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Immunization Bounds, Time Value
 and Non-Parallel Yield Curve Shifts

   In the seminal work on fixed income immunization, Redington (1952) used a univariate Taylor

series expansion to derive two rules for immunizing a life insurance company portfolio against a

change in the level of interest rates: match the duration of cash inflows and outflows; and, set the

asset cash flows to have more dispersion than the liability cash flows around that duration. From that

beginning, a number of improvements to Redington’s classical immunization rules have been

proposed, aimed at correcting limitations in this classical formulation.  Particular attention has been

given to generalizing the classical model to allow for non-parallel shifts in the yield curve, e.g.,

Soto (2004, 2001), Nawalka et al. (2003), Navarro and Nave (2001), Crack and Nawalka (2000),

Balbas and Ibanez (1998) and Bowden (1997).  While most studies aim to identify rules for

specifying portfolios that are immunized against instantaneous non-parallel shifts, Reitano (1992,

1996) explores the properties of the immunization bounds applicable to non-parallel shifts.  In

particular, partial durations and convexities are exploited to identify bounds on gains and losses for

an instantaneous unit shift in the yield curve.  The objective of this paper is to extend the partial

duration framework by incorporating time value changes into the immunization bound approach.

This extends the results of Christensen and Sorensen (1994), Chance and Jordan (1996), Barber and

Copper (1997) and Poitras (2005) on the time value-convexity tradeoff.

I. Background Literature

     Though Redington (1952) recognized that classical immunization theory fails when shifts in the

term structure are not parallel, Fisher and Weil (1971) were seminal in situating the problem in a

term structure framework.  The development of techniques to address non-parallel yield curve shifts

led to the recognition of a connection between immunization strategy specification and the type of
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assumed shocks, e.g., Boyle (1978), Fong and Vasicek (1984), Chambers et al. (1988).

Sophisticated risk measures, such as M2, were developed to select the best duration matching

portfolio from the set of potential portfolios.  Being derived using a specific assumption about the

stochastic process generating the term structure, these theoretically attractive models encountered

difficulties in practice.  For example, “minimum M2 portfolios fail to hedge as effectively as

portfolios including a bond maturing on the horizon date” (Bierwag et al. 1993, p.1165).  This line

of empirical research led to the recognition of results such as the ‘duration puzzle’ (Ingersoll 1983;

Bierwag et al. 1993; Soto 2001), where portfolios containing a maturity-matching bond have smaller

deviations from the promised target return than duration matched portfolios not containing a

maturity-matching bond.  These results beg the question: are these empirical limitations due to

failings of the stochastic process assumption underlying the theoretically derived immunization

measures or is there some deeper property of the immunization process that is not being accurately

modelled?

    Instead of assuming a specific stochastic process and deriving the optimal immunization

conditions, it is possible to leave the process unspecified and work directly with the properties of

an expansion of the spot rate pricing function or some related transformation, e.g., Shiu (1987,1990).

Immunization can then proceed by making assumptions based on the empirical behaviour of the

yield curve.  Soto (2001) divides these “empirical multiple factor duration models” into three

categories.  Polynomial duration models fit yield curve movements using a polynomial function of

the terms to maturity, e.g., Crack and Nawalka (2000), Soto (2001), or the distance between the

terms to maturity and the planning horizon, e.g., Nawalka et al. (2003). Directional duration models

identify general risk factors using data reduction techniques such as principal components to capture
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the empirical yield curve behaviour, e.g., Elton et al. (2000), Barber and Copper (1996), Hill and

Vaysman (1998), Navarro and Nave (2001).   Partial duration models, including the key rate

duration models, decompose the yield curve into a number of linear segments based on the selection

of key rates, e.g., Ho (1992), Dattareya and Fabozzi (1995), Phoa and Shearer (1997).  Whereas the

dimension of polynomial duration models is restricted by the degree of the polynomial and the

directional duration models are restricted by the number of empirical components or factors that are

identified, e.g., Soto (2004), the number of key rates used in the partial duration models is

exogenously determined by the desired fit of immunization procedure.

