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ABSTRACT

Since Redington (1952) it has been recognizedtthasical immunization theory fails when shifts
in the term structure are not parallel. Using ipardurations and convexities to specify
immunization bounds for non-parallel shifts in dielurves, Reitano (1991a,b) extended classical
immunization theory to admit non-parallel yield eeishifts, demonstrating that these bounds can
be effectively manipulated by adequate selectiothefsecurities being used to immunize the
portfolio. By exploiting properties of the multivate Taylor series expansion of the spot rate
pricing function, this paper extends this analysigiclude time values permitting a connection to
results obtained by Christiansen and Sorensen J188dnce and Jordan (1996), Barber and Copper
(1997) and Poitras (2005) on the time value-cortydxadeoff.
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paper. The paper has also benefited from the stppthe editor, Ted Moore, through numerous
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| mmunization Bounds, Time Value
and Non-Paralld Yield Curve Shifts

In the seminal work on fixed income immunizati®edington (1952) used a univariate Taylor
series expansion to derive two rules for immunizanigfe insurance company portfolio against a
change in the level of interest rates: match thattn of cash inflows and outflows; and, set the
asset cash flows to have more dispersion thamiétly cash flows around that duration. From that
beginning, a number of improvements to Redingtatéssical immunization rules have been
proposed, aimed at correcting limitations in théssical formulation. Particular attention hasrbee
given to generalizing the classical model to alfownon-parallel shifts in the yield curve, e.g.,
Soto (2004, 2001), Nawalka et al. (2003), Navano Have (2001), Crack and Nawalka (2000),
Balbas and Ibanez (1998) and Bowden (1997). Wimidsst studies aim to identify rules for
specifying portfolios that are immunized againstamtaneous non-parallel shifts, Reitano (1992,
1996) explores the properties of the immunizationrus applicable to non-parallel shifts. In
particular, partial durations and convexities aq@l@ted to identify bounds on gains and losses for
an instantaneous unit shift in the yield curve.e Dibjective of this paper is to extend the partial
duration framework by incorporating time value ofpas into the immunization bound approach.
This extends the results of Christensen and Songi®94), Chance and Jordan (1996), Barber and
Copper (1997) and Poitras (2005) on the time valuerexity tradeoft.
|. Background Literature

Though Redington (1952) recognized that ctasmmunization theory fails when shifts in the
term structure are not parallel, Fisher and W&i7{l) were seminal in situating the problem in a
term structure framework. The development of tépines to address non-parallel yield curve shifts

led to the recognition of a connection between imization strategy specification and the type of
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assumed shocks, e.g., Boyle (1978), Fong and Mag{t684), Chambers et al. (1988).
Sophisticated risk measures, suchMts were developed to select the best duration madchi
portfolio from the set of potential portfolios. &g derived using a specific assumption about the
stochastic process generating the term structuesettheoretically attractive models encountered
difficulties in practice. For example, “minimui? portfolios fail to hedge as effectively as
portfolios including a bond maturing on the horiztate” (Bierwag et al. 1993, p.1165). This line
of empirical research led to the recognition otitesssuch as the ‘duration puzzle’ (Ingersoll 1983;
Bierwag et al. 1993; Soto 2001), where portfoliostaining a maturity-matching bond have smaller
deviations from the promised target return thamation matched portfolios not containing a
maturity-matching bond. These results beg thetiqresare these empirical limitations due to
failings of the stochastic process assumption uyiagr the theoretically derived immunization
measures or is there some deeper property of timeimzation process that is not being accurately
modelled?

Instead of assuming a specific stochastic m®@nd deriving the optimal immunization
conditions, it is possible to leave the procesgaasied and work directly with the properties of
an expansion of the spot rate pricing functioroons related transformation, e.g., Shiu (1987,1990).
Immunization can then proceed by making assumptiased on the empirical behaviour of the
yield curve. Soto (2001) divides these “empirinalltiple factor duration models” into three
categories Polynomial duration model# yield curve movements using a polynomial fuontof
the terms to maturity, e.g., Crack and Nawalka (208oto (2001), or the distance between the
terms to maturity and the planning horizon, e.gwilka et al. (2003Pirectional duration models

identify general risk factors using data reductemhniques such as principal components to capture
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the empirical yield curve behaviour, e.g., Eltoraket(2000), Barber and Copper (1996), Hill and
Vaysman (1998), Navarro and Nave (2001Rartial duration modelsincluding thekey rate
duration modelsdecompose the yield curve into a number of lisegments based on the selection
of key rates, e.g., Ho (1992), Dattareya and Fal{@285), Phoa and Shearer (1997). Whereas the
dimension of polynomial duration models is resattcby the degree of the polynomial and the
directional duration models are restricted by tinber of empirical components or factors that are
identified, e.g., Soto (2004), the number of ketesaused in the partial duration models is
exogenously determined by the desired fit of immation procedure.

Reitano (1991a,b) provides a seminal, if n@ely recognized, analysis of bond portfolio
immunization using the partial duration approadhough Reitano evaluates a multivariate Taylor
series for the asset and liability price functi@pecified using key rates, the approach is more
general. Multiple factors derived from the spaéreurves, bond yield curves, cash flow maturities
or key rates can be used. In particular, this papes a refined spot rate model where each cash
flow is associated with a spot rate. Becausedapgoach can be cumbersome as the number of
future cash flows increases, practical applicationslve factor models, key rates and interpolation
schemes that exogenously determine the dimensidmea$pot rate space, as in Ho (1992) and
Reitano (1992). The advantage of using a spofeatsach cash flow is precision in calculating the
individual partial duration, convexity and time was for the elementary fixed income portfolios that
are being examined. This is appropriate for thplang the theoretical properties of the
immunization problem where the spot rate curveatemge shape, slope and location. While it is
possible to reinterpret the refined spot rate cutvange in terms of a smaller number of fixed

functional factors, this requires some method gfagating the individual cash flows. While such
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aggregation is essential where the number of tesibly random individual cash flows is large, as
in practical applications, analytical precisioreithanced by having a one-to-one correspondence
between spot rates and cash flows.

Defining a norm applicable to a unit paralledlgi curve shift, Reitano exploits Cauchy-Schwarz
and quadratic form inequality restrictions to idgnbounds on the possible deviations from
classical immunization conditions. In other woreigen though classical immunization rules are
violated for non-parallel yield curve shifts, it $$ill possible to put theoretical bounds on the
deviations from the classical outcome and to idetitie specific types of shifts that represent the
greatest loss or gain. This general approachtisimigue to Reitano. Developing the Gateaux
differential approach introduced by Bowden (199albas and Ibanez (1998) rediscover the
possibility of defining such bounds, albeit in dieaative mathematical framework. Balbas and
Ibanez also introduce a novel innovation: a likspersion measure that, when minimized, permits
identification of the 'best’ portfolio within théass of immunizing portfolios. More precisely, a
strategy of matching duration and minimizing thepéirsion measure identifies the portfolio that
will minimize immunization risk and, as a consequesnprovides an optimal upper bound for
possible loss on the portfolio.

