Put-Call Parity

   Derivation of the condition for put-call parity on American options requires the use of a number of the

distribution free properties, especially Properties 10 and 11.  One implication of Property 11 is that American call

options on non-dividend paying stocks will not be exercised early.  It will always be better to sell the American

option than to exercise it.  Hence, because there is no rational reason to exercise the call early, the value of the

European and American call options will be the same.  This is not the case for American call options on dividend

paying stocks or for any type of American put option, whether the underlying commodity pays a dividend or not.

So, for the case of options on non-dividend paying stocks, it is not possible to specify an equality relationship

between the price of put and call options.  Rather, all that can be derived are upper and lower boundary conditions

on the put price provided by arbitrage transactions involving calls.

     The lower boundary on the put follows from Property 3 which states that, if there is a possibility of early

exercise, then the value of the American option will be greater than the value of the European option.  Because

the values of the European and American calls are equal for a non-dividend paying security:

PA[S,t*,X] $ CA[S,t*,X] + X PV[t*] - S(t)

To derive the upper bound on the put option, let Portfolio A be long the put with price PA[S,t*,X] and let Portfolio

B be long the call at C[S,t*,X], short the stock at S(t) and invest X in a bond earning r(t,T) with maturity date T.

     To evaluate the put-call parity conditions for American options requires the expiration date payoff to be

examined, together with the value of the payoff if exercise is initiated prior to the expiration date.  The expiration

date payoff for the two portfolios is given in the following schematic.  Observing the 1/PV[t*] = exp{rt*} > 1, in

all future states of the world Portfolio B will have a higher payoff than Portfolio A.  Similarly, for all times prior

to maturity, the same schematic applies, with the proviso that T is changed to the exercise date.  This produces the

upper bound condition for the American put:

CA[S,t*,X]  + X - S(t) $ PA[S,t*,X]

Figure 7.8  American Option Put-Call Values

All Possible Values of the Strategies At Expiration

           X # S(T)                      X >  S(T)

A:           0                              X - S(T)

_____________________________________________

B:  Stock       -S(T)                       -S(T)

      Call      S(T) - X                        0

      Invest  X/PV[t*]              X/PV[t*]  

Total B:       X (1/PV[t*] - 1)   X/PV[t*] - S(T)

Combining these two conditions produces the upper and lower put-call parity boundaries for the American put.

     Extending the put-call parity condition to American options on dividend paying stocks follows much the same

procedure as for Europeans.  It is assumed that the dividend payment streams are known with certainty, which

permits the present value of future dividend payments (D) to be determined.  It is left as an exercise to demonstrate
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that the arbitrage boundaries will be:

CA[S,t*,X]  + X + D - S(t) $ PA[S,t*,X] $ CA[S,t*,X] + X PV[t*] - S(t)

In practice, because most traded options are American, it is unfortunate that the put-call parity conditions do not

provide the same type of sharp restrictions on American put and call prices as are provided for European options.

Using Put-Call Parity to Estimate the Early Exercise Premium

In practice, almost all exchange traded options have the American feature.  Yet, closed form pricing formulas for

options are usually only available for options with the European feature.  As a consequence, information about the

empirical behavior of the early exercise premium (EEP) is of considerable interest.  For example, Zivney (1991)

suggests that empirical estimates of the EEP can be used as inputs to the Hull and White (1988) control variate

technique to numerically obtain American option prices.  There are various possible methods of estimating the

EEP.  For example, examining foreign currency options Jorion and Stoughton (1989) derive comparative statics

for the EEP under the assumption that the spot exchange rate follows a diffusion.  Critical exercise values

associated with specific values of the spot exchange rate are identified for both puts and calls.  The comparative

static conditions are then estimated empirically using regressions with the difference between the American and

European prices for the same underlying spot exchange rate.  Unfortunately, the reported empirical results were

not  impressive indicating that the methodology is not the best technique to use in evaluating empirical EEP

behavior.

   Direct estimates of the EEP are not essential to obtaining American option prices.  There are various methods

available for numerically estimating American prices, e.g., Hull (2000, Chapter 16).  Once the American option

price is obtained, a value for the EEP can be estimated by differencing the estimated American price and the

European price obtained from Black-Scholes.  Estimated over a range of times to expiration and exercise prices,

it is possible to obtain an estimate for the early exercise boundary.  Bodurtha and Courtadon (1995) is an excellent

example of how the early exercise boundary can be directly estimated using numerical methods.  While useful,

such methods are not readily accessible and results depend on the accuracy of the pricing models selected.  For

example, Bodurthat and Courtadon (1995) report that not all the options are exercised that the estimated early

exercise boundary predicted would be exercised.

   The direct approach to evaluating EEP involves examining the difference in the prices of European and

American options written on the same commodity.  A major difficulty with the direct approach is the relative

absence of European option prices.  Zivney (1991) and de Roon and Veld (1996) have used a creative approach

based on the European put-call parity condition.  Recall that, for spot commodities paying dividends, that:

S(t) + P(S,J,X) = X PV(J) + D + C(S,J,X)

It follows that: C - P = S - XPV - D.  Using the result that CA = C + EEPC and PA = P + EEPP it follows that:

 nad

The difference between the EEP for calls and puts is now represented by values that are obtainable from American

option prices and observable cash market values.

  An interesting development on this approach is provided by de Roon and Veld (1996) where the DAX index

traded on the American Stock Exchange was used in place of the S&P 100 index options used by Zivney (1991).

The DAX index is a performance index where dividends paid on the underlying securities in the index are

reinvested, unlike the S&P 100 index options where dividends are not paid.  In this case, the index call option will

not be exercised early and any deviation in the rhs of (7.1) can only be due to EEPP.  Zivney (1991) found: the

early exercise premium for puts was greater than for calls, ceteris parabus; and, EEP increases with time to
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expiration, moneyness and the riskless rate of interest.  Similar results were found by de Roon and Veld (1996),

though the time to expiration results did differ.  Both studies suggest that American option pricing models may

fail to capture all the nuances of the early exercise decision.

