Absence of Arbitrage, Detrending
and Rational Stock Prices

Thispaper considersthetheoretical foundationsfor detrending procedures used in empirical tests
of rationd stock pricing model sand tests of rd ated null hypotheses, such asimplied variancebounds
tests and tests for rational bubbles, e.g., Shiller (1981), Marsh and Merton (1986), Campbell and
Shiller (1987), Diba and Grossman (1988), Evans (1991), Campbell and Kyle (1993), Wu (1997),
Sarno and Taylor (1999). Theseempirical studiesall invoke some method to detrend price-dividend
data, usually to achievethestatistical property of covariance stationarity which, inturn, isexploited
to conduct hypothesistests. It iswell known that the method sel ected to detrend the data contains
implicitequilibriumrestrictions. Recognizingthat absenceof arbitrageisafundamental requirement
for security pricing models, this paper utilizes further conditions on the underlying probability
distributionsto specify adetrending method which does satisfy absence of arbitrage. Thetheoretical
conditions required for determining an appropriate detrending method are used to derive a number
of specific closed form examples of detrenders. Detrended data are used to empiricdly test for the
presence of rational bubbles. Tests of the null hypothesis are adapted from the dynamic linear
rational expectations approach, e.g., West (1987).

In this paper, arbitrage free detrending is motivated by using the theoretical result that the product
of the state price density (deflator) and the observed security price follows a martingale. For
empirical testing purposes, exploiting the martingd e property involves a substantively different
econometric approach than that followed by conventional studies which exploit the properties of a
covariance stationary process, e.g., West (1987), Evans (1991). Even though first differences of a
martingale process do satisfy the essential requirements for a covariance stationary process, the

arbitrage free detrending process imposes further equilibrium restrictions which involve specifying
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afully parametric security pricing model. Thisproducesamaximum likelihood estimation problem,
where aspecific hypothesis can be tested by determining whether certain parameterstake particular
values. In contrast, conventional studies do not typically make such strong assumptions about the
theoretical model generating asset prices. Detrending to covariance stationarity is arguably doneto
achieve aminimal destruction of statistical information, in order to facilitate the inductive testing
of specific hypotheses. While this does avoid the joint hypothesis imposed by arbitrage free
detrending, it does raise other questions, e.g., about validity or generality of specific results.
There are many potential methods of detrending prices and dividends to achieve covariance
dationarity. The presence of an equivalent martingale measure dictates that there are certain
methods of detrending which both satisfy covariance stationarity and are consi stent with absence of
arbitrage opportunities in security prices. With thisin mind, this paper investigates the following
types of questions: What are the properties of arbitrage free detrenders? How restrictive are the
equilibrium conditionsimposed by absenceof arbitrage? What arethe limitations of using specific
detrenders? In the following, Section | provides an introduction to the general problem being
examined. Section |l states the relevant assumptions and derives two important Propositions
concerning arbitrage free pricing and differential restrictions that the equivalent measure must
satisfy. Section 11l provides some closed form examples for specific detrenders. The connection
between the form of the detrender and the distributional assumption for the state variables is
illustrated. Section IV is concerned with examining the empirical properties of the detrending
procedure, using an updated version of the Shiller (1981) data set. Finally, Section V draws some

conclusions from the results presented in the paper.



|. The Theory of Rational Stock Pricing

In continuous time, security valuation problems have the general form:

T
p() = VD) p(T) + f V(t.u) d(u) du 1)

where p(t) isthe security price observed a timet, d(t) istheinstantaneous dividend or coupon paid
att, and T isthe terminal or maturity date for the valuation problem (T > t > 0). Equation (1) is
often referred to as a "'no arbitrage" condition, e.g., Blanchard and Watson (1982)." The security
valuation problem is associated with determining the correct form of the valuation operators{ V(t)}
which obey the fundamental property V(t+s) =V(t)V(s). The vauation operators{V (1)} will, in
general, involve both discounting and expected value operations. Two conditions dmost dways
imposed on the {V (1)} are:

lim VT) = I lim V(D) = 0

T-t T > o

Thefirst condition ensures continuity and consistent pricing. The second condition ensures pricing
convergence, e.g., Craine (1993).% It iswell known that the convergence of the operator as T - «
isrequired for the satisfaction of atransversality condition which, in turn, is needed to ensure that
the expectational difference equation identified by (1) will not have an infinite number of solutions.

The importance of the transversality condition in testing for the presence of rational bubblesin
stock prices can be seen by interpreting (1) as a continuoustime version of aprice-dividend (stock)
valuation model, where p(T) is the anticipated (selling) price at time T and d(u) is the continuous
dividend paid over u € (t,T]. Progressive substitution for p(T) produces the infinite horizon,
discounted-dividend model. This model forms the basis of empirical tests for rational bubbles.

Theoretically, arational bubbleis specified by observing that the security price p(t) can be modelled
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as the sum of two components, a market fundamentals component p-(t) and a rational bubbles
component B(t), e.g., Evans(1991): p(t) = p:(t) + B(t), where p(t) isassociated with the infinite sum
of the discounted value of expected future dividends and B(t) can be any random variable that
satisfiesB(t) = V(t,T) B(T). Becausep(t) canincorporate both fundamental and bubbleinformation,
progressive subgtitution for p(T) produces restrictions on the bubble component. If the
transver sality condition:

lim vit,T) p(T) = 0

T » o

is satisfied, then arational bubbleisruled out. The current price will be determined solely by the
discounted value of expected future dividends.

More precisely, in valuation problems where p(T) and d(-) are uncertain at the t=0 decision date,
the{V (1)} taketheform of expectationsoperatorswhich aso possessadiscounting feature. Interms

of the price-dividend model, (1) can be expressed:

T
p©) = E[ ¢ " "p(n) | F) + EL [ ¢ dw) du | Fy]
0
T T
= Ele " Op(1) | il + [ Ele™™" d(w) | Fy] du = VO.T) p(D) + [ VO d(u) du
0 0

where F, is the conditioning information available at time t and R; is the appropriate stochastic
discounting factor for periodi. Following Blanchard and Watson (1982) and others, the progressive
substitution for E[p(T) | F,] in (1) required for the discounted dividend model to hold involves
applying iterated expectations over increasing F, to expected future prices to derive a genera

solution of the form:
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p(0) = f V(0,u) d(u) du + B(0) = p0) + B(0) @)
0

where:
B(0) = lim 7(0,T) B(T)

T -

In other words, the market price of a security can deviate from its fundamental value without
violating absence of arbitrage, providing the expected value of the rational bubble increases a a
faster rate than that specified by the {V(t)}. For arationa bubble, B(0) # 0 and the transversality
conditionisnot satisfied. Thereisacomponent of the price, therational bubble, whichisnot related
tothediscounted dividends. Inorder to still be present inthelimit, the bubble component isgrowing
at afagter rate than the discounting process.