     Reitano (1991a,b) provides a seminal, if not widely recognized, analysis of bond portfolio

immunization using the partial duration approach.1  Though Reitano evaluates a multivariate Taylor

series for the asset and liability price functions specified using key rates, the approach is more

general.  Multiple factors derived from the spot rate curves, bond yield curves, cash flow maturities

or key rates can be used.  In particular, this paper uses a refined spot rate model where each cash

flow is associated with a spot rate.  Because this approach can be cumbersome as the number of

future cash flows increases, practical applications involve factor models, key rates and interpolation

schemes that exogenously determine the dimension of the spot rate space, as in Ho (1992) and

Reitano (1992).  The advantage of using a spot rate for each cash flow is precision in calculating the

individual partial duration, convexity and time values for the elementary fixed income portfolios that

are being examined.  This is appropriate for the exploring the theoretical properties of the

immunization problem where the spot rate curve can change shape, slope and location.  While it is

possible to reinterpret the refined spot rate curve change in terms of a smaller number of fixed

functional factors, this requires some method of aggregating the individual cash flows.  While such
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aggregation is essential where the number of the possibly random individual cash flows is large, as

in practical applications, analytical precision is enhanced by having a one-to-one correspondence

between spot rates and cash flows.

   Defining a norm applicable to a unit parallel yield curve shift, Reitano exploits Cauchy-Schwarz

and quadratic form inequality restrictions to identify bounds on the possible deviations from

classical immunization conditions.  In other words, even though classical immunization rules are

violated for non-parallel yield curve shifts, it is still possible to put theoretical bounds on the

deviations from the classical outcome and to identify the specific types of shifts that represent the

greatest loss or gain.  This general approach is not unique to Reitano.  Developing the Gateaux

differential approach introduced by Bowden (1997), Balbas and Ibanez (1998) rediscover the

possibility of defining such bounds, albeit in an alternative mathematical framework.  Balbas and

Ibanez also introduce a novel innovation: a linear dispersion measure that, when minimized, permits

identification of the 'best' portfolio within the class of immunizing portfolios.  More precisely, a

strategy of matching duration and minimizing the dispersion measure identifies the portfolio that

will minimize immunization risk and, as a consequence, provides an optimal upper bound for

possible loss on the portfolio.  

   Considering only the implications of instantaneous non-parallel yield curve shifts, it is difficult

to argue that the partial duration approach to identifying immunization bounds is superior to the

directional duration and polynomial duration models.  However, when  the analysis is extended to

include the time-value convexity tradeoff identified by Christiansen and Sorensen (1994), Barber

and Copper (1997) and Poitras (2005, ch.5), the partial duration approach has the desirable feature

of providing a direct relationship between the convexity and time value elements of the
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immunization problem.  This follows because convexity has a time value cost associated with the

initial yield curve shape and the expected future path of spot rates for reinvestment of coupons and

rollover of short-dated principal.  Despite the essential character of the time value decision in overall

fixed income portfolio management, available results on the time value-convexity tradeoff have been

developed in the classical Fisher-Weil framework involving monotonic term structure shifts.  By

incorporating time value into the determination of immunization bounds, the partial duration

approach has the desirable property of allowing attention to focus on the specifics of non-parallel

yield curve shifts that are of practical interest.

II. The Reitano Partial Duration Model

     Even though the ultimate objective will involve fund surplus immunization, the familiar bond

price function specified with spot interest rates, P(z), can be used as a basic starting point for

presenting the model:

P(z) ' j
T

t'1

C

(1 % zt)
t
%

M

(1 % zT)
T

where: P(z) is the price of a bond paying annual coupon payments; C is the annual coupon; M is the

bond par value; zt is the spot interest rate (implied zero coupon interest rate) applicable to cash flows

at time t; t = (1,2,...T); z = (z1, z2,...., zT)' is the Tx1 vector of spot interest rates; and T is the term to

maturity in years.  Recognizing that P is a function of the T spot interest rates contained in z, it is

possible to apply a multivariate Taylor series expansion to this bond price formula, that leads

immediately to the concepts of partial duration and partial convexity:
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where z0 = (z1,0, z2,0,...., zT,0)' is the Tx1 vector of initial spot interest rates, Dt is the partial duration

associated with zt, the spot interest rate for time t, and CONi,j is the partial convexity associated with

the spot interest rates zi and zj for i,j  defined over (1,2,....T).2

     Observing that the partial durations at z0 can be identified with a Tx1 vector DT = (D1, D2, .... DT)'

and the partial convexities at z0 with a TxT matrix CT with elements Ci,j, the model proceeds by

applying results from the theory of normed linear vector spaces to identify theoretical bounds on DT

and CT.  In the case of DT, the Cauchy-Schwarz inequality is used.3  For CT  the bounds are based on

restrictions on the eigenvalues of CT derived from the theory of quadratic forms.4  To access these

results, the direction vector specified by Reitano is intuitively appealing.  More precisely, taken as

a group, the (zt - z0,t) changes in the individual spot interest rates represent shifts in yield curve shape.