   

7.3  Spread Trades and Strategies14

Straddles, Straps and Strangles

   Two general types of speculative trading strategies for options can be identified.15  The first type relies on option

mis-pricing; effectively, deviations of observed options prices from theoretical values as determined by an

applicable option pricing formula or a

theoretical arbitrage boundary condition.

Examples of these types of trades are

conversions, reversals, ratio spreads and box

spreads.  Due to transactions costs and

difficulties in obtaining real time option

quotes, these strategies are difficult to

execute profitably for non-exchange traders.

The amount of mis-pricing is typically of a

small enough order that access to cheap

transactions and execution costs, associated

with exchange member trading, is required.

The other types of strategies are natural

extensions of the speculative trades examined

in Chapter 3.  The profitability of these trades

require a view on the direction or volatility of

spot prices, or some other variable such as

interest rates.  The associated trades, and their

profit functions, will be the central concern of

this Section.  For want of a better description,

these trades will be referred to as directional

trades.

     Two general types of directional trades

can be identified: spreads and combinations.

Combinations involve taking positions in

both puts and calls on the same security, as in a straddle, while a spread traded involves taking positions in 2 or

more options of the same type, i.e., 2 (or more) calls, two (or more puts), as in a butterfly or vertical spread.  At

a basic level, spreads involve the simultaneous purchase of one option and the sale of another, usually on the same

spot commodity, with the two options differing in exercise price and/or time to expiration.  If the options differ

in exercise price, but have the same expiration date, the trade is a vertical spread.  If the options differ in expiration

date, with the same exercise price, the trade is a horizontal spread or time spread.  If the options combine

difference in both time and exercise price, the trade is a diagonal spread.  As with futures, an intra-commodity

spread involves the same spot commodity for both options, while the inter-commodity spread will use different

commodities.  Unlike spreads, combinations involve having the same type of position, either long or short, in the

relevant options.  A straddle involves combining a put and a call, on the same commodity, with the same exercise

price and time to maturity (see Graph 7.9).  When the exercise price of the put is less than the exercise price of the

call, the position is called a strangle (see Graph 7.10 Variations on the straddle include the strap, 2 calls and one

put, and the strip, 2 puts and one call (see Graphs 7.11).

   Using the assumptions that interest on premiums is ignored, the expiration date profit diagram can be used to

illustrate the terminal payoffs associated with spreads and combinations.  Prior to expiration more advanced
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valuation techniques are required.  These complications will be explored in Chapter 8.  Consider the case of a

purchased straddle, with both options having exercise price X-- not necessarily at the money--and expiring on the

same date (see Graph 7.9).  Selling the straddle, again with the same X and expiration date for both options, will

be the negative of the purchased straddle.16  The importance of stock price volatility to the profitability of these

trades should be apparent.  A purchased straddle requires that spot commodity prices move a greater amount, either

up or down, than is implied in the option premium (plus the foregone interest that is being ignored by assumption).

Selling the straddle is the reverse, the volatility of the spot commodity will be less than implied by the option

premium (less the interest).  The key feature of these trades is the reliance on volatility to determine trade

profitability.  The direction of spot prices does not matter, only the movement will be greater (less) than some

amount for the purchased (sold) straddle.

     In certain cases, the speculative trader may have notions both about the direction of prices and about volatility.

For example, there may be a potential takeover bid emerging for a company.  If the bid is announced the stock

price will increase substantially.  However, if the bid collapses, then prices may fall substantially.  The weight of

evidence may be in favor of either alternative.  In either case, volatility will increase substantially.  In these types

of cases, if it is more likely that the bid will successfully materialize, it is possible to purchase a strap (see Graph

7.11).  Similarly, if the bid is viewed unfavorably and prices are felt to be more likely to fall than rise, then a strip

could be purchased (see Graph 7.11).  It is also be possible to exploit this type information by selling straps and

strips.  For example, instead of purchasing a strap (strip), it is also possible to write a strip (strap).  However, as

was the case with the straddle, the written positions have a bounded expiration date profit function, versus the

purchased positions where the profit functions are unbounded.  Hence, for the written position, straps and strips

allow the seller to generate additional premium income based on a prediction about the direction of spot prices.

Variations on straps, strips and straddles can be developed based on where the exercise price of the options is

relative to the value of the spot commodity, i.e., whether the option is in-the-money, out-of-the-money or at-the-

money.

Vertical and Horizontal Spreads

While there are a number of similarities between speculative trading strategies in futures and options, there are

notable differences in the nature of the payoffs.  This is the case with option spread trades where, despite

combining purchased (long) and written (short) positions, the futures/options payoffs differ significantly.  Three

basic types of intra-commodity spread trades can be identified: vertical spreads, where the options being combined

have different exercise prices; horizontal spreads, where the expiration dates differ; and, diagonal spreads, which

involve combining options with different exercise prices and time to expiration.17  Much as in the futures

discussion in chapters 3 and 5, it is possible to extend these notions to inter-commodity trading, but this

development will not be explored here.  In addition, it is possible to use various types of replication strategies to

approximate one or both of the options used in the spread position as well as to replicate the spread payoff function

directly.  This point will be developed more fully in Sec. 9.2 where the concepts of synthetic security design will

be developed more precisely.  Other extensions of spreads include the butterfly trade, which has a substantively

different payoff function than for the futures case.  In turn, the butterfly trade can be used to provide restrictions

on the premiums for options with different exercise prices.

    Consider a vertical spread trade that combines a purchased call at X1 with a written call at X2, where X2 > X1

(Figure 7.9).  This is sometimes referred to as a "bullish" vertical spread.  The effect of the written call position

is to tradeoff a portion of the upside potential of the purchased call for a reduction in the (net) premium paid.