In Section Il it is demonstrated that, by making specific assumptions about the stochastic
properties of the state variables, it is possible to precisely specify the expectation embedded in the
{V(t)} inaway which is useful for identifying appropriate detrending methods to use in tests of
rational bubbles. Tothisend, the equivalent martingal e measure providesafundamental connection
between the stochastic structure of the state variables and the absenceof arbitrage in security prices.
With "great generality” it has been shown that the existence of an equivalent martingale measure
implies an absence of arbitrage opportunities in security prices, though the converse is not
necessarily true (Back and Pliska1991). Asaconsequence, theconditionsrequiredfor anequivalent
martingale measure provide arelativey weak set of restrictions on the pricing operators { V(t)}
required to ensure absence of arbitrage inthe { p(t)}. Much sharper restrictions are imposed when

starting from an assumed empirical measure which is a diffusion, or strong Markov stochastic



6

structure.  An important analytical advantage of using the diffusion approach is that, under
appropriate assumptions, it permits the introduction of restrictions which can be used to derive a
closed form for the equivalent martingale measure. In turn, this permits the observed prices to be
transformed into a martingale process in a fashion which ensures consistency with absence of
arbitrage. Withfurther restrictions, theresulting martingal e processcan be used to conduct empirical
tests.

The notion that the detrending procedure sel ected can impact the results of empirical testsis not
new. For example, Osborn (1995) and Gregory and Smith (1996) are recent contributionsto studies
on the role of detrending in the measurement of business cycles. Similar, though less detailed,
observations have been made about theimpact of detrendingin testsfor stock pricerationality, e.g.,
Grossman and Shiller (1981), Evans (1991), Dibaand Grossman (1988b). Despite thisrecognition
of the potential importance of the detrending procedure selected, a number of somewhat different
detrending procedures have been employed in studies of stock price rationality. A recent example
is Campbell and Kyle (1993) which uses the Standard and Poor's Composite and the associated
dividend series both detrended, initially, by the producer price index, to get a"real stock price' and
"real dividend". These seriesarethen further detrended by "the mean dividend growth rateover the
sample’. The resulting series are, under the Campbell and Kyle method, required to be 1(1)
processes. With a number of minor improvements, this is the detrending procedure followed in
Campbell and Shiller (1987). The failures of the less sophisticated detrending procedures used in
early studies, e.g., Shiller (1981), contributed significantly to the"econometric difficulties” identified
in Campbell and Kyle (1993).

An important feature of this paper is to make a connection between the detrending process and
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the specification of theindirect utility function for the representative investor. This connection has
also been recognized in previous studies. Diba and Grossman (1988a) extend Lucas (1979) to
demonstrate theoretically that the marginal utility of consumption will impact the determination of
rational stock prices. Olivier (2000) is an excellent recent example of this approach. Scott (1989)
also recognizes the importance of the marginal rate of substitution and develops and tests an
applicableestimation procedure. Inessence, in order satisfy absence of arbitrage, detrended security
prices have to be adjusted for some riskless interest rate, with afurther adjustment associated with
the riskiness of the security. In arepresentative investor framework, thisimplies that specification
of the detrending procedure requires some equilibrium assumption about risk aversion properties.
Following He and Leland (1993) and Heaney and Poitras (1994), risk aversion properties can be
modelled by assuming aspecific stochastic processfor the sate variables. This study extendsthese
resultsby providing amethod for deriving aclosed formfor the detrending procedure using diffusion
processes to modd the state variables.
II. Absence of Arbitrage with State Variablesas Prices

The theory of arbitrage free valuation is voluminous. Numerous results with varying degrees of
generality and applicability areavailable, e.g., Duffie (1992). A number of analyticd simplifications
are often invoked to facilitate derivation of results. For example, identifying the relevant state
variablesisasignificant practical complication which arisesin accessing the equivalent martingale
results. Following Harrison and Kreps (1979), it is conventional to assumethat the requisite Sate
variables are prices on non-dividend paying securities. In practical applications this structure is,
typicdly, unnatural. Many individual securities pay "dividends' or coupons. For purposes of

relaxing the no-dividends condition, it is convenient to work with the cumulative dividend-price



8

process, the combination of the ex-dividend price processes and the associated dividend payouts,
e.g., Duffie (1992, Ch.6). Thisrequires specification of the stochastic price processes and amethod
for handling dividends.

In addition to making security prices the only state variables, another substantive analytical
simplification is achieved by working with processes which have been detrended by the locdly
riskless interest rate process. In continuous time, locally riskless means the sample paths of the
process have finite variation. A normalization condition that the process equal one at the pricing
decision date, time O, isimposed together with the assumption that the discounting processisgtrictly
positive. In some cases, the discounting processis handled with the simplification of assuming that
interestratesarezero, directly suppressing consideration of issuesassociated with thenumeraire, but
this approach isimpractical for empirical applications. Introducing detrending by the interest rate
process into the definition of the state variables permits the R-N derivative to be used, without
further transformation, to derive arbitrage free shadow pricesasthe product of the stateprice density
and the observed, detrended price process. To make the connection with empirical applications
meansthat security pricesand dividendsdetrended by theinterest rate aretherel evant statevariables.

The find point of reference concerns the use of continuous time to specify the stochastic
structure. More precisdy, the security market being considered contains K interest rate detrended
prices, S, which follow the Kx1 vector diffusion price process.

das = o(S,) dt + o(S,t) dB
This compact notation requires that dS, dB and «(-) are a Kx1 vectors while o(-) isa KxK matrix.
The o(-) notation is somewhat misleading because %, the variance-variance matrix for the dS, is

equivalent to X = oo'. Arbitrage free pricing requires the specification of K risk premia (4) of the
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form: A = a(S;t) + D where D istheinterest rate detrended dividend and «(*) isthe drift coefficient
for the diffusion process. This stochastic structure requires some method for handling D. To avoid
having to introduce additional state variables, it is assumed that D is a continuous differentiable
function of the stock price process, denoted D(S;t). This assumption includes deterministic
dividends (including D=0) and Merton proportional dividends. Introducing distinct dividend
processesproduces complicationssimilar toincluding other stochastic non-price statevariables, such
as stochastic volatility. Thiscaseisexamined, only by example, in Section I11.

Given these preliminaries, the basic analytical structure for diffusions requires a filtered
probability space (Q,F,{F},P) where0 < t < T, and thefiltration { F} satisfiesthe usua conditions:
F, containsall the null setsof P; and { F} isright continuous, meaning that F.= N, F, (Dothan 1990,
Sec.7.2). S(t) denotesaK -dimens onal vector of { F,} measurablestatevariablesdefined on[0,)xQ.
Restrictions imposed on «(St) € R* and o(S;t) ¢ ReR"* are fundamental to interpreting the
applicability of the results. Whileit is possible to develop more general conditions, it is assumed
that both «.(*) and o(+) are F, measurable and defined on [0, T]®R" and satisfy the requisite Lipschitz
and growth conditions. $(t) is assumed to be a continuous real-valued diffusion process that takes
on values on R*. Given that B(t) is a K-dimensional vector of independent Brownian motions
defined on (Q,F,{ F} ,P), assumethere exists Q, amartingale measureon (Q,F) equivalenttoP. The
security market isassumed to be complete which impliesthat 2 will be of full rank (Jarrow et al.
1999).