Considering only the implications of instantane@on-parallel yield curve shifts, it is difficult
to argue that the partial duration approach totifleng immunization bounds is superior to the
directional duration and polynomial duration moddiowever, when the analysis is extended to
include the time-value convexity tradeoff identifiey Christiansen and Sorensen (1994), Barber
and Copper (1997) and Poitras (2005, ch.5), thiggbduration approach has the desirable feature

of providing a direct relationship between the axity and time value elements of the
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immunization problem. This follows because conixelkias a time value cost associated with the
initial yield curve shape and the expected futath pf spot rates for reinvestment of coupons and
rollover of short-dated principal. Despite theszdil character of the time value decision in aller
fixed income portfolio management, available resoit the time value-convexity tradeoff have been
developed in the classical Fisher-Weil framewonkolming monotonic term structure shifts. By
incorporating time value into the determinationimimunization bounds, the partial duration
approach has the desirable property of allowingndtin to focus on the specifics of non-parallel
yield curve shifts that are of practical interest.
II. The Reitano Partial Duration Model

Even though the ultimate objective will invelfund surplus immunization, the familiar bond
price function specified with spot interest ratB§z), can be used as a basic starting point for

presenting the model:

L C M
P = +
@ gl: 1+z)0 @+2z)

where:P(z)is the price of a bond paying annual coupon payseéris the annual coupoM is the
bond par value, is the spot interest rate (implied zero coupoeridt rate) applicable to cash flows
attimet; t=(1,2,...7T); z= (%, 2,...., %)" is theTx1vector of spot interest rates; ahd the term to
maturity in years. Recognizing thRatis a function of th@ spot interest rates containedzjnt is
possible to apply a multivariate Taylor series ewgian to this bond price formula, that leads

immediately to the concepts of partial duration padial convexity:
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wherez, = (2, ...+, 9" IS theTx1vector of initial spot interest rate, is the partial duration

associated with, the spot interest rate for tifieandCON; is the partial convexity associated with
the spot interest ratesandz, for i,j defined ove(1,2,....TY
Observing that the partial durationgatan be identified with ax1vectorD; = (D, D, .... D))’

and the partial convexities af with a TXT matrix C; with element<C,;, the model proceeds by

i
applying results from the theory of normed lineactor spaces to identify theoretical bound®en
andC;. In the case dd;, the Cauchy-Schwarz inequality is usedorC; the bounds are based on
restrictions on the eigenvalues@fderived from the theory of quadratic forfn3.o access these
results, thalirection vector specified by Reitano is intuitively appealing. Marecisely, taken as
agroup, th€z - 7)) changes in the individual spot interest ratesasgmt shifts in yield curve shape.

These individual changes can be reexpressed gwddect of a direction shift vectoN and a

magnitude/i:
(z - 7o) =n A where N =(n, n,..,n)
It is now possible to express (1) in vector spacmfas
P2 - P(z) _
P(z)

From this, the spot rate curve can be shockedenidimunization bounds derived. The dimension

-Ai [N/ Dg] + Ai2 [N/ C; N]

of N provides a connection to alternative approachésstammunization problem that reformulate
theT dimensional refined spot rate curve in terms siraller (< T ) number of fixed functional

factors. The use of spot rates in the formulatioes differ slightly from shocking the yield curve
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and then deriving the associated change in thergp®tcurve. Using the spot rate approach, it
follows thatN, = (1, 1,...., 1)’represents a parallel shift in the spot rate qumith the size of the
shift determined byi.

Having started with the bond price functidns straight forward to have the analysis encormpas
the basic building blocks of the fixed income politd, the cash flows associated with individual
assets and liabilities. This is accomplished ustiregobjective of surplus immunization, e.g., Shiu
(1987, 1990), Messmore (1990). This objective duesluce a more general and complicated
problem than calculating the partial durations emalvexities for individual assets and liabilities i
isolation. Surplus immunization involves expli@tognition of the balance sheet relationship:
=L + S, whereA is the assets held by the fulhdis the fund liabilities an& is the accumulated
surplus. The objective of immunizing the portfadiorplus,S = A - L, from changes in the term
structure of interest rates requires:

) =

t

L CF - S2 -8 _
1 (1 + ) Sz)

whereD; andC; are now defined for the fund surpl&z) and the cash flows at timeCF,, are the

0=-Ai [N'Df + A [N'C; N (2)

sum of the asset (+) and liability (-) cash flolwattoccur at timé. In this formulation, there is a
singularity whereS(z) = 0. In addition, becaus€F, will be negative when the liability cash
outflow exceeds the asset cash inflow at tiimieis possible for either the duration of surptus
convexity of surplus to take negative values, ddpenon the selected portfolio composition and
yield curve shape.

To derive the classical immunization conditidRegington (1952) uses a zero surplus fuig{z)

=0 —where the present value of assets and lialsitie equal at0. In practice, this specification
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is consistent with a life insurance fund where sheplus is being considered separately. This
classical immunization problem requires the magyuritmposition of an immunized portfolio to be
determined by equating the duration of assets iabdifies. When the fund surplus function is

generalized to allow non-zero values, the immuiopatonditions change to:

S-A-L =» 18 _g_Ap
s

The classical zero surplus immunization result megusetting the duration of assets equal to the
duration of liabilities. This only applies for arp surplus portfolio. Immunization with a non-aer
surplus requires the duration of assets to be eqtia¢ duration of liabilities, multiplied by tinatio

of the market value of assets to the market vailiaklities, D, = (L/A) D,, whereL andA are the
market values of assets and liabilities. As ingidathis more general condition is derived by
differentiating both sides & = A - L, dividing bySand manipulating. A similar comment applies
to convexity, i.e.CON, > (L/A) CON..

Allowing for a non-zero surplus changes the tndui of the classical duration matching and
convexity conditions. Observing that the duratiba portfolio of assets is the value weighted sum
of the individual asset durations, a positive fesadplus with a zero coupon liability allows surplus
immunization using a combination of assets thaetaghorter duration than that of the liability.
As such, surplus immunization for a fund with agégrliability having a duration that is longer than
the duration of any traded asset can be achievaggppriate adjustment of the size of the surplus.
In general, a larger positive fund surplus permighorter duration of assets to immunize a given

liability. Because yield curves typically slope ugd, this result has implications for portfolio
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returns. In the classical immunization framewailch issues do not arise because the force of
interest (Kellison 1991) is a constant and, in evgnt, the force of interest for a zero surplusifun
is unimportant. However, when the interest rate risk of the sigjplas been immunized, the equity
value associated with the surplus will earn a rethat depends on the force of interest function.
This return is measured by the “time value” functie.g., Chance and Jordan (1996). Non-parallel
shifts in the yield curve will alter the time value
[I1. Convexity and Time Value

Following Redington (1952), classical immuniaa requires the satisfaction of both duration
and convexity conditions: duration matching is lieegto be accompanied with higher portfolio
convexity, e.g., Shiu (1990). The convexity regment ensures that, for an instantaneous change
in yields, the market price of assets will outparidhe market price of liabilities. Yet, higher
convexity does have a cost. In particular, wheryikld curve is upward sloping, there is a tratleof
between higher convexity and lower time value (Stensen and Sorensen 1994, Poitras 2005, ch.5).
This connection highlights a limitation of the Tayteries expansion in (1) and (2): the bond price
and fund surplus functions depend on time as gata vector of spot interest rates, Res, P[z,1]
andS = S[z,t] Ifyields do not change, higher convexity wilidly result in a lower portfolio return
due to the impact of time value. Though some @eghas been made in exploring the relationship
between convexity and time value (Chance and Jdtfi86, Barber and Copper 1997), the precise
connection to the calculation of the extreme bowsmgield curve shifts is unclear. The extreme
bounds associated with changes in convexity atendisrom those for duration. How shifts in
extreme bounds for duration and convexity are aasatwith changes in the portfolio composition

and, in turn, to the time value is, at this polatgely unknown.
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Assuming for simplicity that cash flows aredpannually, evaluating the first order term foe th

time value in the surplus functio8(z,t) produces:

CF, In(1 ~+ Z‘)}l N O 3)

@L+z) °S

10S v
Sat {tz:l:

where® = (0,, 0, ...0;) and 0, = (CF,/ S(In(1 +z) / (1 +z)'). The sign on the time value can be
ignored by adjusting time to count backwards, eéx@nging time front=20 tot=19 producesgit =
-1. Taking theflt to be positive permits the negative sign to beigd. Using this convention and
rearranging the expansion in (2) to incorporatetiralue gives the surplus change condition:
2 - S7)
%)

In this formulation, the time value component isleated using (3) with the spot rates observed at

=-Ai [N/ D] + AiZ [N/ C; N] + At [Ny O] (4)

the new location. With a non-zero surplus, saitigfithe surplus immunization condition in (2)
means that the value of the portfolio will incresasethe time value.