Similarly, a "bearish" vertical spread would involve writing a call at X1 and purchasing a call at X2 (Figure 7.10).

In this case, the trader is seeking to eliminate the unbounded nature of the written call, in exchange for some

reduction in (net) premium income received.  Vertical spreads can also be established for puts (Figures 7.11 and

7.12).  In one case, the purchased put is at X2 with a written put at X1, where X2 > X1.  This reduces the (net)

premium paid to purchase the put.  Where the written put is at X2 and the purchased put at X1, (net) premium

income is reduced in order to bound the payoff function.  By recalling the replication strategies described

previously, various extensions are possible.  For example, the "bullish" vertical spread.  The purchased call position
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can be replicated with long the cash plus buy at put at X1.  Hence, long the stock, combined with at purchased put

at X1 and a written call at X2 will 'replicate' the payoff on a vertical spread.  At this point, the basis connection to

caps, collars and floors should be apparent.

     While not difficult conceptually, horizontal, or time, spreads are problematic to depict using expiration date

profit diagrams.  This is because the expiration date can only apply to one of the options, the value of the other

option on the expiration date of the first option must be estimated.  To see this, consider a horizontal in GM

options, observed on Oct. 20 with a current GM stock price of $54 7/8 and an exercise price of $55.

Dec.  2 7/8       Mar  4 3/4        June  5 1/4

If the horizontal spread involves purchasing the March option and selling the December, then the "basis" on the

trade is -1 7/8.  This is the net premium income that has to be paid to establish the spread on Oct. 20.  Consider

the payoff on this trade on the expiration date of the December option given in Figure 7.9.  In deriving this payoff

profile, it was necessary to estimate the value of the Mar 55 option that would prevail on the expiration date of the

Dec. 55 option.
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Figure 7.9   Bullish Vertical Call Spread                         Figure 7.10    Bearish Vertical Call Spread

Buy a call at X1    Write a Call at X2                                  

                                                                                           

                                                                                                  Write a call at X1    Buy a Call at X2 

Figure 7.11   Bullish Vertical Put Spread                    Figure 7.12   Bearish Vertical Put Spread

Buy a put at X1    Write a put at X2                             

    Buy a put at X1    Write a put at X2                         

        

Figure 7.13   Time Spread                                       

Figure 7.14    Sandwich Spread
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Butterflies, Sandwiches and Other Trades

The expiration date profit diagram for the time spread associated with the GM example is given in Figure 7.13.

Because of the need to estimate the price of one of the options, the motivation for doing a horizontal spread is

closely connected to the problem of how options are priced, more precisely how time decay affects options with

different expiration dates.  This problem will be addressed analytically in Sec. 9.1.  Given this, the final spread

trade to considered is the intra-commodity butterfly that involves taking positions in options with three different

exercise prices.  Specifically, for X1 < X2 < X3, a butterfly involves selling one option at both X1 and X3 and buying

two options at X2.  While similar in construction to the its futures counterpart, the shape of the expiration date

profit diagram for the options butterfly trade is responsible for the name attached to this trade (see end of chapter

questions).  Conceptually, a butterfly can be viewed as a bounded straddle.  Because of the different shape of the

expiration date profit diagram, the opposite trade that involves purchasing options at both X1 and X3 and writing

at X2 is sometimes referred to as a sandwich (see Figure 7.14).  Much as in the futures case, the small potential

profits associated with the butterfly restricts the usefulness of this trade primarily to exchange members.

   The list of trades considered to this point covers trades that depend on predicting the direction or volatility of

some random variable, usually the spot price.  Option strategies also include trades based on mispricing, that are

primarily of interest to traders on the option exchanges.  The mechanics of trades are more complicated, as

evidenced in an examination of two important trades aimed at exploiting mis-pricing: the ratio spread and the box
spread.  A ratio spread is a trading strategy aimed at simultaneously selling an overpriced (correctly priced) option

and buying a comparable correctly priced (underpriced) option on the same stock.  The comparable option could

differ either in time to expiration or exercise price.  Execution of the ratio spread requires some method for

determining the appropriate number of contracts to initiate in the two options in order to be properly hedged.  As

discussed in Chap. 9, the ratio of the derivatives of the Black-Scholes formula with respect to the spot price for

the two options, the option deltas, provides the relevant hedge ratio.  

     A box spread combines bullish (bearish) vertical spreads using calls with bearish (bullish) vertical spreads using

puts, using the same X1, X2 and T, e.g., Billingsley and Chance (1985), Hemler (1997).  The trade is designed to

exploit mis-pricing across exercise prices.  To see this, consider the expiration date payoff on a box spread.  The

bullish vertical spread using calls involves buying at X1 and writing at X2 (X1 < X2) to give: max[0, S(T)-X1] -

max[0, S(T)-X2].  Similarly, the bearish vertical spread using puts gives: max[0, X2-S(T)] - max[0,X1-S(T)].  If

S(T) > X2, then the calls positions payoff X2-X1 and both puts expire worthless.  If X1 < S(T) < X2, then the calls

payoff S(T)-X1 and the puts provide X2-S(T) or, combining the two positions, X2-X1.  Finally, if S(T) < X1 < X2,

then the calls expire worthless and the puts provide X2-X1.  Hence, in all future states of the world, the box spread

will payoff X2-X1.  Mis-pricing occurs when the discounted value of X2-X1 does not equal the net premium

generated from the box spread for t < T.  If the discounted value of X2-X1 is greater than the net premium, the

bullish call spread and bearish put spread are purchased.  If the value is less than the net premium, a bearish call

spread combined with a bullish put spread is purchased.  This case involves generating positive net premiums at

t that can be invested for t* to earn a greater amount than the payout of X2-X1 at T.