The method of constructing Q from P depends fundamentally on the R-N derivative, dP/dQ.

More precisely, for any A € F:
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fdp=[%dpsfzmdp
A

A A

The equivalence of P and Q implies that the necessary and sufficient conditions for the general
existence of ameasurable Z(T) transformation are provided by the Radon-Nikodym Theorem. The
existence of the R-N derivative serves to define a strictly positive martingale {Z(S,t)} = {Z(1)}
where:

T

IA

Z() = E[Z(T) | F) = Z_%F, Vo 0<t

where Z(0) = 1. Dothan (1990) descriptively refers to {Z(t)} as the Likelihood-Ratio process.
Further properties for the change of measure in security pricing situations can be derived from
Girsanov's Theorem. Under theassumptionsprovided Z; will be unique dueto market completeness
(Jarrow et al. 1999).

Considerable effort has been given to establishing that the presence of an equivalent martingale
measure is sufficient to ensure absence of arbitrage in security prices. For this purpose, the R-N
derivative and the associated { Z(t)} provide the gopropriate transformation. Arbitrage free pricing
requiresthat S(t) and D(t), the price and dividend processes, be such that the cumulative dividend-

price process:

NOE: f D(u) du
0

isamartingale under Q.* The preciserole played by Z(T) in achieving this result can be formalized

in the following adaption of Girsanov's theorem:
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Proposition 1: Arbitrage Free Shadow Pricing

Assuming Q exists, then there exists a positive martingale { Z(t)} on (Q,F{F},P), such that for the
cumulative dividend-price process, the transformed process:

Z(OS(r) + f Z(u) D(u) du
0

isamartingale on (Q,F,{ F},P) such that for t,k > O:

t+k
Z( S = EP [ f Z(u)D(u) du + Z(t+k) S@t+k) | F) 3)

To model current prices, it isappropriate to let t = 0 and observethat Z(0) = 1.

The significance of Proposition 1 can be clarified by comparing the{Z(S,t)} with the valuation
operators{V (1)} arising from (2). Proposition 1 revealsthat { Z(t)} correspondstothe{V(t)} after
adjusting for the interest rate detrending of S and D. The expectation in (3) is appropriate for
empirical testing purposes becauseit istaken with respect to the empirical P measure. Assumptions
made about the specific functional form of the state variable processes represent a nested null
hypothesis under which a specific { Z(t)} isthe appropriate, arbitrage free detrender for prices and
dividends. Inother words, from the dependence of Q on Sand D, elementsin the process{ Z(t)} will
also depend on S and D (because D depends on S). However, in order to be of practica value, a
method is required to derive specific closed forms for Z(S;t). Because Z(S;t) is a function of a
random variable, the precise method for doing thisisnot obvious. A potential and intuitive approach
would beto invoke Ito'slemmato specify partial differential equationsfor Z(s,t) which can then be
solved to determine closed forms for { Z(t)}. Thisisthe approach used here.

For purposes of empirically testing price dividend models, Proposition 1 suggests a general

outline for an arbitrage free detrending procedure. Observed prices and dividends, p and d, are
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initially detrended by the relevant interest rate. Theresulting S and D series are then multiplied by
the Z(s,t) applicable to the valuation problem at hand. The specific functiond form for the Z(st)
used will depend on both the parameters of the underlying state variable processes and the associated
state variable risk premia. To be practical, implementation of this detrending procedure depends
crucidly on having a closed form for determining the elements of {Z(t)}. The problem at hand
involves starting from the S(t) as diffusions and developing further restrictions needed to derive
practical closed formsfor Z(S;t). Following Heaney and Poitras (1994), it is possible to do thisby
making the following assumption:

Assumption 1: Z(Sit) istwice differentiable in the state variables, and once differentiable in time
foreachtintheinterval T >t > O.

Recalling that { Z(t)} isamartingale, if Z(t) isassumed to obey these differentiability requirements
then it follows by Ito's lemmathat it satisfies a set of partial differential equations which can then
be solved to get a specific Z(s;t).

Assumption 1 isafunctional restriction on Z which also embeds the relatively weak diffusion
assumptions on dSrequired to derive Proposition 1. These conditions provide for the derivation of
useful restrictions on the coefficients in the diffusions:

Proposition 2: Differential Propertiesof Z

Under Assumption 1 and the conditionsrequired for Proposition 1, Z(stt) obeysthe K+1first order
partial differential equations:

9 Zsi) = ho) Zis0) (4a)
os,

1

% 2s.) = ) Zs.d) (4b)

where:
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h=-X1)

Y = oo’

1 1 oh
= ~(@h + ~h'Sh + ~Tr (32
= 5 5 r( aS))

and X isafull rank KxK variance-covariance matrix associated with the Brownian motions of the
security price diffusions. Tr denotes the trace (the sum of the diagonal elements) of the matrix in
brackets and dh/ds is a KxK matrix with components ch/ds where s is a defined point for the
random variable S(t).

The specification of f in Propogition 2 reveal s that the assumption of differentiability on Z(S;t) also
requiresthat the diffusion coefficientso(+) and «(-) be differentiable. Thisissubstantively stronger
condition than the Lipschitz and growth conditionsrequired to get Proposition 1. Giventheimplied
restrictionson X and A, conditions (4) can beintegrated to obtain aspecific solutionfor Z(s,t). This
resulting Z will depend on maintained null hypotheses about the parameters and functional form of
the underlying price processes.

Itissignificant that the differential equationsfor Z(s,t) givenin Proposition 2 providerestrictions
on both therisk premiaand the parameters of the underlying satevariable process. Moreprecisely,
Proposition 2 can be used to identify absence of arbitragerestrictions on the parameters of specified
diffusion processes (Heaney and Poitras 1994). These restrictions provide necessary and sufficient
conditions for Z to satisfy (4). In particular:

Corollary 2.1: Necessary and Sufficient Coefficient Restrictionsfor Z(Sit)

Given the assumptions required for Proposition 2, then the following integrability conditions:

oh. oh. oh,
g = ! and ! = _j (5)
os, ot os, oS,

are necessary and sufficient for Z(st) to satisfy (4).
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Fromthisit followsthat for Assumption 1 to hold, «(+), o(-) and D(:) are also required to be second
order differentiable in state and first order differentiable in time. In terms of the properties of the
operators{V(t)}, theserestrictions are also required to motivate the derivative of {p(t)} in(1). In
addition to being required for consistency of the cross derivatives of (4a) and (4b), the restrictions
provided by (5) also ensureit is possible to integrate (4) to solve for Z(s,t). Under the assumptions
used in Proposition 2, this integration will be path independent permitting the Z(s,t) solution to
dependonly ontheinitial and termind states and not on thespecific path taken by the statevariables.
[11. Specific Detrenders

This Section exploits (5) to derive closed form solutionsfor Z(s;t). Initidly, itisuseful to derive
Z for a non-dividend paying asset price process. While not immediately obvious, this case is
relevant to modelling the precise rel ationship between prices and dividends because Proposition 1
then applies to a cumulative dividend-price process. As discussed in Section 11, derivation of a
specific closed form for Z requires precise specification of the price process, which then becomes
anested null hypothesis under which the Z is appropriate. To thisend, let the non-dividend paying
price process, Y, follow the lognormal (Black-Scholes) process:

dY = pY dt + oY dB (6)

In (6), Y has been interest rate detrended. Thederivation of Z from the conditions associated with

(4) require:

" Lk
h=-—to amd = oiEY -

Verifying that (5) is satisfied, the Z(Y ,t) can now be derived as:
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Empiricdly, detrending the observed non-dividend paying asset price, firstly, by theinterest rateand,
secondly, by Z will produce a martingale process, under the null hypothesis (6). This detrender
requires two parameters to be estimated, 1 and o.