One final point arising from the implementataf Reitano’s partial duration model concerns the
associated convexity calculation. Consider theaficalculation of the partial convexity of surplus

CON;,° wherei £ j:

u 3S(2) i CF, P2
S2 = - = . - —==Z =0 for
§ (1 z[)t Z @1z 9% oz

whereCF, is the cash flow at timifor t = (1,2,...T) From (1) and (2), it follows that the quadratic

I

form N' C;° N reduces to:

T T 828(20)
N'C,SN =Y n?CONS =Y n?_1_
T ; t N,t ; t S(ZO) aztz
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In terms of the extreme bounds on convexity (sepefsdix), this is a significant simplification.
Because th&xT convexity matrix is diagonal, the extreme boun@sreow given by the maximum
and minimum diagonalQON;) elements. If the ith element is a maximal eletndre associated
optimal N vector for the convexity bounds isTa1 with a one in thath position and zeroes
elsewhere. Similar to the duration adjustmentcdampareN," C; N; with either the classical
convexity orN, C; N, requires multiplication by.
V. Key Rates, Cash Flow Datesand the Norm

Reitano (1991a, 1992) motivates the analyssiplus immunization with a useful example
involving a portfolio containing a 5 year zero congiability (=$63.97) together with a barbell
combination of two assets, a 12% coupon, ten yead k=$43.02) and 6 month commercial paper
(=$25.65; surplus = $9.28). The initial yield ceiig upward sloping with the vector of yields being
y = (.075, .09, .10) for the 0.5, 5 and 10 year migds. Consistent with the key rate approach:
"Yields at other maturities are assumed to be pateted” (Reitano 1992, p.37). Reitano derives
the vector of partial durations of surplis,, for the three relevant maturity ranges as (43543,
30.88)! It follows, for the parallel shift castl, = (1, 1, 1), thatN, D; = 0 corresponds to the
classical surplus immunization condition: when theation of assets equals the appropriately
weighted duration of liabilities, the duration afrplus is zero. As a consequence, for a parallel
yield curve shift, the change in the portfolio dugpequals zero. To derive the bounds for cases
involving non-parallel shifts, Reitano selects fharallel yield curve shift case as the norming

vector, that involves imposing a standard length of

3
I'Ng = /Ny > Nyl -

t=1
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From this Reitano is able to identify the extrenogifds on the change in the partial duration of
surplus asN*' D; =) -81.78< N' D; < 81.78, that correspond to an estimate derived thenpartial
durations for the max %& from a shift of lengti/ 3. The extreme negative yield curve shift is
identified adN* = (0.167, -1.3, 1.133) and the extreme positivit aB-N*. Similar analysis for the
convexity of surplus produces extreme positiveragghtive bounds of -434.X9N' C; N < 424.04
with associated shifts of (0.049, 0.376, 1.69)' @06, -1.662, 0.379)".

The specification of the three element normiagter for the key rate approach is motivated by
making reference to market reality where it is pctical to match the dimension of the yield
vector with the large number of cash flow dates., #10 (1992) and Phoa and Shearer (1997). Key
rates are used to reduce the dimension of the @atiion problem. Reitano selects an example with
3 relevant key rate maturities, one maturity a@tile to a 5 year zero coupon liability and two
maturities applicable to a 6 month zero coupontassika 10 year coupon bond. Even though there
are partial durations and convexities associatdid thve regular coupon payment dates, only three
maturity dates are incorporated into the analysrs.addition to empirical simplicity, another
advantage of using key rates in Reitano’s modelasthe elements of the extreme shift vector, as
well as the individual partial durations and corities, have a realistic appeararicBecause the
partial durations, convexities and time values déepen the cash flow over a particular payment
period, the aggregation of cash flows to key rat¢unities permits comparable market value to be
used across yield curve segments.

In contrast, the approach in this paper assagsot rate to each cash flow date, without regard
to the size of the payment on that date. Whileighimumbersome in practical applications where

there are a large number of cash flow dates, @rerdistinct theoretical advantages. For example,
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consider Reitano's focus on a three element vedten there is actual®T=20 cash flow payment
dates. While this has the apparent advantagdhbatalculated extreme bound vectors have the
appearance of actual yield curve shifts, it givegnidance as to how far these extreme shifts are
from actual or ‘most likely’ shifts. To see thisynsider the extreme shift vector calculated by
ReitanoN* = (0.167, -1.3, 1.133). The empirical likelihooithis particular shift, or a relatively
similar shift, actually occurring is remote. Whéne yield curve or spot rate vectors are specified
with the actual number of cash flow payments, titecal appearance of the elements of the extreme
shift vector often have a sawtooth pattern thatmseenrealisti¢. However, this is only a
disadvantage if it is the (unlikely) extreme boutits are of interest. If bounds arising from shif
vectors that are empirically determined or ‘mdstlly’ are of interest, then assigning spot rates to
cash flow dates along the yield curve is most r@tuin this case, shift vectors are exogenously
specified, either from empirical @x anteestimates. This approach is developed in se&tlbn
below.
V. The Duration Bounds

Tables 1-3 provide results for the duration ponent of the Taylor series expansion: the
individual partial durations; the elements;, of the extreme shift vectdd*; and the calculated
extreme duration bounds. Convexity and time vahraonents are not considered in Tables 1-3.
Solving for the partial durations, extreme shiittoe and duration bounds requires the specification
of S, AandL. Because there are a theoretically infinite numlb@otential combinations & and
Sthat can immunize a givdn some form of standardization is required. Te #nd, Tables 1-3
have been standardized to have the same market feailthe liability. Tables 1 and 2 involve a 5

year zero coupon liability while Table 3 uses ay&@r annuity with the same market value as the
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5year zero. Table 1 immunizes the liability wathly two assets, a six month zero and a 10 year,
12% semi-annual coupon bond. To illustrate the whpE surplus level on asset portfolio
composition, results for a high surplus and a lawpkis immunizing asset portfolio are provided.
All Tables use the yield curve and spot rates fiahozzi (1993) as the initial baselifie. This
curve is upward sloping with a 558 basis pointetghce between the 6 month (.08) and ten year
(.1358) spot interest rates.