Caps, Floors and Collars

Even though caps, collars and floors are available for a number of different commodities, these instruments are

most widely used in adjusting cash flows originating from floating rate debt securities.  There is an active OTC

market in medium-to-long term caps, collars and floors, collectively known as the cap market.  An interest rate

cap is an agreement between two parties: the provider of the cap, typically a large financial institution; and, a cap

purchaser, often, though not always, a borrower in the floating rate debt market.  The cap agreement specifies a

par value, a reference rate, typically LIBOR, a term (e.g., 5 years) and a cap level or ceiling rate, often specified

as some number of basis points above current LIBOR.  If the reference rate goes above the cap level, the provider

agrees to make payments, based on the par value, sufficient to keep the cap purchasers interest payments at the cap

level.  If the reference rate stays below the ceiling rate, no payments are made.  In exchange for entering into the

cap agreement, the cap purchaser agrees to pay a premium to the provider.  When incorporated into a debt issue,
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a cap provision adds some basis points to the cost of the borrowing.

    A floor is the reverse of a cap.  The floor is an agreement where the floor provider, often a borrower in the

floating rate debt market, agrees to make payments to the purchaser when the reference rate falls below the stated

floor.  Again, the size of the payments depend on the par value and the number of basis points the reference rate

is below the floor.  Adding a floor to a floating rate borrowing reduces the cost of the borrowing by some basis

points.  A collar is a combination of a cap and a floor.  This agreement effectively limits the interest rate payments

on a floating rate borrowing to a band, determined by the cap and floor rates.  An advantage of a collar over a cap

is that the premium received for the floor will offset the cost of the cap, making the interest rate hedge less

expensive.  The resulting cash flows from the debt instrument are a hybrid possessing features of both floating rate

and fixed rate debt.  In the limit, adjusting a floating rate debt issue by selling a floor and buying a cap, with a

reference rate equal to the current interest rate, will transform the floating rate debt into fixed rate debt.  Similarly,

adjusting fixed rate debt by buying a floor and selling a cap, has the opposite affect.

   The ability to combine debt issues with caps and floors to transform floating rate debt into fixed rate debt, and

vice versa, implies that there is a direct connection between the pricing of interest rate swaps and the pricing of

caps and floors.  For the case of single cash flows, there is a direct connection between caps, floors and options.

In practice, a cap can be priced as a sequence of put options on individual cash flows, known as caplets.  Consider

what a caplet offers, if the reference interest rate rises above the ceiling rate, then a payment is made based on the

size of the difference and the par value.  The connection to options now follows from taking t* to be the floating

rate reset interval, X to be the present value of the exercise price, discounted at the ceiling rate c, X = exp{-ct*},

and B to be the present value of a zero coupon bond discounted at the observed reference rate r, B = exp{-rt*}.

The payoff on the caplet can now be viewed as a put option: P = max{0, X - B}.  In discrete time, which is the way

the swap payout is determined in practice: P = max{0, ((r-c)t*)/(1 + rt*)}.  Briys, et al. (1991) demonstrate the

approximate equivalence of these two formulations.  The floor can be similarly interpreted as a sequence of call

options on individual cash flows, with the exercise price determined by the floor rate, and payments on the

individual options made on the reset dates.  The purchased collar can be interpreted as a long position in the cap,

at exercise price X1, and a short position in the floor, at exercise price X2 (X2 > X1).

     

7.4  Real Options, Insurance and the Demand for Put Options

Real Options

Options occur in many other forms than the exchange traded variations.  In some cases, the embedded option is

apparent, as with a callable or convertible bond.  A floating rate loan with an interest rate cap, collar or floor is

another example.  Less obvious examples are insurance and common stock.  In response to shortcomings in the

traditional net present value decision rule, corporate finance and real estate economics have developed valuation

models that incorporate the numerous types of real options which arise in those areas, e.g., Dixit and Pindyck

(1994), Trigeorgis (1996), Brennan and Trigeorgis (2000).  Real option notions have also had a significant impact

in modeling the economics of capital investment.  A list of the most important of these options includes: the option

to defer, the option to re-develop; the time-to-build option, the option to alter operating scale, the option to abandon

or mothball, the option to switch, and growth options.  Like conventional options, real options have some exercise

'price' and may be exercised if the option is in-the-money, but exercise is not required if the option is out-of-the-

money.  The exercise decision is irreversible.  Unlike most conventional options, real options are usually long-

dated and are often valued as perpetuals, e.g, Capozza and Li (1994).

   Real options also play a role in firm capital budgeting and real asset investment decisions.  The traditional net

present value (NPV) rule can be stated: in the absence of capital rationing, invest in projects that have NPV greater

than zero, e.g., Brealey and Myers (1992).  Despite being central to capital budgeting and the macroeconomic

theory of investment, this rule fails in many important situations due to the presence of real options that can induce

a firm to forego investments with positive NPV.  Important features of investment decision problems where the

rule fails contain some combination of irreversibility, timing and uncertainty.  Irreversibility means that an

investment has an element of sunk costs.  For example, in real estate, a decision to tear down an existing structure
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and build a more expensive structure designed to generate more rents is irreversible.  The decision to redevelop

the property involves exercising the option to defer development to a later time, when expected rentals may be

higher.  In mining, a decision to abandon a mine is partially irreversible, because the costs associated with startup

are similar to the cost of starting a new mining operation.  Mine closure is an exercise of the real option to

abandon, which depends on the quality of the ore being produced and the expected price of the metal.

   Closely related to the real options, such as the development option, are executive stock options.  Unlike real

options, which are largely of theoretical interest and deal with the return on real assets, executive stock options

(ESOs) are non-traded securities which have to be valued in order to satisfy GAAP.  ESOs are an important

component of modern corporate finance, with roughly 3/4 of larger corporations having such plans, with

unexercised ESOs accounting for roughly 13% of the number of shares outstanding.  To address the important

accounting implications of ESOs, FAS 123 (FASB 1995) deals with “Accounting for Stock-Based Compensation”,

providing a modified Black-Scholes model (see Chapters 8 and 9) to determine fair value of ESOs for use in

financial disclosure statements. Unlike exchange traded options, ESOs are typically subject to numerous

restrictions including forfeiture when an employee leaves the company and the inability to sell or hedge the ESO

position. These restrictions make it difficult to obtain a precise value for an ESO.  The FASB model uses empirical

values for expected forfeiture and exercise behavior to determine an estimated option value.  The adjustments

result in a lower value for an ESO relative to an exchange traded option.