An intuitive motivation for theuse of Z is provided by contrasting (7) with results derived from
representative investor models. In this context, He and Leland (1993) and others construct
equilibrium which can support a given stochastic process. For example, it is demonstrated that a
representative investor with constant proportional risk aversion is required to support ageometric
Brownian motioninwealth. In other words, taking Y to bean aggregate wealth processit ispossible
tointerpret Z astheindirect utility function of therepresentativeinvestor (Heaney and Poitras 1994).
Becausetheunderlying price processfor (7) isassumed to be geometric Brownian motion, thisZ has
apower utility representation, consistent with constant proportional risk aversion. Thisrequiresthe
investor to maintain the fraction of total wealth invested in the risky asset. Under appropriate
conditions, it is possible to connect agiven method of detrending prices and dividendsembodiedin
Z with assumptions concerning the utility of the representative investor.

The representative investor framework identifies the state process Y as aggregate wealth. This
suggests a method for incorporating dividends without directly specifying separate state variable
processes for dividends. define Y as the cumulative dividend-price process. Taking D to be a
continuous, differentiable function of S, theresulting Z(Y ,t) can be goplied in (3). Fromthis, itis

possibleto specify an arbitrage free detrending procedure for usein empirical tests of rational stock

pricing models. Dividends and prices are detrended by the interest rate and then multiplied by the
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appropriate Z(y,t) with the resulting series being used for the empirical tests. Observing that the
functional form of the arbitrage free detrender, Z(Y ,t), depends on a null hypotheds about the
underlying cumulative dividend-price stochastic process, it follows that empirical tests of modds
involving security priceswill aso involve ajoint hypothesis about the stochastic structure of the
underlying state variables. Different stochastic assumptions will lead to different approaches to
detrending. In other words, the method selected to detrend data implicitly imposes assumptions
about the underlying equilibrium.

In order to provide another approach to specifying a detrender for dividend paying securities, it
ispossibleto extend the analysisto the Merton (1973) case where dividends are aconstant fraction
(0) of the stock price: D=0 S. Theasset price, S, isfor simplicity assumed to follow alognormal
process dS=0 Sdt + 0 SdB. Because thereis still only one state variable, there is also only one
A =0 S+0d S. Whilethisapproach toincorporating dividendsis not fully consistent with observed
dividend behaviour, it does provide the significant analytical simplification of retaining only prices
asstatevariables. Based on Proposition 1, absence of arbitragefor adividend paying asset requires

the cumulative dividend-price process to be a martingale under Q. In this case

h - 0 +6 _ Y
o’ S N
1 1,02 - &
=y0 -~y (1 +y)=— -0 +8
f=y0 S oy d+y) = 2 ( )
Verifying that (5) are satisfied, it is possible to derive Z as:
250) = ' (S ®)

0

By construction, this Z is based on the null hypothesisof lognormal, interest rate detrended security
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prices and constant proportional dividends. Compared to (7), this detrender has an additional
parameter to be estimated. Instead of the drift ., there are now two values to be estimated, 6 and
0.

The connection between investor utility and Z provides a useful method of illustrating the
equilibrium assumptionsembedded in specificdetrending procedures. Consider amoregenerd form
of (6), the constant el asticity of variance (CEV) process. TakingY to be either the aggregate wealth

or cumulaive dividend-price process:

B
dYy = pY dt + o¥Y? dB 9)

For this process:

h=—% yl-8 and le

Py oy2p . Bego
5 2(0) Y 2(1 B)

To satisfy the integrability conditions (5) now requires that either f =2 or p = 0. Of the class of
processes covered by the CEV, only thelimiting lognormd, =2 caseis compatible with anon-zero
drift,and A # 0. For p=0, because the asset involved does not pay dividends, this condition reduces
torisk neutrality, A =0. Theassociated Z(t) = 1, aconstant, indicating that detrending by theinterest
rateisdl that isrequired for arbitrage free detrending. In the absence of a dividend process, the 3
€ [0,2) CEV processes does not appear compatible with arisk averse representative investor.
Incorporating a separate diffusion process for dividends, as in Campbell and Kyle (1993),
substantively complicates the derivation of the arbitrage free detrender. Two dependent state
variable processes must combine to produce a cumulative dividend-price process which is a
martingale under Q. In order to avoid problems associated with market incompl eteness or inherent

inconsi stenciesbetween the price and dividend processes, the asset price (capital gains) and dividend
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processes have to be, somehow, functionally related. In order to satisfy Proposition 1, specification
of anasset price processimposesimplicit restrictions on thedividend process. Ignoring thetechnical
complications associated with introducing a non-price state variable, derivation of Z(t) dependson
the specific diffusion processes selected to model actud empirical processes. The presence of two
state variables means that h in Proposition 2 now has two elements. As a consequence, there are
now three integrability conditions to satisfy, instead of one. However, there is still only one Z(t)
applicable to all the state variables. The upshot is that the combined integrability conditions can
usually be satisfied only inthe A = 0 or risk neutrd case where the arbitrage free detrender Z(t) = 1.
V. Empirical Results

The datais an updated version of the set used by West (1987), which was initially examined by
Shiller (1981). The updated data set extends Wes (1987) from 1980 to 1997 and now has 127
observations starting from 1871 on four variables: p, is an annual series of January vaues of the
Standard and Poor's (S& P) Composite Stock Price Index; d, isthe S& P twelve-month moving total
of the nominal dividends per share; r, isthetotd return to investing for six monthsin January at the
January 4-6 month prime commercial paper rate (six month starting January 1980) and for another
six months at the July 4-6 month prime commercial paper rae (six month starting July 1980); and,
PPI isthe Producer Price Index for al finished goods (1982=100).
V.1 Estimation of the GBM Detrender

The detrender sdected for estimation is (7). Since the associated geometric Brownian motion
process (6) is written on theinterest-rate detrended cumulative dividend-price process Y, the first
step in our detrending procedureisto detrend the observed stock price and dividend by the riskless

interest rates. This is done by multiplying each element of p(t) and d(t) by:
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11

i=0 (1 + I‘)

Yt = (0,1,2...(T-1))

Thisinterest-rate detrender equals unity at theinitial date sincer, = 0. Theresulting series, S(t) and
D(t) respectively, aregivenin Figures1and 2. A comparison can be made with the commonly used
technique of deflating prices (and dividends) by the PPI, given in Figure 3. S and D, are used to
estimate the parameters used in the detrender Z(t) and, in turn, to calculate Y D(t), the Z-detrended
valueof Y,

-1 -1

Y, =8+ Z(; D, YD, = Z, S, + — Z., D,
= 1=

In other words, Y, is the interest rate detrended, cumulative dividend-price process. YD, is the
interest rate and Z(t) detrended, cumulative dividend-price process.