Table 1 reports the partial durations, tifeand extreme duration bounds calculated from the
Cauchy-Schwarz inequality (see Appendix). Comparisf the bounds between the low and high
surplus cases depends crucially on the observtitairthe bounds relate to the percentage change
in the surplus, e.g., an extreme bound of £8.86méze extreme change in surplus is 8.86%. Due
to the smaller position in the 6 month asset,dhgdr bounds for the low surplus case also tramslat
to a slightly larger extreme market value changembompared to the high surplus case. This
result is calculated by multiplying the reportedibd by the size of the surpltis.As expected,
because all cash flow dates are used the extreifb@ettor for durationN*, exhibits a sawtooth
change, with about 80% of the worst shift conceéatt@n a fall in the 5 year yield and 17-20% on
an increase in the 10 year r&teThis is an immediate implication of the limitexpesure to cash
flows in other time periods. However, even in tieisitively simple portfolio management problem,
the n* provide useful information about the worst cakéts With the proviso that the precise
connection to unit shifts is obscured, there ismath loss of content to 'fill in' the sawtoothtpat
as in the ‘key rate’ approach, due to the smaltigladurations in the intervening periods.
Consistent with basic intuition, the worst typesbift has a sizeable fall in midterm rates combined

with smaller, but still significant, rise in longrn rates.
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In using only the 6 month zero and 10 year basmdssets, Table 1 is constructed to be roughly
comparable to the example in Reitano (1991a, 19996). A possible extension to the asset
portfolio is to increase the number of assets ¢tunte a maturity matching bond. The impact of
including such a bond directly addresses a vaaoihie 'duration puzzle', albeit in a situation wene
both portfolios being compared are surplus immuhizEable 2 provides results for two cases with
similar surplus levels but with somewhat differasset compositions. One case increases the
number of assets by including a par bond with aunitgtthat matches that of the zero coupon
liability (T=5). This is referred to as tihaaturity bond portfolio. The other case does not include
the maturity matching bond but, instead, incredsesyumber of assets by including 3 and 7 year
par bonds. This is referred to as gt maturity portfolio. For both portfolios the 1/2 year and
10 year bonds of Table 1 are included, with thetjssin the 10 year bond being the same in both
of the Table 2 asset portfolios. In order to achigurplus immunization, the 1/2 year bond position
is permitted to vary, with the maturity matchingtbolio holding a slightly higher market value of
the 1/2 year assef priori, the split maturity portfolio would seem to haveavantage as four
assets are being used to immunize instead of tee thonds in the maturity matching portfolio.

Given this, the results in Table 2 reveal thatportfolio with the maturity matching bond has
a smaller surplus and much smaller extreme bouvels though more bonds are being selected in
the split maturity portfolio. The partial durat®reveal that, as expected, the presence of aitgatur
matching bond reduces the partial duratioh= compared to the split maturity case. The partia
durations aff=3 andT=7 are proportionately higher in the split matuigse to account for the
difference aff=5. The small difference in the partial duratiaima10 is due solely to the small

difference in the size of the surplus. Examinihg n* reveals that there is not a substantial
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difference in the sensitivity to changes in fivayeates, as might be expected. Rather, the split
maturity portfolio redistributes the interest ramsitivity along the yield curve. In contrasg th
maturity bond portfolio is relatively more expostdchanges in 10 year rates even though the
market value of the 10 year bond is the same ih ass$et portfolios. This greater exposure along
the yield curve by the split maturity portfolio tds in wider extreme duration bounds because the
norming restriction dampens the allowable movermesmy individual interest rate. In other words,
spreading interest rate exposure along the yiatdedoy picking assets across a greater number of
maturities acts to increase the exposure to spetrave shifts of unit length.

Table 3 considers the implications of immumigza liability with a decidedly different cash flow
pattern. In particular, the liability being immuaed is an annuity ovéi=10 with the same market
value as the zero coupon liability in Tables 17he immunizing asset portfolios are a ‘maturity
matching' portfolio similar to that in Table 2 coiming the 6 month zero coupon with 5 year and
10 year bonds. The market value of the 10 yead Imthe same as in the Table 2 asset portfolios.
The other case considered is a ‘low surplus’ pbafsimilar to that of Table 1, containing the 6
month zero and 10 year bond as assets. Table8lssvsignificant relative difference between the
extreme bounds for the two portfolios compared withsimilar portfolios in Tables 1 and 2. The
extreme bound for the low surplus portfolio hasrbesduced to about one third the value of the
bound in Table 1 with thid* vector being dominated by thg value forT=10. The extreme bound
for the maturity bond portfolio has been reducedusy over one half compared to the optimal
bound for the Table 2 portfolio with thi¢* vector being dominated by tim¢ values aff=5 and
T=10. When the extreme bounds for the two portfaliofable 2 are multiplied by the size of the

surplus, there is not much difference in the paatetreme change in the value of the surpluses
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between the two portfolios in Table 3. This hapeecause, unlike the zero coupon 5 year liability
of Table 2, the liability cash flow of the annuisyspread across the term structure and the additio
of the five year asset provides greater coveraffeeafash flow pattern. In the annuity liabiligse,
the dramatic exposure to tie10 rate indicated by the* of the low surplus portfolio is a
disadvantage compared to the maturity bond poatighich distributes the rate exposure between
the T=5 andT=10 year maturities.
V1. Convexity Boundsand Time Value
Table 4 provides incrementally more informatmm the portfolios examined in Tables 1-3.

Certain pieces of relevant information are repefiteth Tables 1-3: the surplus and the extreme
bounds for duration. In addition, Table 4 provitiestime value, the sum of the partial convexities
(No'C; Np), the maximum and minimum partial convexities #mel quadratic form defined by the
duration-optimal-shift convexitie®*'C; N*, whereN* = (n *,....,n/*) is the vector containing the
optimal n*'s from Tables 1-3 an@; is a diagonal matrix with th€ON, elements along the
diagonal®®* The quadratic form calculated using Mefor the duration bound is of interest because
it provides information about whether the convexitypact will be improving or deteriorating the
change in surplus when the extreme duration sbdtis. Using these measures, Table 4 illustrates
the importance of examining the convexity and tivatie information, in conjunction with the
duration results. Of particular interest is thenparison between the maturity matching and thé spli
maturity portfolios of Table 2.

The primary result in Table 2 was that the gpkiturity portfolio had greater potential exposure
to spot rate (yield) curve shifts, as reflectethmmwider extreme bounds associated with a spet rat

curve shift of length one. Whether this was a fpasior negative situation was unclear, as the
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extreme bounds permitted both larger potentialgyas well larger potential losses, for the split
maturity portfolio. Yet, by identifying lower poté&al variability of the surplus of the maturity ban
portfolio, this provides some insight into the dioa puzzle. In this vein, Table 4 also reveadt th
despite having a smaller surplus, the maturity bpofolio has a marginally higher time value.
This happens because, despite having a higheusuapld a smaller holding of the 1/2 year bond,
the split maturity portfolio has to hold a disprofanately larger amount of the three year bond
relative to the higher yielding seven year bondth\&n upward sloping yield curve, this lower time
value is combined with higher convexity, as measured bifC; N,. This is consistent with the
results in Christensen and Sorensen (1994) wheeelaoff between convexity and time value is
proposed, albeit for a classical stochastic mode&lgia single interest rate process to capture the
evolution of the yield curvé. As such, there is a connection in the maturitydoportfolio between
higher time value, lower convexity and smaller exte bounds that is directly relevant to resolving
the ‘duration puzzle'.