These individual changes can be reexpressed as the product of a direction shift vector  N and a

magnitude ∆i:

(zt & zt,0) ' nt )i where: N ' (n1, n2,...., nT)
)

It is now possible to express (1) in vector space form as

P(z) & P(z0)

P(z0)
– &)i [N ) DT] % )i 2 [N ) CT N]

From this, the spot rate curve can be shocked and the immunization bounds derived.  The dimension

of N provides a connection to alternative approaches to the immunization problem that reformulate

the T dimensional refined spot rate curve in terms of a smaller ( < T ) number of fixed functional

factors.  The use of spot rates in the formulation does differ slightly from shocking the yield curve
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and then deriving the associated change in the spot rate curve.  Using the spot rate approach, it

follows that N0 = (1, 1,...., 1)’ represents a parallel shift in the spot rate curve, with the size of the

shift determined by ∆i.

     Having started with the bond price function, it is straight forward to have the analysis encompass

the basic building blocks of the fixed income portfolio, the cash flows associated with individual

assets and liabilities.  This is accomplished using the objective of surplus immunization, e.g., Shiu

(1987, 1990), Messmore (1990).  This objective does produce a more general and complicated

problem than calculating the partial durations and convexities for individual assets and liabilities in

isolation.  Surplus immunization involves explicit recognition of the balance sheet relationship: A

= L + S, where A is the assets held by the fund, L is the fund liabilities and S is the accumulated

surplus.  The objective of immunizing the portfolio surplus, S = A - L, from changes in the term

structure of interest rates requires:

S(z) ' j
T

t'1

CFt

(1 % zt)
t

6
S(z) & S(z0)

S(z0)
' 0 –&)i [N ) DT] % )i2 [N ) CT N] (2)

where DT and CT are now defined for the fund surplus, S(z), and the cash flows at time t, CFt, are the

sum of the asset (+) and liability (-) cash flows that occur at time t.  In this formulation, there is a

singularity where S(z0 ) = 0.   In addition, because CFt will be negative when the liability cash

outflow exceeds the asset cash inflow at time t, it is possible for either the duration of surplus or

convexity of surplus to take negative values, depending on the selected portfolio composition and

yield curve shape.

   To derive the classical immunization conditions, Redington (1952) uses a zero surplus fund –  S(z0)

= 0 – where the present value of assets and liabilities are equal at t=0.  In practice, this specification
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is consistent with a life insurance fund where the surplus is being considered separately.  This

classical immunization problem requires the maturity composition of an immunized portfolio to be

determined by equating the duration of assets and liabilities.  When the fund surplus function is

generalized to allow non-zero values, the immunization conditions change to:

S ' A & L ö
1
S

dS
dt

' 0 '
A
S

DA &
L
S

DL ö DA '
L
A

DL

The classical zero surplus immunization result requires setting the duration of assets equal to the

duration of liabilities.  This only applies for a zero surplus portfolio.  Immunization with a non-zero

surplus requires the duration of assets to be equal to the duration of liabilities, multiplied by the ratio

of the market value of assets to the market value of liabilities, DA = (L/A) DL, where L and A are the

market values of assets and liabilities.  As indicated, this more general condition is derived by

differentiating both sides of S = A - L, dividing by S and manipulating.  A similar comment applies

to convexity, i.e., CONA > (L/A) CONL..

  Allowing for a non-zero surplus changes the intuition of the classical duration matching and

convexity conditions. Observing that the duration of a portfolio of assets is the value weighted sum

of the individual asset durations, a positive fund surplus with a zero coupon liability allows surplus

immunization using a combination of assets that have a shorter duration than that of the liability.

As such, surplus immunization for a fund with a single liability having a duration that is longer than

the duration of any traded asset can be achieved by appropriate adjustment of the size of the surplus.

In general, a larger positive fund surplus permits a shorter duration of assets to immunize a given

liability. Because yield curves typically slope upward, this result has implications for portfolio
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returns.  In the classical immunization framework, such issues do not arise because the force of

interest (Kellison 1991) is a constant and, in any event, the force of interest for a zero surplus fund

is unimportant.5  However, when the interest rate risk of the surplus has been immunized, the equity

value associated with the surplus will earn a return that depends on the force of interest function.