An important step in estimating the detrender Z(t) is the estimation of the drift u and the
volatility o of dY/Y from (7). Following Campbell, Lo and Mackinlay (1997), the maximum
likelihood estimators of thedrift and volatility are respectively, the (adjusted) mean and the standard
deviation of the log-differencesin the state variable, Y, in each pair of adjacent time periods. To

formalize:

A

1 g
T t=1 t—l t=1 2

T T
Eln( \liTE o  p-a+l

with T being the sample size.
Using thefull 1871-1997 sampl e of observationsraisesacomplication. Consistent with empirical
resultsfrom previousstudies, estimating thedrift and volatility revealssomewhat different estimates

for the pre and post-WWI1 periods:
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Tablel

Estimated Driftsand Volatilitiesof Y,

v o o
Pre-war (1871-1944) .00602 0047 .0507
Post-war (1945-1997) .00998 00971 02318

Combined (1871-1997) .00761  .00674  .04173

Theestimated driftstake only dlightly positivevalues, becausethe pricesand dividendshave dready
been interest-rate detrended. Theresults show that the estimated post-war o drift isabout twice the
sizeof thepre-war « drift, even though thedifferenceisnot statistically significant (t=0.66). Further
empirical examination of these observed differencesin the drift and voldility estimates reveds a
substantive change in dividend payout behaviour over the two subperiods, with decidedly higher
dividend payout observed in the pre-WWII period. Thisdividend behaviour is consistent with the
higher Y observed in the post-war sample.

Confronted with this empirical complication, it is sensible to proceed without adjustment,
estimating the Z(s;t) detrender using the drift and volatility estimates for the combined sample.
These results can then be contrasted with results where the sample is broken into two subsamples,
derivingadifferent detrender for each period by substituting therel evant drift and vol atility estimates
into (7). In each case, the products of S and D, with Z, give the arbitrage-free detrended price (ZS)
and dividend (ZD), respectively. In the subsample cases, the presumed structural break is directly
incorporatedinto the detrending procedure, becausethe Z(t) isgenerated usingthepu and o estimated

over that sample period. The relevant Z(t) for the full sample and the post-war sub-sample are
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provided in Figures 4 and 5. These Figures can be interpreted by recognizing that Z(t) is the
marginal utility of Y (t). In this context, Z(t) can be used to provide arelative comparison of Y at
different points in time. As expected from theory, higher values of Z are associated with bear
marketsand, conversely, thelowest valuesof Z arisein bull markets. For example, Figure 5 reveals
that the market valuations circa 1997 still had not reached the levels attained by the bull market of
the 1960's.
V.2 Martingale Tests
In Section Il it was observed that {Z(t)} is astrictly positive martingale. This can be seen by

applying Ito'slemmato (7) and using (6) to show the martingale requirement aso appliesto Z(t).
In general, the martingale property of { Z(t)} isinherent inthetheoretical framework capturedin (4)
and (5). Evidencethat Z(s,t) generated by (7) does not follow amartingaleis aregection of the null
hypothesis(6). In particular, testing empirically whether Z(t) followsamartingaleisaspecification
test for the validity of (7). Various possible statistical methods are available for testing whether a
timeseriesisamartingale process, e.g., Campbell, et al. (1997, Sec. 2.1). Table 2 reportsmartingae
tests derived from the result that first differences of a martingale process are orthogonal. Hence,
under the null hypothesisthat theZ(t) isamartingal e, the lope and intercept inan AR(1) regression
for AZ(t) are expected to be insignificant. Similar tests are also done for Y (t) and YD(t). The
properties of these two series reflect the difference between using the risk averse detrender (7), for
Y D(t), and assuming arisk neutral detrender, Z(t) =1, for Y (t). Resultsfor both thefull sampleand
the post-war samples are provided.

Theresultsin Table 2 reveal that Z(t) generated by (7) comfortably meets the requirements of a

martingale for the post-war sample, i.e., Z(t) exhibits zero autocorrelaion using first differences.
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However, for thefull sample of 127 years, thehighly significant slope coefficient indicates that Z(t)
failsthe martingale requirement. Thisreection for the full sample, but not the post-war sample,
lends empirical support to the view that there has been substantive changes in stock market
valuations, in general, and firm dividend behaviour, in particular, in the post-war period. Interms
of Z(t), the regjection of the martingale hypothesis for the full sample also indicates that there are
possibleproblemswith estimating the drift and volatility for suchalong time period. Becausethese
parameters are essential components in the functional form for Z(t), it may be necessary to
incorporate parameter evolutionin the specification of Z(t). Proposition 1 saysthat after detrending
by Z(t), the cumulative dividend-price process Y D(t) is also required to follow amartingale. The
associated empirical test for the martingale property in {YD(t)} is a joint hypothesis of the
martingal e hypothesis and the validity of the assumed Z(t). Not surprisingly, Table 2 reveals that
Y D(t) also comfortably satisfiesthe martingal e requirement for the post-war sampleandfailsfor the
full sample.

The possibility that a risk neutral Z (Z = 1) is appropriate can be tested by examining the
martingale properties of Y (t). Examining Table 2 reveals the differences between the martingde
testsfor Y (t) and YD(t). For neither the post-war or full sasmpledoesY (t) fully satisfy the martingale
requirement. Inthefull sample, neither the intercept or slopeis significant at the 5% level, but the
F test that both coefficients are zero is significant. For the post-war sample, the intercept is
significant while the slopeisinsignificant. Thisis consistent with {Y(t)} being a martingale with
drift. Yet, driftisindicative of something more than contained in Proposition 1 with Z(t) = 1. This
begsthe question: isthefailureof Y (t) to comfortably satisfy the martingal e hypothesisdueto using

arisk neutral detrender for Z(t)? In any event, the martingal e tests suggest that full sample results
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associated with the Z(t) derived from (7) will beunreliable. Beingthe only sample that comfortably
satisfies the martingale requirement, the post-war results for the Z(t) derived from (7), and the
associated YD(t), are of particular interest In contrast, the martingal e tests indicate that the full
sample results using the risk neutral detrender may be more reliable.
V.3 The Rational Bubble Specification Tests