Table 4 also provides a number of other ugesults. For example, comparison of the high and
low surplus portfolios from Table 1 adds to theaasions derived from that Table. Itis apparent
that, all other things equal, the time value wiipénd on the size of the surplus. However, as
illustrated in Table 4, the relationship is farrfrdinear: the surpluses of the two portfolios from
Table 1 differ by a factor of 10.9 and the timeues differ by a factor of 2.5. High surplus
portfolios permit a proportionately smaller amowoitthe longer term security to be held with
corresponding impact on all the various measuregi@mation, convexity and time value. In
addition, unlike the classical interpretation oheexity which is often associated with the single

bond case where all cash flows are positive, cabwexkthe surplus can, in general, take negative
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values and, in the extreme cases, these negativesvean be larger than the extreme positive
values. However, this is not always the case vaterced in the Table 3 portfolios where the
liability is an annuity. The absence of a futuability cash flow concentrated in a particularipdr
produces a decided asymmetry in the M2®N and Min CON measures for individuaC,,
convexities, with the Max values being much latgan the absolute value of the Min values. This
is a consequence of the large market value of Ghgedr bond relative to the individual annuity
payments for the liability.
VII. Immunizing Against Specific Shifts

The appropriate procedure for immunizing atfpbio against arbitrary yield curve shifts is
difficult to identify, e.g., Reitano (1996). Someevious efforts that have approached this problem,
e.g,, Fong and Vasicek (1984), have developedidarateasures with weights on future cash flows
depending on a specific stochastic process asstmddve term structure movements. This
introduces 'stochastic process risk' into the imgation problem. If the assumed stochastic process
is incorrect the immunization strategy will not feem as anticipated and may even underperform
portfolios constructed using classical immunizataamditions. In general, short of cash flow
matching, it may not be possible to theoreticallyve the problem of designing f@ractical
immunization strategy that can provide "optimaldtection against arbitrary yield curve shifts. In
the spirit of Hill and Vaysman (1998), it is podsilto evaluate a specific portfolio's sensitivity t
predetermined types of yield curve shifts. In picat applications, this will be sufficient for man
purposes. For example, faced with a steep yietdecwa portfolio manager is likely to be more
concerned about the impact of the yield curvedlatig than with a further steepening. If there is

some prior information about the expected chandedation and shape of the yield curve, it is
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possible to explore the properties of portfolioatteatisfy a surplus immunizing condition at the
initial yield curve location.

The basic procedure for evaluating the impéspecific yield curve shifts requires a spot rate
shift vector(4i) N, = {(z,1- 2.9, (21- 29).....(Z 1 - Z 9} t0 be specified that reflects the anticipated
shift from the initial location &, = (z, , ... o) t0 the target location = (z, ;, z,,...%,). This step
begs an obvious question: what is the correct nadfitreadequately specifyirg? It is well known
that, in order to avoid arbitrage opportunitiesftshin the term structure cannot be set arbityaril
e.g., Boyle (1978). If a stochastic model is usegkenerate shifts, it is required tiNabe consistent
with absence of arbitrage restrictions on the assustochastic model. These restrictions, which
apply to the set of all possible paths generatem the stochastic model, are not needed when the
set of assumed future shifts is restricted to ygeldre movements based on historical experience
or ex anteexpectations. Where such empirical shifts aréonat, relevant restrictions relate to
maintaining consistency between individual spo¢gatin terms of implied forward rates, these

restrictions take the form:
@+ zj)j =1+ zi)i 1+ fi’j)j‘i =1 +2z)1 + fl, J(1 + f2,3)....(1 + fj—l,j)

where the implied forward rates are defined asfL)+= (1 +z)°/ (1 +z) andf, ;= (1 +;)j /(1
+ zj_l)j'i with other forward rates defined appropriatelyislimposes a smoothness requirement on
spot rates restricting the admissible deviatioadjacent spot rates.

In addition to smoothness restrictions on aghaspot rates, the use of the partial duration
approach requires that admissil|ehifts satisfy the norming conditighiN /= 1. In the associated
set of unit length spot rate curve shifts, theeerarmerous shifts which do not satisfy the spe@t rat

smoothness requirement. Because smoothing Vatatke a substantial portion of the unit shift to
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spot rates that have small partial durations, iststg the possible shifts by using smoothness
restrictions tightens the convexity and durationrmts compared to the extreme bounds reported
in Tables 1-4. To illustrate this, three scenafarsshifting the initial yield curve are considdre
flattening with an upward move in level, holdingfi=10 spot rate constant; flattening with a
downward move in level, holding tHie=6 month rate constant; and, flattening with a png
around thd=5 rate, where th€ > 5 year rates fall and tfle< 5 year rates rise. In empirical terms,
these three shift scenarios are plausible unittheskifts. Given these scenarios, what remains is
to specify the elements & for shifts of unit length. The (absence of adg&) smoothness
restrictions require that changes in yield curvepgwill distribute the shift proportionately along
the yield curve. For example, when flattening veithupward move in level, the change inThé
month rate would be largest, with the size of thi# getting proportionately smaller &sncreases,
reaching zero ar=10.

Solving for a factor of proportionality in thegmetric progression, subject to satisfaction ef th
norming condition, produces a number of possibletems, depending on the size of the spot rate

increase at the first step. The following thre# lamgthN, shift vectors were identified:

Time Flatten Flatten Pivot
Up (YCL) Down (YC2) (YC3)
1 0.400 0.000 0.371
2 0.368 -0.090 0.180
3 0.339 -0.097 0.164
4 0.312 -0.106 0.146
5 0.287 -0.115 0.126
6 0.264 -0.125 0.105
7 0.243 -0.136 0.082
8 0.224 -0.147 0.057
9 0.206 -0.160 0.030
10 0.189 -0.174 0.000
11 0.174 -0.189 -0.032

12 0.160 -0.206 -0.067
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13 0.147 -0.224 -0.105
14 0.136 -0.243 -0.146
15 0.125 -0.264 -0.191
16 0.115 -0.287 -0.240
17 0.106 -0.312 -0.293
18 0.097 -0.339 -0.351
19 0.090 -0.368 -0.413
20 0.000 -0.400 -0.481

As in (1) and (2), the actual change in a spesfiot rate requires the magnitude of the shift to be
given. Observing that each of these three scehaxiectors is constructed to satisfy the norming
condition/N /= 1, the empirical implications of this restriatiare apparent. More precisely, unit
length shifts do not make distinction between thestderably higher volatility for changes in short
term rates compared to long term rates. Impositig tnit length shift and smoothness restrictions
on spot rates is not enough to restrict the stteadretically admissible shifts to capture all aspe

of empirical consistency. While it is possible iosp further empirically-based restrictions on the
set of admissible shifts, for present purposes duifficient to work with these three empirically
plausible spot rate curve shift scenarios.

Given the three unit length spot rate curvetshitable 5 provides the calculated values assatiat
with (2) and (3) for the six portfolios of Tables31 Because the initial duration of surplus is
approximately zero and the portfolio convexity,'(C; N,) is positive in all cases, classical
immunization theory predicts that the portfolio@us will not be reduced by interest rate changes.
The information in Table 5 illustrates how the grtluration approach generalizes this classical
immunization result to assumed non-parallel saet curve shifts. Comparison of the siz&ldd;
with the Cauchy bound reveals the dramatic redndt@t smoothness imposes on the potential
change in surplus value. In particular, from @joilows that a negative value for the partial

duration measurl/'D; is associated with ancrease in the value of the fund surplus projected by
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the duration component. All such values in Tab&énegative, consistent witiiD, indicating
all three curve shifts produce an increase in tlaevof surplus. As in Tables 1-3, the changeeén th
surplus from the duration component can be caledlay multiplying the surplus by tiN¢D value
and the assumed shift magnitutle For every portfolio, the YC3 shift produced egler surplus
increase from the duration component than YC1 a@d.YGiven that the YC3 shift decreases the
interest rate for the high duration 10 year assdtdecreases the interest rate for the low duration
6 month asset, this result is not surprising. dntrast, while the YC2 shift increased surplus more
than YC1 in most cases, the reverse result fomidwairity bond portfolio with the annuity liability
indicates that portfolio composition can matter wiige spot rate curve shift is non-parallel.
Following Chance and Jordan (1996) and Poi#t@8%, p.275), interpreting the contribution from
convexity depends on the assumed shift magnittide A positive value for the convexity
componentl’ C; N) indicates an improvement in the surplus changalgtition to the increase
fromN;'D;. For all portfolios, there was small negativetettion from convexity for the spot rate
curve flattening up (YC1). When multiplied by emgally plausible values fatfi? the negative
values are small relative D+, indicating that the additional contribution freenvexity does not
have much additional impact. Results for the sata curve flattening down (YC2) and the pivot
(YC3) produced positive convexity values for allpalios. While for empirically plausible shift
magnitudes the convexity values for the YC2 shédtevalso not large enough to have a substantial
impact on the calculated change in surplus, the Ya3es could have a marginal impact if the shift
magnitudes were large enough. For example, asgutis .01, the 23.7% surplus increase
predicted byN,'D; in the low surplus portfolio in Table 1 is incredsy 1.12% from the convexity

contribution. Also of interest is the magnitudeMNf C; N, relative toN, C; N,. While the
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calculated\;'D; term is small in comparison to the Cauchy bourehefor YC3, the calculateld’
C; N is over half as large &%’ C; N, for YC3 and more than one third the value for YC2.