   Considerable debate still surrounds the question of whether FAS 123 is the appropriate method to value ESOs,

e.g., Huddart and Lang (1996), Carpenter (1998), Soffer (2000).  There does not seem to be a consensus on

whether FAS 123 results in option values which are too high or too low.  For example, Cuny and Jorion (1995)

argue stock price performance and employee turnover are highly correlated.  In assuming these two variables are

uncorrelated, the FAS 123 methodology will undervalue ESOs.  Hemmer et al. (1994) argue that by using the

expected time to exercise instead of actual time to exercise, FAS 123 uses overstates the value of ESOs.  Some

options will be exercised earlier and some options will be exercised later than the expected exercise date.  Yet, the

option value is a concave function of the time to expiration, resulting in an overvaluation of the option value by

using the expected time to expiration.  The FAS 123 methodology also has supporters.  For example, working

within a more sophisticated model which incorporate numerous elements not included in FAS 123, e.g., employee

risk aversion, Carpenter (1998) demonstrates that, despite the imperfections, FAS 123 does provide a reasonable

estimate for the value of ESOs.

Insurance and Option Pricing

At least since Merton (1977) and Smith (1979), it has been recognized that insurance valuation is a potential

application of the options pricing methodology discussed in Chapters 8 and 9.  Though other methods of obtaining

premium payments are available, it is possible to successfully price insurance premiums using options pricing

methods, e.g., Doherty and Garven (1986), Cummins (1988), Shimko (1992), Phillips et al. (1998).  The extension

of options pricing to insurance is not as easy as might appear.  It is possible, for example, to conceive of insurance

as a form of put option.  For example, car insurance involves the payment of a premium in exchange for the right

to sell the car back to the insurance company (or at least the damaged part) under conditions laid out in the

insurance policy.  Similarly, a life insurance premium is made in exchange for the right to receive a cash payment

in the event that the death of a specific person occurs in the period up to when the next premium payment is due.

Precisely how options pricing methodology could be used in these instances is not always apparent.

   Shimko (1992, p.229) identifies three reasons that insurance policies complicate option pricing: “1.  For many

lines of insurance, a policy holder may submit multiple claims.  2. Policies are typically written with prescribed

deductibles and maximum coverage limits. The non-linear nature of these loss-sharing rules creates aggregation

problems similar to those encountered in the valuation of portfolios of options.  3.  The size and frequency of losses

may vary systematically, which requires the calculation of a risk premium that is also affected by the option-like

characteristics of the insurance policies.”  Further complications for option pricing arise when it is recognized that

most insurance companies write policies in a number of lines of business, e.g., automobile, property, general

liability, and are subject to default risk ((Phillips et al. 1998).  Multiple line insurance companies hold equity in
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a common pool, where the different lines are subject to different risks.  Option pricing methods can be used to

determine how to allocate equity capital to the different lines of business.

Skewness Preference and the Demand for Put Options

Sec. 2.1 identified the maximization of expected utility for end of period wealth as an appropriate objective for

risk management decision making.  At various points, optimal hedge ratios have been derived, using the mean-

variance moment preference function and other forms of expected utility functions.  These techniques can be

applied to determine the optimal demand for options, as well as futures and forward contracts.  Yet, the payoffs

on futures and forward contracts are linear, while option payoffs are non-linear.  Linear payoffs work directly on

the variance.  For example, a full hedge with no basis risk effectively reduces the variance of spot prices to zero.

Options work by altering the shape of the return distribution.  If desired, options can be used to reduce the

dispersion of the return distribution, e.g., using a purchased put to truncate negative returns associated with a stock

price falling below the exercise price.  However, the non-linear payoff on options will, of necessity, impact the

higher moments of the return distribution, particularly the skewness.  Bookstaber and Clarke (1983) have

numerous useful graphs of the various distributional shapes associated with option usage.

   As risk management products, options are much like insurance.  As discussed in Sec. 2.2, insurance theory is

concerned with pricing the risks associated with situations involving loss or no loss.  As such, the main objective

of insurance is to reduce the possibility of (extreme) negative returns.  This is equivalent to saying that insurance

is used to reduce negative skewness in the return distribution.  If the firm is long the spot commodity being hedged,

then purchased put options would be used.  As such, the use of put options is equivalent to buying insurance of

the spot commodity return.  (The connection between purchased calls and insurance is less obvious.)  Because

options act on the skewness in the return distribution, it is natural to ask whether an improved estimate for the

optimal hedge ratio can be obtained by adding a skewness term to the moment preference function as discussed

in Sec. 2.1, where U’‘’ > 0, i.e., positive skewness preference, is assumed.  Presumably, because put options act

to reduce negative skewness, explicitly identifying skewness preference in the objective function will result in an

increase in the optimal demand for put options, compared to the mean-variance case where only the put option

impact on variance is taken into account.  As it turns out, this is not the case.

   In perfect markets, options will be priced on an actuarially fair basis implying that the expected return on

purchasing an option will be zero.  Hence, the mean part of the mean-variance and mean-variance-skewness

objective functions will not enter the optimal solutions.  Derivation of the optimal solutions now requires the

variance and skewness for the terminal wealth function to be identified.  While it is possible to do this in general,

it is more instructive to consider a practical example.  In particular, the choice of a stylized farmer regarding the

optimal amount of privately issued crop insurance to purchase has attractive features.  The stylized farmer plants

one crop which is subject to both price and yield uncertainty.  To hedge this uncertainty, the farmer only has access

to crop insurance.  Three kinds of crop insurance schemes are possible: 

Quantity Insurance:  where the physical yield is restricted from falling below some minimum amount,

usually set as some percentage of historical yields.  This case is consistent with many traditional crop

insurance plans.