This return is measured by the “time value” function, e.g., Chance and Jordan (1996).  Non-parallel

shifts in the yield curve will alter the time value.

III.  Convexity and Time Value

     Following Redington (1952), classical immunization requires the satisfaction of both duration

and convexity conditions: duration matching is required to be accompanied with higher portfolio

convexity, e.g., Shiu (1990).  The convexity requirement ensures that, for an instantaneous change

in yields, the market price of assets will outperform the market price of liabilities.  Yet, higher

convexity does have a cost.  In particular, when the yield curve is upward sloping, there is a tradeoff

between higher convexity and lower time value (Christensen and Sorensen 1994, Poitras 2005, ch.5).

This connection highlights a limitation of the Taylor series expansion in (1) and (2): the bond price

and fund surplus functions depend on time as well as the vector of spot interest rates, i.e., P = P[z,t]

and S = S[z,t].  If yields do not change, higher convexity will likely result in a lower portfolio return

due to the impact of time value.  Though some progress has been made in exploring the relationship

between convexity and time value (Chance and Jordan 1996, Barber and Copper 1997), the precise

connection to the calculation of the extreme bounds on yield curve shifts is unclear.  The extreme

bounds associated with changes in convexity are distinct from those for duration.  How shifts in

extreme bounds for duration and convexity are associated with changes in the portfolio composition

and, in turn, to the time value is, at this point, largely unknown.
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     Assuming for simplicity that cash flows are paid annually, evaluating the first order term for the

time value in the surplus function, S(z,t), produces:6

1
S
MS
Mt

' &{j
T

t'1

CFt ln(1 % zt)

(1 % zt)
t

} 1
S

' N0
) 1 (3)

where Θ = (θ1, θ2, ... θT) and  θt = (CFt / S)(ln(1 + zt) / (1 + zt)
t ).  The sign on the time value can be

ignored by adjusting time to count backwards, e.g, changing time from t=20 to t=19 produces ∆t =

-1.  Taking the ∆t to be positive permits the negative sign to be ignored.  Using this convention and

rearranging the expansion in (2) to incorporate time value gives the surplus change condition:

S(z) & S(z0)

S(z0)
–&)i [N ) DT] % )i2 [N ) CT N] % )t [N )

0 1] (4)

In this formulation, the time value component is evaluated using (3) with the spot rates observed at

the new location.  With a non-zero surplus, satisfying the surplus immunization condition in (2)

means that the value of the portfolio will increase by the time value.

     One final point arising from the implementation of Reitano’s partial duration model concerns the

associated convexity calculation.  Consider the direct calculation of the partial convexity of surplus,

CONi,j
S, where i =/  j :

S(z) ' j
T

t'1

CFt

(1 % zt)
t

6
MS(z)
Mzi

'
i CFi

(1 % zi)
i%1

6
M2S(z)
Mzi Mzj

' 0 for i … j

where CFt is the cash flow at time t for t = (1,2,...T).  From (1) and (2), it follows that the quadratic

form N' CT
S N reduces to:

N ) CT
S N ' j

T

t'1
nt

2 CONt,t
S
' j

T

t'1
nt

2 1
S(z0)

M2S(z0)

Mzt
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In terms of the extreme bounds on convexity (see Appendix), this is a significant simplification.

Because the TxT convexity matrix is diagonal, the extreme bounds are now given by the maximum

and minimum diagonal (CONi,i) elements.  If the ith element is a maximal element, the associated

optimal N vector for the convexity bounds is a Tx1 with a one in the ith  position and zeroes

elsewhere.  Similar to the duration adjustment, to compare N1' CT N1 with either the classical

convexity or N0' CT N0 requires multiplication by T.

IV. Key Rates, Cash Flow Dates and the Norm

     Reitano (1991a, 1992) motivates the analysis of surplus immunization with a useful example

involving a portfolio containing a 5 year zero coupon liability (=$63.97) together with a barbell

combination of two assets, a 12% coupon, ten year bond (=$43.02) and 6 month commercial paper

(=$25.65; surplus = $9.28).  The initial yield curve is upward sloping with the vector of yields being

y = (.075, .09, .10) for the 0.5, 5 and 10 year maturities.  Consistent with the key rate approach:

"Yields at other maturities are assumed to be interpolated" (Reitano 1992, p.37).  Reitano derives

the vector of partial durations of surplus, DT , for the three relevant maturity ranges as (4.55, -35.43,