Results for partial duration and partial contiesiare relevant to the determination of the ckang
in surplus associated with various non-paralldbyieirve shifts. Table 5 also reports resultstier
change in time value for the six portfolios ancethspot rate curve shift scenarios. From (3) and
(4), time value measures the rate of change iauhgus if the yield curve remains unchanged over
atime interval. For portfolios with equal duratiand different convexities, such as those in Table
2, differences in time value reflect the cost ohwexity. For a steep yield curve, the cost of
convexity is high and for a flat yield curve thestof convexity is approximately zero. From (3),
it is apparent that yield curve shifts will alsopatt the time value. While YC1-YC3 all reflect a
flattening of the spot rate curve, the level of¢heve after the shiftis different. In additimecause
the calculation of time value involves discountimfgfuture cash flows, it is not certain that an
upward flattening in the level of the spot rateveu(YC1) will necessarily produce a superior
increase in time value compared to a flattening@tof the curve (YC3).

Significantly, the YC3 shift produced the largiesreases in surplus for all portfolios excet th
high surplus portfolio of Table 1 where the YC1fssproduced the largest increase in time value.
In all cases, the YC2 shift produced the smallestaase in time value. These results are not
apparent from a visual inspection of the differgifts, which appear to favour YC1 where spot
rates increase the most at all maturity datesseBdhow this occurs, consider the partial timeaslu
from the low surplus portfolio in Table 1. For tindial yield curve 0, associated with the largest
cash flows aref , = .186980 ,,=-.97942 and ,, = .30677. For YC3, these values becdme

195130 ,,=-.97942 an@,,=.30990 while for YC1 the values &¢=.19576¢,,=-.98683 and
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0,,=.30677. While the pivot leaves the time valtie liability unchanged and increases the time
value of the principal associated with thel0 yeard) the overall upward shift in rates associated
with YC1 is insufficient to compensate for the niagaimpact of the rate increase for the liability.
Comparing this to the high surplus case where Yatilehsuperior increase in time value compared
to YC3, the initial yield curve values for the higash flow points are, = .056045¢ ,,=-.090227
ando ,, = .026552 which change g = .058678¢ ,, = -.09091 and ,, = .034144 for YC1 and
, =.0584894¢ ,, = -.090227 and ,, = .034493. Because the higher surplus portfadie more
relative asset value, the higher overall levebbtés associated with YC1 can be reflected in the ti
value change

Finally, Table 5 provides further evidencetloa duration puzzle. Based on the results in Table
4, comparison of the maturity matching portfolidiwihe split maturity portfolio reveals the time
value-convexity tradeoff identified by Christensard Sorensen (1994). The higher reported time
value measure for the maturity bond portfolio wkisat by the higher convexity values for the split
maturity portfolio. Under classical conditionsistimplies a superior value change for the split
maturity portfolio if interest rates change suficily. Yet, in Table 5 the maturity matching
portfolio has a larger change in surplus than ghie maturity portfolio for the flattening up shift
(YC1) while retaining the time value advantage asrall three scenarios. However, for both the
flattening down and the pivot shifts, the surplosrease for the split maturity portfolio does
outperform the maturity matching portfolio as exjeelc This is another variant of the duration
puzzle. Because the result does not apply tbetscenarios, this implies that the duration leuzz
is not a general result but, rather, is associatddspecific types of yield curve shifts. If thissult

extends to real time data, the presence of thdidarpuzzle can be attributed to the prevalence of
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certain types of yield curve shifts compared tceotiypes. The presence of the duration puzzle in
the selected scenarios is due to a complicatedactien between the partial durations, partial
convexities and time values. As such, the padiaktion approach is well suited to further
investigation of this puzzle.
VII1l. Conclusion

This paper extends the partial duration, surphraunization model of Reitano (1992, 1996) to
include a measure of the time value. This measaptures the impact of the force of interest
function on the change in fund surplus. The exé&elration and convexity bounds for assessing
the impact of non-parallel yield curve shifts omdusurplus provided in the Reitano model are
examined and it is demonstrated that these bourelsansiderably wider than actual surplus
changes for shifts that are likely to occur. Retnigg that classical immunization is an idealized
objective, the paper provides a range of measutessed on the partial durations, convexities and
time values — that can be used to assess diffamgrgcts of portfolio immunization and return
performance. These measures are used to exammigaat of the ‘duration puzzle’ where the
performance of an immunizing portfolio with a matyimatching bond is compared with that of an
immunizing portfolio without an asset that matcttes maturity of the zero coupon liability. It is
demonstrated that the superior performance of tenity matching bond depends on the type of
assumed shift and is not a general result. Int@ddihe partial duration, convexity and time valu
measures provide more detailed evidence on thedfadbetween convexity and time value
identified by Chance and Jordan (1996), Barber@maper (1997) and others.

In the spirit of Redington (1952), there isansiderable distance to travel from the simple

portfolio illustrations of immunization theory pesged in this paper to the complex risk
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management problems arising in financial institagicsuch as pension funds, life insurance
companies, securities firms and depository institigt (e.g., Poitras 2006). In particular, castvflo
patterns in financial institutions are decidedlyrencomplicated. Not only are the cash flows more
numerous, there is also an element of randomnasssthot easy to model. This paper develops
a theoretical method for capturing the impact ti@t-parallel yield curve shifts and time values
have on fixed income portfolio returns. This imddy increasing the amount of data that is needed
to implement the risk management strategy. Whectsssical duration can make use of the
simplification that the portfolio duration is thalue weighted sum of the durations of the individua
assets and liabilities, the approach used hereresgine net cash flows at each payment date to be
determined. In simple portfolio illustrations thexuirement is not too demanding. However, this
requirement could present problems to a finanes&iitution faced with large numbers of cash flows,
a significant fraction of which may be relativelyaertain. Extending the partial duration approach
to incorporate randomness in cash flows would geWurther insight into practical immunization

problems.
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Appendix
Solution for the Optimal Duration Weightsn,, n,, ...., Ny

The optimization problem is to set tNeweighted sum of the partial durations of surplgsas to
zero, subject to the constraint that M&l equals the norming value. Without loss of geriigral
assume that the norming value is one, which leads t

k k
optL =Y n D - A{). n3} -1
{n} i=1 i=1
This optimization leads tio+ 1 first order conditions in then andi. Observing that the first order
condition for then, can be set equal 62, appropriate substitutions can be made intditsieorder
condition for/ that provides the solution for the individual weig)

Solution for the Optimal Convexity Weightsn,, n,, ...., n:

The optimization problem for convexity involves thigiective function:

opt L.=N'C;N-21(NN -1

{n}
Recognizing thaC; is a real symmetric matrix permits a number otitssfrom Bellman (1960,
Sec.4.4, Sec. 7.2) to be accessed. In partigtil&nis real symmetric then the characteristic roots
will be real and have characteristic vectors (fistidct roots) that are orthogonal. Ordering the
characteristic roots from smallest to largest fttlewing bounds apply to the quadratic foNrC;
N:

Ay2 Ay 2 2 A - A2 N C. N = A;

t

Morrison (1976, p.73) develops these results furthye recognizing that the solution to the
optimization problem corresponds to the definingagopn for characteristic vectof€ - AI]N =

0, where premultiplication b’ and use of the constraint gives= N' C; N. Hence, for the
maximum (and minimum) characteristic root<3pf the optimum shift vector is the characteristic
vector associated with that characteristic root.
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Table 1

32

{n;} and extreme bounds

for the 5 Year Zero Coupon Liability Inmunized
with Hi gh and Low Surpl us Exanpl es*

High Low

Surplus Surplus
Date D . n_ . D, n_.*
0.5 0.687 0.0775 2.292 0.0236
1.0 0.075 0.0085 0.870 0.0089
15 0.107 0.0121 1.238 0.0128
2.0 0.136 0.0153 1.569 0.0162
25 0.161 0.0182 1.863 0.0192
3.0 0.183 0.0206 2.111 0.0217
3.5 0.201 0.0226 2.318 0.0239
4.0 0.214 0.0241 2.472 0.0254
4.5 0.226 0.0255 2.611 0.0269
5.0 -7.933 -0.89545 -86.115 -0.88658
55 0.244 0.0275 2.815 0.0290
6.0 0.246 0.0277 2.837 0.0292
6.5 0.247 0.0279 2.854 0.0294
7.0 0.246 0.0278 2.845 0.0293
7.5 0.243 0.0275 2.810 0.0289
8.0 0.242 0.0273 2.792 0.0287
8.5 0.239 0.0269 2.758 0.0284
9.0 0.231 0.0260 2.664 0.0274
9.5 0.221 0.0249 2.551 0.0263
10.0 3.786 0.42733 43.742 0.45033
Extreme Cauchy = D Cauchy = e
Duration
Bounds: + 8.860% +97.131%
Surplus: 50.75 4.66735

* The market value of the High Surplus Portfolio is

year zero coupon and ($69.89445) 10 year semi-annua
value of the Low Surplus Portfolio is composed of (
($74.343) 10year bonds. The liability for both th

Portfolios is a 5 year zero coupon bond with $150 p
$87.51. The extreme Cauchy bounds are derived usin

composed of ($68.3715) 1/2
| coupon bonds. The market
$17.8382) 1/2 year and
e High Surplus and Low Surplus
ar value and market value of
g IN [=1.
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Table 2

{n} an

d extrene bounds

for the Five Year Zero Coupon Liability Imunized
with the Maturity Bond and Split Maturity Exanpl es*

Maturity

Bond
Date D n
0.5 0.476 0.0183
1.0 0.454 0.0174
1.5 0.646 0.0248
2.0 0.818 0.0314
2.5 0.971 0.0373
3.0 1.101 0.0422
35 1.208 0.0464
4.0 1.288 0.0494
45 1.361 0.0522
5.0 -23.866 -0.91558
5.5 0.636 0.0244
6.0 0.641 0.0246
6.5 0.645 0.0247
7.0 0.643 0.0247
7.5 0.635 0.0244
8.0 0.631 0.0242
8.5 0.623 0.0239
9.0 0.602 0.0231
9.5 0.577 0.0221
10.0 9.884 0.37921
Extreme Cauchy = D
Duration
Bounds: +26.07%
Surplus: 10.32685

Split
Maturity
D _n r
0.251 0.0063
0.446 0.0112
0.635 0.0159
0.804 0.0201
0.955 0.0239
7.737 0.1939
0.834 0.0209
0.889 0.0223
0.939 0.0235
-36.998 -0.92716
1.012 0.0254
1.020 0.0256
1.026 0.0257
8.177 0.2049
0.601 0.0151
0.597 0.0150
0.590 0.0148
0.569 0.0143
0.545 0.0137
9.350 0.23430
Cauchy = 18]
* 39.905%
10.91804

* The market value of the Maturity Bond Portfolio i
year, ($55.54) 5yearand ($37.172) 10 year bonds.
Maturity Portfolio is composed of ($0.4105) 1/2 yea
7 year and ($37.172) 10 year bonds. The liability
with $150 par value and market value of $87.51. Th

derived using | N

I =1

s composed of ($5.13) 1/2
The market value of the Split
r, ($33.8435) 3 year, (27.0)
is a 5 year zero coupon bond
e extreme Cauchy bounds are
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Tabl e 3

Partial durations, {n} and extreme bounds
for the 10 Year Annuity Liability Inmunized with
the Maturity Bond and Low Surpl us Exanpl es*

Maturity Low
Bond Surplus
Date D . n_.* D, n_.*
0.5 1.034 0.0841 2.856 0.0869
1.0 -0.275 -0.0224 -0.705 -0.0214
15 -0.392 -0.0319 -1.003 -0.0305
2.0 -0.497 -0.0404 -1.271 -0.0387
25 -0.590 -0.0480 -1.509 -0.0459
3.0 -0.668 -0.0543 -1.710 -0.0520
3.5 -0.734 -0.0597 -1.877 -0.0571
4.0 -0.782 -0.0636 -2.001 -0.0609
4.5 -0.826 -0.0672 -2.115 -0.0643
5.0 8.257 0.67159 -2.201 -0.0670
55 -1.401 -0.1139 -2.280 -0.0694
6.0 -1.412 -0.1148 -2.298 -0.0699
6.5 -1.420 -0.1155 -2.311 -0.0703
7.0 -1.415 -0.1151 -2.304 -0.0701
7.5 -1.398 -0.1137 -2.276 -0.0693
8.0 -1.389 -0.1130 -2.262 -0.0688
8.5 -1.372 -0.1116 -2.234 -0.0680
9.0 -1.325 -0.1078 -2.157 -0.0656
9.5 -1.269 -0.1032 -2.066 -0.0629
10.0 7.855 0.63888 31.647 0.9629
Extreme Cauchy = D Cauchy = LDl
Duration
Bounds: +12.29% +32.87%
Surplus: 10.5979 4.68
* The market value of the Maturity Bond Portfolio i s composed of ($25.97) 1/2
year, ($34.956) 5 year and ($37.172) 10 year bonds. The market value of the Low
Surplus Portfolio is composed of ($31.388) 1/2 year and ($60.791) 10 year bonds.
The liability has market value of $87.51 with annua | coupon, paid semi-annually,

of $14.96. The extreme bounds are derived using [N | =1.