The basic empiricd problem in rational stock pricing modelsisto test the null hypothesis of p,
=p, versusp =p/ + B,. A number of previousstudies, e.g., West (1987), construct hypothesis tests
by applying the dynamic linear rational expectations model (DLREM), e.g., Hansen and Sargent
(1981). More precisely, if dividends are allowed to be endogenous and H, is a subset of F,, which

consists of current and lagged dividends, in discrete time the null hypothesis implies that:

o

p, =Y [b'Ed,, | H)] + e, (10)

i=1
where:

= X b (B, | F) - By, | ) 11

and g is not correlated with H,, such tha E[H, ¢] = 0 and b is the discrete discount factor
corresponding to the continuous discount factors in the V(t). E(d.; | H) is by definition the
expectation of future dividends giventhe current and lagged dividends. Thisimpliesthat E(d,,; |H,)
can be calculated as an ARIMA forecast for d.,;. In other words, as Hansen and Sargent (1981)
suggest, if d, is stationary, then there is a closed-form expression for E(d,,; | H,) in terms of a
distributed lag of the current and past dividends. In the conventional DLREM, the coefficients of
the distributed lag are functions of the discount factor and the parameters associated with the

univariate ARIMA process for d..
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Conventional tests based on the DLREM are altered somewhat when arbitrage free detrended
prices (ZS) and dividends (ZD) are used. As a consequence of the detrending procedures, these
seriesimply much stronger coefficient restrictions than those for the conventional DLREM. More

precisely, the equations to be estimated are:

ZD,., = ¢y + &, ZD, + v, (12)
ZS, = 8, + &, ZD, + w, (14)
ZS, = B, + B, (ZS,,, + ZD,,)) + u, (15)

The time series model selected for {ZD(t)} in (12) is AR(1). This specification was chosen
empirically, using Box-Jenkins identification procedures. Equation (14) is derived directly from
(20), (11) and (12); and, (15) isthe absence of arbitrage condition. Under the null hypothesis of no
rational bubbles, the parameter estimatesfor (12)-(15) are unbiased and thereforewill bestatistically
indifferent. But if the null is false, one relevant variable (B, is omitted in (14). Aslong as the
omitted variable is somehow correlated with ZD,, coefficient estimates in (14) will be biased.
However, the coefficients for (12) and (15) are unaffected. Therefore an empirical test of the null
hypothesis of no rational bubbles can be realized by testing the significance of the associated cross
eguation restrictions.

Solving (12) with (14) permits the derivation of one set of restrictions for 6, and 6,, while
solving with (15) with (12) and (14) permits an additional set of restrictions. Under the null
hypothesis of no rational bubbles, both restrictions will be satisfied. However, if the null is
incorrect, then the restrictions from (12) and (14) will be unaffected, while the restrictions derived
by combining (12) and (14) with (15) will be regjected. The relevant cross equation restrictions are

(see Appendix):
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T _ ¢1 (1 - ¢1T)] d)o _ ﬁo + Bl d)o + Bl 61 d)() (16)

T-6¢, (-9 (- By

_ ¢1 (1 - ¢1T) _ B1 ¢1
! (1 - (I)l) 1 - B1 ¢1

8, = [

(17)

Interpreting (17), thefirst equality indicatesthat ¢, reflectsthe T period annuity associated with the
AR(1) dividend process. For T <, (17) aso requiresindicates that , < 1 is expected to prevail.
Inthelimit,as T - «, B, -~ Lisrequired. The cross equation restrictionsin (16) are more difficult
tointerpret. Arbitragefree detrendingisexpected to eliminatetrendsin prices and dividendswhich
impliesinterceptswhich areequal to zero. Inaddition, as(17) requiresthe conditionthat 3, - 1, this
condition also implies that the intercepts in the numerator of (16) be equd to zero in order to avoid
the rhs term exploding at the singularity point 3, = 1.
V.4 Estimation Results

Estimation of system (12)-(15) and testing the associated cross equation restrictions (16)-(17)
proceeds by estimating (12) with (14) and then estimating (12) with (15). The estimation method
is maximum likelihood, with estimates obtained by concentrating out the variance parameters and
then maximizing the negative of thelog determinant of the residua covariance matrix.” This will
result in two different sets of coefficient estimatesfor (12). The cross equation restrictions are then
evaluated. This resultsin four different equalities being tested. Regression equation results are
tabulated in Table 3. A number of these coefficient estimates are of interest. For example,
comparison of the dividend yield coefficient, §,, for the interest rate detrended data indicates a
substantial change in dividend payout behaviour in the post-war period. Y et, this change is not

capturedinthed, estimatesfor the Z detrended samples. Another interesting estimation result arises
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withthe 3, value which decreasesfor the post-war Z detrended sample, compared to thefull sample.
Thisindicatesthat convergenceof 3, isnot monotonic as T increases. Inaddition, the3, for the Y (t)
post-war sample is substantidly lower than the other 3, estimates, with a higher standard error.
Finally, differencesin the estimates of ¢, and ¢, are not found to be significant.

Resultsfor the tests of the cross equation restrictions are given in Table 4. Restrictions derived
from (12) and (14) are initially tested. Then restrictions from (12) and (15) are tested, using
estimated parameter values from (14) to represent parameters from that equation. The Table 4
results provide a number of sharp inferences about questions of interest. In particular, on the
guestion of whether (7) or arisk neutral detrender is more appropriate, for the post-war sample the
martingale evidence favoured (7) because of thedriftin Y (t). Table (4) revealsthat detrending by
Z(t) successfully smoothsthedrift. For both samples, the crossequation restrictions associated with
0, could not be rejected. In contrast, for the interest rate detrended data, all cross equation
restrictions, for both 6, and §,, for the post-war sample are regjected. The full sample gives
conflicting results, with one of the §, restrictions being rejected while the other is accepted.

Turning to the central question of interest, whether there is evidence of rational bubblesin stock
prices, the tests of the restrictions on §, using the (7) detrended data provide strong, if somewhat
ambiguous, evidence against the null hypothesisof norational bubbles. Examiningthed, restriction
derived using the absence of arbitrage condition (15), the 0, restrictions are rejected for al samples
and both detrenders. Y et, the 6, derived from (12) and (14) is marginally accepted for the post-war
samplefor the Z(t) from (7). The (12) and (14) 9, restriction is also accepted for full sample using
therisk neutral detrender. Observing that (12) and (14) areempirical relationships, while (15) isthe

absence of arbitrage valuation equation, the immediate implication is that the annuity represented
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by thefuturedividend paymentsisinsufficient to account for thevalue of current stock prices. There
is an additional component, the rational bubblewhich is dso being reflected in stock prices. This
conclusion is based on the overwhelming failure of the 6, restriction derived using (15), at the same
timetherestriction based on (12) and (14) ismarginally accepted. Theseresultsare strongest inthe
samples which the martingal e tests indicated would be most reliable.