Price Insurance:  where the crop delivery price is restricted from falling below a minimum amount.  This

type of insurance can be accomplished using put options. 

Mixed or Revenue Insurance:  where the total revenue is restricted from falling below a minimum amount;

this case is consistent with farm income stabilization and, to a lesser extent, disaster relief programs.18

The farmer is able to select only one of these types at a time.

   Because, in practice, there is no stylized farmer and it is useful to provide some context about how crop insurance

schemes work in practice.  In the US, crop insurance has undergone a substantial changes.  The crop insurance

program that is federally administered is now managed by the Risk Management Agency of the USDA

(www.act.fcic.usda.gov).   Where the farmer traditionally only had access to a federal crop insurance scheme that
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was effectively quantity-based insurance scheme with premiums priced at a subsidy, there are now an area of crop

insurance plans offered by private insurance companies, e.g., www.cropinsurance.org, as well as a wider range

of plans available from the federal governments.  Virtually all the plans have restrictions on the fraction of the crop

which can be insured.  In addition to pure crop insurance programs, disaster relief programs are also available.

The totality of income support, crop insurance and other programs targeted at farmers is complicated to model.

In Canada, all three types of insurance have been offered as alternatives under the GRIP program.   Various

schemes are offered in other countries (e.g., Hazell, et al. 1986).

   In the absence of crop insurance, the farmer's terminal wealth function with hedging is given in Sec. 2.1.  While

the terminal wealth functions for the other forms of crop insurance (price and yield) follow appropriately, some

motivation is required.  In particular, in the absence of crop insurance and hedging, there is a natural minimum on

R.  Either a complete crop loss where Yt+1=0, or a spot price of zero at time t+1 corresponds to the case (1+R)=0.

Significantly, unlike revenue insurance, neither yield insurance nor price insurance by itself can guarantee a higher

minimum return when (1+R) equals zero.  For example, price insurance guaranteeing $K a bushel (Pt+1 > K)

cannot prevent a 100% crop loss due to drought, nor can quantity insurance providing for, say, Y bushels an acre

(Yt+1 > Y) prevent the future spot price falling to zero.  However, both price and quantity insurance do reduce the

probability of the total return attaining low values and, as a result, alter the distribution for terminal wealth.  As

it turns out, there are substantive differences in how price and yield insurance accomplish this result.

The Farmer's Terminal Wealth Function

   To see the formal implications of admitting insurance, it is necessary to derive the terminal wealth functions for

the price, yield and revenue forms of crop insurance (see Sec. 2.1).  For example, if in addition to hedging with

futures the farmer is assumed to buy revenue insurance against the full value of the crop (APt+1Yt+1), the terminal

wealth function can be specified:

where: s equals (S A)/C(A) with S being the price (insurance premium) per acre for the revenue insurance and R_

is the income floor specified in the insurance plan.  It can be seen from the terminal wealth function that the effect

of adding revenue insurance to the risk management problem depends on assumptions made about both the pricing

of the insurance premium (S) and the requirement that the full value of the crop be insured.

   It can also be seen from the terminal wealth function that the effect of adding revenue insurance to the risk

management problem is to increase terminal wealth by x times the purchase price adjusted payout on a "put option"

written on the return R, with exercise "price" R.  If the insurance (put option) is priced as an acutarially sound

expected indemnity then insurance will not change the farmer's expected wealth for the selected production level.

All insurance does is limit downside risk.  Whether this will affect the production level is discussed in Poitras

(1993).  The conclusion about the effect on expected wealth does not change if the farmer is permitted to choose

the fraction of acreage insured, i.e., where the terminal wealth function is given by:

where 2 is the fraction of the total planted acreage insured under the revenue insurance scheme.

   In many respects, the yield and revenue insurance cases are identical.  As in the revenue insurance case, it is the

number of acres to insure that is the decision variable:

http://www.cropinsurance.org,


Option Concepts 33

where L is the price (insurance premium) per acre for the crop insurance, Qy is the number of planted acres covered

by the physical yield insurance and Y is the yield floor provided by the insurance plan.  In practice, Y is set based

on a percentage (<100%) of relevant historical physical yield averages.  While the price used would actually

depend on a specific method of price election selected by the farmer, taking the price elected to be the harvest

period cash price (Pt+1) is not unrealistic (e.g., FCIC 1989).

   Assuming that Qy = A, i.e., all planted acres are insured, leads to the following:

where l equals (LA/C(A)).  Observing that the expression inside the max function involves the difference between

two random variables illustrates the primary analytical difference between the different forms of the terminal

wealth function.  This distinction depends crucially on assuming that both price and quantity are uncertain.

Observing that it may be unrealistic to assume that all acreage is insured, allowing the farmer to choose the acreage

insured  leads to:

where 8 is the fraction of the total planted acreage insured under the physical yield crop insurance scheme and RR

= {Pt+1 Y A}/C(A).  As with revenue insurance, fair pricing requires insurance to impact the decision problem

through its effect on downside risk.

   Examining the price insurance case involves introducing put options (written on the futures price).  This leads

to:19

where K is exercise price on the put option that is assumed to be "at the money" (i.e., K = Pt), z is the price per unit

of output of the put, Qz is the number (in output units) of puts purchased, with the ratio ( being the value of the

option position divided by initial wealth.20  As in the yield and revenue insurance cases, if the put option is "fairly

priced" then the expected value of the last term in the terminal wealth function is zero and insurance only has

relevance for maximizing the expected utility of wealth insofar as it limits downside risk.  However, price

insurance has a direct impact on the distribution for Rf and not R as in the other two cases.