Ti me Val ues,

TABLE 1 (5 Year Zero Liability)
Surplus

Time Value =2 N 0 @
Ny’ C + Ny

N* C  N*

Max CON

Min CON;

Cauchy Duration Bound

No'D ¢
TABLE 2 (5 Year Zero Liability)
Surplus

Time Value =2 N 0 @
Ny’ C +Ny

N* C 1 N*

Max CON

Min CON;

Cauchy Duration Bound

NoD 7

TABLE 3 (10 Year Annuity Liability)  Maturity Bond

Surplus

Time Value =2 N 0 @
Ny’ C + Ny

N* C  N*

Max CON

Min CON;

Cauchy Duration Bound

No'D ¢
* See Notes to Tables 1-3. Multi

Tabl e 4

High Surplus

Convexity and O her
for the Inmunizing Portfolios*

50.75

0.07118
17.18
-25.34
37.23
-41.34
*+ 8.86%
-0.000

Maturity Bond

10.327

0.0664
42.37
-85.39
97.19
-124.38
+26.07%
-0.025

10.598

0.0724
11.96
21.61
77.23

-11.89
+12.29%
-0.019

plying by 2 to mak

convert semiannual to annual rates, the time value

sum of the partial convexities is N

sum of squares for the relevant N* from Tables 1-3
the appropriate partial convexities. Max CON and Mi
minimum individual partial convexities.
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Measur es

Low Surplus
4.667

0.0278
221.94
-259.59
430.09
-448.79
+97.13%
-0.102

Split Maturity

10.918

0.0648
44.21
-142.06
91.93
-192.81
+ 39.90%
-0.022

Low Surplus
4.68

0.0510
109.34
287.65
311.17
-19.36
+32.86%
-0.077

e appropriate adjustment to
N, @ is definedin (3). The
o'C 1N, The quadratic form, N* C
multiplied term-by-term with

n CON are the maximum and

+N*, isthe
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Table 5

Partial Durations and Convexities
for the Inmmuni zing Portfolios under

Different Yield Curve Shift Assunptions*

TABLE 1 (5 Year Zero Liability)

High Surplus Low Surplus
Surplus 50.75 4.667
YC1 YC2 YC3 YC1 YC2 YC3
N'D ¢ -0.606 -.879 -1.875 -8.205 -11.127 -23.75
N'CTN; -0.828 6.082 9.778 -9.398 71.151 112.23
2N, 6 .09144 .0878 .08922 .0436 .0408 .0554
Cauchy Bound ( |Dy[) 1+8.86% +97.13%
N* C  N* h -25.34 -259.59
Ny'C Ny 17.18 221.94
Time Value=N ' © .07118 .0274
TABLE 2 (5 Year Zero Liability)
Maturity Bond Split Maturity
Surplus 10.327 10.918
YC1 YC2 YC3 YC1 YC2 YC3
N'D ¢ -1.532 -2.328 -4.955 -1.451 -2.478 -5.289
N'CTN; -1.976 15.667 25.489 -2.039 16.281 25.51
2Ny 6 .07274 .06864 .07398 .07108 .06674 .07182
Cauchy Bound ( |Dy[) 1+26.06% 1+39.90%
N* C  N* - -85.39 -142.06
Ny'C Ny 42.37 44.21
Time Value=N /' @ .0664 .0648
TABLE 3 (10 Year Annuity Liability)
Maturity Bond Low Surplus
Surplus 10.598 4.68
YC1 YC2 YC3 YC1 YC2 YC3
N'D ¢ -0.874 -0.638 -1.360 -5.086 -5.287 -11.298
N'CTN; -0.847 5.902 12.01 -5.039 36.520 62.55
2Ny 6 .07736 .07408 .07592 .0616 .0600 .07156
Cauchy Bound ( |Dy[) 112.29% +32.86%
N* C  N* - 21.61 267.49
Ny'C Ny 11.96 109.34
Time Value=N /@ .0724 .0510

* See Notes to Tables 1-3. YCL1 has the spotrate ¢

T=10rate constant; YC2 has the spot rate curve fla

month) rate constant; and, YC3 has a flattening piv

constant. 2N

o ©; annualizes (3) evaluated using the N

urve flattening up, with the
ttening down with the T=.5 (6
ot with the T=5 year rate
i shifted spot rates.
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NOTES

1. Reitano can be credited with introducing tlienge"partial duration”, "partial convexity" and the
"direction vector".

2. H.O.T. refers to higher order terms which will be igrahreThis assumption, which could be
problematic for bonds with special features, sugltall provisions, implies that the discussion
centres on default free, straight bonds. At tlosp it is possible to reduce the dimension of the
vector of spot rates, and the associated partratateves, using key rates or other factors in plac
of spot rates.

3. In applying the Cauchy-Schwarz inequality, Reit recognizes that the extreme bounds are
achieved when the vectors are collinear. In effiaet extreme yield curve shift is calculated and
these values are used to calculate the bounds N&iBg. The result is tighter bounds than those
provided by direct application of the Cauchy-Sctauaiues. In Reitano's case, the upper and lower
Cauchy-Schwarz bounds, calculated from the proditte inner products dff andD, are 303.6
and -303.6, respectively.

4. D’Antonio and Cook (2004) provide a useful osrew of various approaches to the classical
convexity formulas.

5. Shiu (1990, p.171-2) demonstrates that, ircthssical immunization framework, because the
force of interest is constant, the time value eglal a constant.

6. In actuarial science, the terminology ‘forcerérest’ (function) is used in place of ‘time val
(function), e.g., Kellison (1991). Observing thglias the appearance of a Taylor series expansion
of S|z,t], exact determination of the second order Tayloresedaxpansion would involve the
inclusion of the second derivative information tioe time values, i.e., the second cross derivative
terms and the second derivative with respect te,terg., Poitras (2005, p.279-83). Consistent with
a priori reasoning, Chance and Jordan (1996) and Poit@s)hdicate that these terms are likely
to be relatively small. Hence, only informatioarr the first derivative with respect to time isdise

7. These values can be determined directly franfidhmula for the partial duration, taking account
of the relevant par values and, where applicahk coupon cash flows of the various assets and
liabilities as given in Reitano.

8. Identifying key rates as "factors", it is pddsito extend the discussion to include the dioseti
duration models where, instead of key rates, egliyi determined estimates of yield curve slope,
shape and location are used.

9. This is because the size of individual padiaiations and convexities depend on the size of the
cash flow on the payment date. By using key ratatibns and interpolating yields off key rates,
the sawtooth pattern associated with the extremerngnd lower bounds will be smoothed out. If
key rates are not used, then ttfewill reflect the size of the cash flow in peridgsmall cash flow
periods will haven* close to zero and large cash flow periods will ehaglatively largen*.
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Consistent with the approach, in Tables 1-3 it widag possible to aggregate the partial duration
andN elements across cash flow dates and report aesnmalinber of these values.

10. Thispar bond curve has semi-annual yields from 6 months toek'y, i.e.y = (.08, .083, .089,
092, .094, .097, .10, .104, .106, .108, .109,,.11™, .116, .118, .119, .12, .122, 124, .1Zble

6 month and 1 year yields are for zero coupon #gEsirwith the remaining yields applying to par
coupon bonds. This yield curve produces the astatspot rate curve= (.08, .083, .0893, .0925,
.0946, .0979, .1013, .106, .1083, .1107,.1118911186, .1214,.1243, .1256, .1271,.1305, .1341
.1358)".

11. The relevant calculation for the change ipkisvalue with a shift magnitude df= .01 using
the extreme Cauchy bound for the low surplus pheotfeould be (.01)(97.131)(4.66735) = 4.5334.
For the high surplus portfolio the solution is ((&L86)(50.75) = 4.49645.

12. To see this, recall that the length of thét sfeictor is one. As a consequence, the sum of the
squares will equal one and the square of eaAchthe percentage contribution of that particudee r
to the extreme directional shift vector.

13. This follows from the previous discussion éctson Il which identified the off-diagonal
elements as being equal to zero.

14. In these one factor models, the spot intewdss for various maturities are constructed by
taking the product of the generated one periodésteates along each specific paths, treating each
future short term interest rate as a forward ratais will produce the predicted spot rate struetur
for each path, e.g., Fabozzi (1993, Chp.13). Wiskful for generating analytical results, it idlwe
known that such processes cannot capture thednfje of potential term structure behaviour.
Without restrictions on the paths, some paths nmeyder to zero and the average over all the paths
may not equal the actual observed spot interestoat/e.