V. Conclusons

The essence of arational bubble isthat thereis a component of the observed price whichis not
explained by the discounted value of expected future dividends. If there are rational bubbles, then
discounted dividend stock pricing models, such asthe Gordon model, are misspecified. Inturn, this
bringsinto question thewidespread use of such modelsin applied valuation studies, e.g., Damodaran
(1994). Rational bubblescanberuled out if thetransversality condition derived from (1) issatisfied.
In the present context, it is required that:

lim ZS(T) -~ 0

T-

Unfortunatdy, direct econometrictestsof thistransversality condition arenot available. Theabsence
of adirect test is due to the difficulty of determining whether the observed level of ZS(T) is
insignificantly different from zero. All this dictates that another approach is needed to determine
whether there is evidence of arational bubble in stock prices.

To this end, much of this paper is concerned with developing properties of the R-N derivative
associated with the equivalent martingale measure. These properties are shown to have a practical
applicationtotheproblem of deriving detrendi ng methodsfor empirical testsof asset pricing models.
Thederivation of specific closed form solutionsfor the detrender depend on the null hypothesisthat

theassumed price processistheactual empirical process. Moreprecisely, dosed formswere derived
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under the assumption that the price processeswere Markov, particularly diffusions. The connection
toabsenceof arbitrageisembedded intheR-N derivative connecting the assumed empirical measure
and the associated equivalent martingale measure. Differential properties of the conditional
martingal e density associated with the R-N derivative provide restrictions on the coefficients of the
price processes (Heaney and Poitras 1994) which can be used to provide an arbitrage free
transformation method for detrending observed price processes.

Several issues are raised in this paper. Of particular interest to empirical researchers, it is
demonstrated that detrending procedures canimpose significant equilibrium restrictionson empirica
studies of rational stock pricing models. Intuitively, thisis due to the implications that absence of
arbitrage has for the empirical behaviour of security prices. Implementation of the detrending
procedure proposed here involves making specific stochastic process assumptions about pricesin
order togenerateaZ(s,t). Becausethe specific closed form detrender sel ected embedsan assumption
about the risk aversion propensity of the representative investor, the empirical testsinvolve ajoint
hypothesi s concerning the detrending processand the rational stock pricing model. Giventhis, the
arbitrage free detrended dataprovided substantial evidence against thenull hypothesisof no rational
bubblesin stock prices. Thisresult is consistent with the numerous anecdotal observations from
market practitioners claiming that there is much more to stock pricing than dividend behaviour,

alone, can explain.
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APPENDIX

Proof of Proposition 1:

Since the cumulative dividend-price process is a martingde under Q:

S(t,) = ECS@) + f " D(u) du F) D)

L)

Since S(t) is F, measurable, then for t >t

r 40 PP A0
ENGESOIF)  EMENCISOIF)IF)

ESSO|F,) =
SOIF) EP(d—QlFt) Z(t,)
dp’ %
do
EPE P(E |F)SO)|F,) E "Zos@)|F,)
Z(to) Z(to)

where Z(t) = E7[ dQ/dP | F] = E’[ dQ/dP| S] due to the Markov property. From its definition Z(t)
isamartingale under P. Also since D(u) is F, measurable, then:

(4.2)

do | "~ do
t EP(E fD(u) du |Ft0) EP(EP(!~ -5 D(u) du|Fu)|Ft0)

EQ([ D(u) du |F,) = o =
%(muhg 7@ 1) 70
dp "

EX( tf E P(fi—]Q) F)DG) dulF,) E7([Z@)DG) dulF,)

= S 4.3
Z(t,) Z(t,) “43)

where in the third step above the order of integration over w and t is interchanged, by Fubini's
Theorem. For the purpose of using Fubini's theorem it is assumed that:

EX[ |D@w)| du) < e

)

Substituting (A.2) and (A.3) into (A.1) gives equation (3) of the text.

Proof of Proposition 2:

These equations follow from both { Z(t)} and transformed cumulative dividend-price processes
being martingaes under P. From Proposition 1:
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t+ dt

EP(df f Z(u) D) du + Z(t + df) St + dO}| F) = 0 (44)

It follows on using Ito's lemmathat Z(s;t) satisfies the following partial differential equation:

3, S 3
a (s,f) s + Z(s,t) D(s) + cc(s t) Z(S s

i= S

1 K K 9 )
N Y2 Zsts =0  (45)
2;‘:1 Jj=1 jaSiaSj

+

wheresisthe vector of specificvaluesof S(t) and oo’ = 2. Equation (A.5) holds for the cumulative
dividend-price process. In particular for the k™ such asset:

oZ Lo 0Z
+ZD, + s o— + oz + X, —
kat kz os, ¥ ,Zl: ]gasj
K
+8, — I A
k 2,21: ,21: 'fasas (“6)
Since {Z(t)} isamartingale, E(dZ(t) IF,)=0 so that, using Ito's lemma once again:
Z 1
= + A
o A ’as ,Zl:,zl: ”8s8 “7)

Equations (A6) and (A7) together imply that Z satisfies the K equations:
: 3
[e(s) + DY Zs.) = - BysH—ZsH)  (48)
i=1 S

Substituting back into (A7) and inverting yields equations (4a) of thetext. Substituting these back
into (A8) gives (4b) of thetext.

Proof of Cross Equation Contrants:

Let ZD follow an AR(1) process. ZD,,, = ¢, + ¢, ZD, +v,,,. Itfollowsthat E[ZD,,, |H] = ¢, +
¢, ZD,. Giventhis, the following iterative process applles

E[ZDt+2 | Ht] = ¢0+¢1 E[ZDt+1 | Ht] = d)() + d)] (d)o + d)l ZD,) = d)()(l + ¢1) + ¢12 ZDt
E[ZD,,] = o1 + &, + ¢ + ¢° ZD, ...

E[ZD,,, | H] = ¢,1 + &, + &> + ... +¢,") + &,7 ZD,
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Under the null hypothesis that the detrending process is correct, then the joint null of no rational
bubbles implies that:

ZS, = 28/ =

t

T
EZD,,, | H)
-1

It follows that (12) and (14) can be solved as:

ZS, =1 +Q+d)+Q+d, +dD+ e + QA+, + 2+ .. + -1
+ (q)1 + ¢12 + .+ ¢1T) ZDt = 60 + 61 ZDt

where: &, =[1 + (1 + ¢) + .. + (1 + &, + .. + D],
= [T + (T-D, + (T-2d-1* + ... + 20,72 + ¢,"'] ¢,

a1 - ¢1)60 ={T - [¢1 + ¢12 + ¢13 Tt ¢1T_1 + ¢1T]} q)o

5. = T _ (I)l(l - ¢1T)
Cla b)) a-ep |
¢1(1 - ¢1T)

Similarly: 6, =
(1 - ¢1)

The derivations make repeated use of the geometric progression.
A further set of restrictions can now be derived from substitution of (12) and (14) into (15):

Z8, = B, + B, (ElZS,,,] + E[ZD,,|]) + v,
=By + B[S + &, (b + &, ZD) + &y + &, ZD] + v,
ZSt+1 = 50 + 61 ZDt+1 + W, - E[ZSt+1] = 50 + 61 E[ZDt+1]

ZD,,, = ¢, + ¢, ZD, + v,,, - ~ E[ZS,,1 = 86, + 8, (b, + ¢, ZD)