Mean-Variance-Skewness and the Optimal Demand for Put Options

Following the discussion in Sec. 2.1, the terminal wealth function provides essential information required to derive
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conditions from the maximization of an appropriate expected utility (EU) function.  Using the moment preference

approach, the presence of options argues for optimizing a mean-variance-skewness EU function because the non-

linear payoffs on options are designed to impact the higher moments of the return distribution.  Poitras and Heaney

(1999) use a mean-variance-skewness moment preference function to derive relatively robust results about both

the problem at hand, the optimal amount of put option, e.g., crop insurance, to purchase, and the more general issue

of modeling optimal decisions involving options using moment preference objective functions.

   The results in this section make use of results derived in Section 2.1 for the mean-variance-skewness expected

utility function and the wealth process for a long spot position combined with a put option.  This combination is

of interest because options alter the skewness of the return distribution, so, modeling the decision problem with

an objective function that values skewness in addition to mean and variance seems intuitively desirable.  Yet,

pursuing this approach soon leads to counter-intuitive results.  Proposition 7.1 deals with the case of put options

that are being used to reduce the negative skewness in the distribution of asset return.  The simplest application

would be to crop insurance, where a farmer wants to protect against flood, drought, disease or some other outcome

that reduces crop yield.  Presumably, introducing skewness preference into the expected utility problem would

increase the optimal hedge ratio for the put option.  Proposition 7.1 demonstrates that this is not the case (Poitras

and Heaney 1999).

   The results require assuming that: the risk manager optimizes a moment preference approximation to a general

expected utility function of the form, EUMVS = U{E[Wt+1]} - b var[Wt+1] + c skew[Wt+1], where b and c are

measures of the sensitivity of EU to changes in var[@] and skew[@], with b,c > 0; and, that all options/insurance

premiums are "fairly priced".  It is also assumed that R has a negative skewed probability density function, where

skew[R] < 0.21  The following now applies:22

________________________________________________________________________________________

Proposition 7.1: The Optimal Demand for Put Options23 

Assuming that the risk manager optimizes a moment preference objective function, defined over the mean,

variance and skewness of the farmer’s terminal wealth function that includes put options, then the optimal demand

for a put option with payoff depending on yield is:24

where: the subscript q corresponds to the random variable max[0, RR - R] and the subscript R refers to the rate of

return on the asset.  The coskewness term, cosk[8;RR], has the interpretation:

The mean-variance solution (8MV) is given by ignoring the second term on the rhs of 8*.  The associated closed

form solution is:
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where A = x(3c Wt)/2b.

_________________________________________________________________________________________

The stated closed form solution is one of two roots of the quadratic equation in 8..  It is possible to verify by

differentiating the first order condition that the stated closed form solution corresponds to a maximum, while the

other root corresponds to a minimum (Poitras and Heaney 1999).

   Closer analysis of the Proposition can be used to identify conditions for which the optimal put option demand

derived from the mean-variance-skewness objective, 8*, is less than the mean-variance optimal demand, 8MV .  A

result such as 8MV $ 8* is interesting because it is seemingly counter-intuitive since the mean-variance-skewness

function explicitly values positive skewness and the put option is a security that reduces the negative skewness in

asset returns.  However, the 8 that maximizes skewness of W is typically less than the 8 that minimizes the

variance of W, making the solutions considerably more complicated than simple intuition would suggest.25  For

example, from the Proposition it is apparent that negative cosk[@] at the 8* optimum is required for 8MV $ 8* to

apply.  Observing that cosk[@] is a quadratic function of 8 leads to consideration of three points associated with

cosk[@] function: the two roots of the quadratic that are associated with cosk[@] = 0; and, the minimum point of

the cosk[@] function.  Various methods can be used to show that cosk[@] < 0 at the minimum.  It follows that the

addition of the skewness term to the moment preference function results in a reduction of the optimal demand for

put options.

Questions

1. What is a speculative bubble?  Can the use of derivative securities lead to speculative bubbles?  What role did

derivative securities trading play in the Dutch tulipmania?

2. From Section 7.2, algebraically derive the profit functions for: a bearish vertical put spread; a bullish vertical

put spread; a time spread; and a butterfly spread.

3. On Friday June 16, 1989, three call options for IBM trading on the CBOT, all expiring in October 1989, sold

for the following prices:

     Exercise Price            Option Price 
        105                         9

        115                         3.75

        125                         1.06

Consider a "butterfly spread" with the following positions:

   Buy 1 call at 105, Sell (write) 2 calls at 115, Buy 1 call at 125

What would be the values at expiration of such a spread for various prices of IBM at the time?  What investment

would be required to establish the spread?  Given information about the prices of the $105 and $125 options, what

could you predict about the price of the $115 option?

4. A short stock position can be "protected" by either selling a put or buying a call.  Determine the profit functions

for these alternative strategies and determine the breakeven stock price at expiration together with the maximum

and minimum profits.

5.  Derive the expiration-date profit diagrams for the following trades: straddle, strap, vertical spread, and

horizontal time spread.  Verify the replication strategies for a written put, a written call, a purchased put, a
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1.  The seminal source of this material is Merton (1973).  Gibson (1991) and other general sources give a comprehensive treatment.

2.  In the following, the spot commodity will be assumed to be common stock.  In general, dividend payments relate to carry returns on the spot
commodity.  When the option is written on a futures contract, there is no carry return by construction.

3.  This point is explored in more detail in Sec. 9.2.

4.  Precisely when this will happen depends on a combination of factors such as the time to expiration, the size of X - S(t), the volatility on the
stock, liquidity in the option and so on.

5.  It is important to recognize that Graph 7.1is not an expiration date profit diagram, i.e., the horizontal axis measures the current stock price,
S(t), while the vertical axis measure the call price.

6.  These combinations are: short the stock and write a call; short the stock and buy a put; long the stock and buy a call; and, long the stock and
write a put.

7.  However, this difference between S(0) and the breakeven stock price for the replication strategies will not usually be large.  For this reason,
the diagrams have been drawn as though E = S(0) produces a payoff centred at S(0).