ZS, = (By + By 8y + By o + By &) by + (B, 6, &, + By b)) ZD, + v,
=6, + 0, ZD, + w,

Equating coefficients provides the cross equation restrictions stated in (16)-(17).
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ABSTRACT

This paper examines the connection between absence of arbitrage in security prices and
detrending procedures used in empirica tests of discounted dividend models of stock prices. The
convention in these empirical studiesisto invoke some method to detrend price-dividend data in
order to achieve desirable satistical properties, such as covariance sationarity. Other studies have
shown that the detrending process selected involves utility theoretic assumptions about the
underlying pricing equilibrium. Under appropriate assumptions on the state variable probability
distributions sufficient to ensure absence of arbitrage, this paper providesa method for determining
an arbitragefree detrending procedure. Some examplesof closed form detrendersare al so provided.
The paper concludeswith an empirical application of the detrending procedureto testing for rational
bubbles.
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Table 2*
Martingale Tests: Estimation Resultsfor

AX,=0,+0, AX,, + U,

AX Sample 0, 0,
AZ 1871-1997 -.0027 2919
(.0157) (.0853)
AZ 1945-1997 -.0103 -.0523
(.0073) (.1054)
AYD 1871-1997 0151 .3368
(.0235) (.0798)
AYD 1945-1997 -.0027 .0055
(.0036) (.128)
AY 1871-1997 .0409 1297
(.0220) (.0891)
AY 1945-1997 .0874 -.0512
(.0310) (.1420)

* Standard errors are in brackets below estimated coefficient.



Table3

Estimation Resultsfor (12)-(15)*

36

Y Y YD YD
Date 1871-1997 1945-1997 1945-1997 1871-1997
3o 427 -0.3196 .01798 0.1104
(.0558) (0.260) (.0051) (0.0202)
3, 14.95 31.18 14.708 16.796
(0.6612) (4.52) (0.520) (0.282)
by 0.00407 0.00464 .00013 0.00210
(0.0017) (0.00236) (.00050) (0.00176)
ol 0.918 0.921 0.8907 0.9095
(0.0196 (0.041) (.0475) (0.0234)
Bo .0000 0.0676 .0057 0.0256
(.0459) (0.0907) (.0043) (0.0322)
By .969 .9027 .9672 .9493
(0.0268) (.0567) (0.0275) (0.0244)
by 0.0039 0.0048 .00022 0.00128
(0.0017) (0.0024) (.00050) (0.00176)
ol 0.921 0.919 0.8756 0.9273
(0.0196) (0.0411) (.0476) (0.0233)

* Standard errors, given in brackets below the coefficient estimates, are computed from the

guadratic form of the analytic first derivatives.



Table4

Tests of Cross Equation Restrictions, (16) and (17)*

Y Y YD YD
Restriction 1871-1997 | 1945-1997 | 1945-1997 | 1871-1997
5o = {(T/(1-9,)) - -5.770 -3.302 -.0453 -2.780
(6,(1-0,))/(1-0,)% b, (1.640) (0.413) (0.218) (2.064)
X?= 12.38 | X?= 63.83 | X2= 0.433 | X?= 1.818
(P= 0.000) | (P= 0.000) | (P= 0.835) | (P= 0.178)
8o = -1.502 -2.441 -.2574 -0.821
(1.167) (0.875) (0.300) (0.676)
{Bo + Bld)o + 3161¢0)/(1'B1)
X?= 1.656 | X2= 7.780 | X2= 0.734 | X?= 1.477
(P= 0.198) | (P= 0.005) | (P= 0.392) | (P= 0.224)
5, = ($,(1-0,N/(1-¢,) 3.728 19.67 6.582 6.741
(2.931) (8.328) (4.042) (2.932)
X?= 1.618 | X?= 5577 | X2= 2.651 | X?= 5.283
(P= 0.203) | (P= 0.018) | (P= 0.103) | (P= 0.022)
5, = Bydo/(1-Byby) 6.677 26.313 9.179 9.443
(2.639) (2.227) (2.310) (1.904)
X?= 6,402 | X?= 139.6 | X2= 15.78 | X2= 24.59
(P= 0.011) | (P= 0.000) | (P= 0.000) | (P= 0.000)
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*The first value given in each cell is the calculated parameter value defined by the difference
between the rhs and |hs of the restriction evaluated using the estimated coefficients from Table 3.
The value below the parameter estimate is the standard error. The X? value is for the Wald test
that the set of parameter valuesin the restriction are (jointly) zero. The value below the X% isthe

P-value of the statistic.
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NOTES

1. A potential confusion arises with the sometimes conflicting usage of "arbitrage”". The
convention in rational stock pricing modelsis that absence of arbitrage requires "assets are
voluntarily held and that no agent can, given his private information and the information revealed
by prices, increase his expected utility by reallocating his portfolio”. This definition of absence
of arbitrage is much weaker than that encountered in the pricing of derivative securities where an
arbitrage is ariskless trading strategy which generates a positive profit with no net investment of
funds.

2. Onetype of simple security valuation problem which has the form of (1) is the deterministic,
continuous time bond pricing problem, where p(t) is the current bond price, T is the maturity
date, p(T) isthe principal, c(t) isthe continuous coupon paid at t and {V,(t)} isthe associated
discounting operator. Taking the valuation date to be t=0:

ttn

T t
V,(0,7) = exp{ f -7, du} = exp{ f -7, dv} exp{ f -7, dw} = V,(0,) V,(t,t+n)
0 0 t

wherer, is the deterministic continuous interest rate for period i (exp = €).

3. There are some models of rational bubbles which permit the bubble to collapse to zero prior
to the limit being reached, e.g., Evans (1991). This subclass of bubblesis not being considered
here. It isalso possible that the B(t) will increase at such arate that the stock price will be
dominated by the bubble. However, this case is neither necessary or sufficient for there to be a
rationad bubble. Because stock prices cannot go negative, the possibility of the bubble
dominating the price is sometimes used to rule out the possibility of anegative bubble.

4. The cumulative dividend-price process could also be defined as the total return process. The
change in notation from pand d to S and D is intended to recognize the difference between these
variables: Sand D are interest rate detrended while p and d are observed prices and dividends.

5. The substitution of Z(s,t) for Z(S;t), where s represents a specific point realization of S, is
deliberate. This follows because, much like a Taylor series, Ito'slemmainvolves expanding a
function about a specific point.

6. Creating subsamplesis not straight forward. Another practical problem which arisesin
constructing and interpreting the various Z-detrended series is associated with the presence of
initial transients in the various data series: it takes a number of observations from the start of the
detrended series for the process to damp down to an equilibrium state. Thisinitial transient
behaviour is expected, given that the Z(t) are solved by integrating (5) which induces an initial
starting value into the solution. The transient is generic to the pricing problem being examined
and isindependent of the starting value selected.
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7. More precisely, the LSQ routinein TSP was used to estimate the regression equations with
the ANALY Z routine being used to test the cross equation restrictions.