8.  Shifting both 45o lines in the same direction, even though one strategy involves a cash inflow and the other a cash outflow, is due to the
different slopes, i.e., the short position has slope -1 while the long position has slope +1.

9.  There is a literature on put-call parity that predates the introduction of the Black-Scholes formula, e.g., Stoll (1969, 1973), Merton (1973).
Many studies of put-call parity have related the issue to market efficiency, e.g., Klemkosky and Resnick (1979, 1980, 1991), Finucane (1991),
Nisbet (1991).  Other studies have been concerned with developing the put-call parity conditions for specific instruments, e.g., Goodman (1985),
Chance (1987).  A recent development has been the use of put-call parity conditions to identify the early exercise premium, e.g., Zivney (1991),
de Roon and Veld (1996).

10  The use of conversions in options trading has a long history, e.g., Poitras (2000, Ch.9).

purchased call, and a long cash position.

6.  The discussion of replication trades in Sec. 7.1 uses the two portfolio approach to derive the relevant conditions.

Reconstruct these arguments using the arbitrage portfolio approach.

7. "A call option benefits from increases in the stock price and these increases can be very large.  A put option

benefits from stock price declines, but the stock price can only fall to zero.  Therefore, if we have a put and a call

on the same stock with the same terms, the put must sell for less than the call."  Do you agree or disagree?  Explain

making sure that you identify relevant restrictions on the underlying arbitrage.

8.  Establish the relationship between caps, collars and floors with a bearish vertical spread that is long the put and

short the call.

9.  In Sec. 7.1, the derivation of the put-call parity boundary conditions for American options was left as an

exercise.  Using the two portfolio approach, verify the boundary conditions given in that Section.  In addition, use

the most recent put and call option prices for IBM together with the current stock price, interest rate and estimated

dividends, to estimate the size of the difference between the upper and lower boundaries for options on that stock.

10.  Draw the expiration date profit diagram for the put-call combination that replicates a short stock position.  Be

sure to consider the three scenarios: X > S(0); X < S(0); and X = S(0).

NOTES
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11.  To see this, observe that if S(T)=E then the stock is sold to pay off the maturing value of the loan, both options expiring worthless.  If
S(T) > E, the put expires worthless and C(S(T),0,E) = max[0, S(T) - E] plus E, the maturity value of the loan, equals S(T), the value of the
stock that is to be sold to settle the position.  If S(T) < E, the call expires worthless and P(S(T),0,E) = max[0, E - S(T)] plus S(T) equals E
that is the maturing value of the loan.  In all cases, the additional balance that was raised initially due to C + E PV > P + S is the residual
arbitrage profit.

12.  A number of articles have explored the validity of the put-call parity condition, e.g., Klemkosky and Resnick (1979).

13.  Goldman, et.al. (1979), Kemna and Vorst (1990), and Wilmott (1998) are useful sources on path dependent options.

14.  Much of the literature on the various types of options trading strategies is somewhat dated, with much of the material available in trade
publications and textbooks.    Examples of early studies include Gombola, et al. (1978) and Ritchken and Salkin (1981).  There is also a
substantial literature on the performance of covered call option writing strategies, e.g., Yates and Kapprasch (1980), Mueller (1981).

15.  It is also possible to devise strategies that involve using options to generate premium income.  This income can be used to finance various
types of speculative positions in other assets.  These types of strategies will not be explored here except where the positions are directly related
to arbitrage trades.

16.  A variation on the straddle is the strangle where the exercise prices for the put is below the exercise price for the call positions.  In this
case, the expiration date profit diagram is flat over the region between the exercise prices.  The advantage of a strangle over a straddle is that
it is cheaper to purchase.  For the writer, while premium income is lower, there is a wider range of expiration date stock prices that generate
a profit.

17.  These descriptions correspond to the method in which option price quotes are typically observed in the financial press.  Differences in prices

across exercise prices are recorded vertically, while price differences across expiration dates occur horizontally.

18.  Total revenue is the realized income from planting a given crop.  Given that various types of farm income stabilization programs are possible,
e.g., where payments are made prior to planting on the condition that farmers do not plant certain crops, the revenue insurance schemes being
examined here are not fully descriptive of all possible plans.

19.  Given the ability to replicate call positions by combining puts and futures, little is gained by introducing a term for a call option.  Similarly,
while a straddle position would have an interesting random variable distribution, this would add little when futures are present.

20.  It is also possible to specify the put option using cash prices.  However, this significantly complicates the analysis.  In addition,
exchange traded options are typically written using futures prices, so the present construction is potentially more realistic.

21  This assumption involves somewhat more than is stated.  More precisely, this assumption requires that the put option pay-outs will occur
in states where the returns are low.  Cases where put option pay-outs occur and revenue is high are excluded to avoid having to consider
pathological cases.  

22   If the option is not fairly priced, in practice it will probably be underpriced, due to government subsidies.  In the crop insurance context,
underpricing will produce an increase in the usage of insurance.  

23   The optimal demand for the put option depends fundamentally on parameters in cosk[8] that may be unfamiliar, such as cov[q2,R].
Interpretation of these terms by numerical example is considered by example in Section 5.

24   While almost identical, the optimal demand for a yield put option does differ from the price put option in that (*/x = [Qz Pt]/C(A) and 8*
= Qy/A.  These decision variables have a somewhat different interpretation.  For the put option based on prices, it is the fraction of the initial
dollar value of investment in the risky asset that is of interest, while for the yield put option it is the fraction of the physical size of the asset.
The optimal demand for put option on revenue is the same as that for yield insurance, with the proviso that the actual value of the various
parameters, i.e., variances, covariances and the like, will have different values.

25   The underlying moment preference objective function requires that dEU/d skew[W] > 0.  Using the optimal solution it is now possible to
do comparative static analysis on specific parameters, e.g., to determine that {d8*/d skew[q]} < 0. 