30.88).7  It follows, for the parallel shift case, N0 = (1, 1, 1)', that N0' DT = 0 corresponds to the

classical surplus immunization condition: when the duration of assets equals the appropriately

weighted duration of liabilities, the duration of surplus is zero.  As a consequence, for a parallel

yield curve shift, the change in the portfolio surplus equals zero.  To derive the bounds for cases

involving non-parallel shifts, Reitano selects the parallel yield curve shift case as the norming

vector, that involves imposing a standard length of:

2 N0 2 ' N0
) N0 ' j

3

t'1
n0,t

2
' 3
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From this Reitano is able to identify the extreme bounds on the change in the partial duration of

surplus as (N*' DT =) -81.78 # N' DT # 81.78, that correspond to an estimate derived from the partial

durations for the max %∆S from a shift of length /3.  The extreme negative yield curve shift is

identified as N* = (0.167, -1.3, 1.133) and the extreme positive shift as -N*.  Similar analysis for the

convexity of surplus produces extreme positive and negative bounds of -434.15 # N' CT N # 424.04

with associated shifts of (0.049, 0.376, 1.69)' and (-.306, -1.662, 0.379)'.

   The specification of the three element norming vector for the key rate approach is motivated by

making reference to market reality where it is not practical to match the dimension of the yield

vector with the large number of cash flow dates, e.g., Ho (1992) and Phoa and Shearer (1997).  Key

rates are used to reduce the dimension of the optimization problem.  Reitano selects an example with

3 relevant key rate maturities, one maturity applicable to a 5 year zero coupon liability and two

maturities applicable to a 6 month zero coupon asset and a 10 year coupon bond.  Even though there

are partial durations and convexities associated with the regular coupon payment dates, only three

maturity dates are incorporated into the analysis.  In addition to empirical simplicity, another

advantage of using key rates in Reitano’s model is that the elements of the extreme shift vector, as

well as the individual partial durations and convexities, have a realistic appearance.8  Because the

partial durations, convexities and time values depend on the cash flow over a particular payment

period, the aggregation of cash flows to key rate maturities permits comparable market value to be

used across yield curve segments.

   In contrast, the approach in this paper assigns a spot rate to each cash flow date, without regard

to the size of the payment on that date. While this is cumbersome in practical applications where

there are a large number of cash flow dates, there are distinct theoretical advantages.  For example,
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consider Reitano's focus on a three element vector when there is actually 2T=20 cash flow payment

dates.  While this has the apparent advantage that the calculated extreme bound vectors have the

appearance of actual yield curve shifts, it gives no guidance as to how far these extreme shifts are

from actual or ‘most likely’ shifts.  To see this, consider the extreme shift vector calculated by

Reitano, N* = (0.167, -1.3, 1.133).  The empirical likelihood of this particular shift, or a relatively

similar shift, actually occurring is remote.  Where the yield curve or spot rate vectors are specified

with the actual number of cash flow payments, the optical appearance of the elements of the extreme

shift vector often have a sawtooth pattern that seems unrealistic.9  However, this is only a

disadvantage if it is the (unlikely) extreme bounds that are of interest.  If bounds arising from shift

vectors that are empirically determined or ‘most likely’ are of interest, then assigning spot rates to

cash flow dates along the yield curve is most natural.  In this case, shift vectors are exogenously

specified, either from empirical or ex ante estimates.  This approach is developed in section VII

below.

V. The Duration Bounds

    Tables 1-3 provide results for the duration component of the Taylor series expansion: the

individual partial durations; the elements, nt*, of the extreme shift vector N*; and the calculated

extreme duration bounds. Convexity and time value components are not considered in Tables 1-3.

Solving for the partial durations, extreme shift vector and duration bounds requires the specification

of S, A and L.  Because there are a theoretically infinite number of potential combinations of A and

S that can immunize a given L, some form of standardization is required.  To this end, Tables 1-3

have been standardized to have the same market value for the liability.  Tables 1 and 2 involve a 5

year zero coupon liability while Table 3 uses a 10 year annuity with the same market value as the
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5 year zero.   Table 1 immunizes the liability with only two assets, a six month zero and a 10 year,

12% semi-annual coupon bond. To illustrate the impact of surplus level on asset portfolio

composition, results for a high surplus and a low surplus immunizing asset portfolio are provided.

All Tables use the yield curve and spot rates from Fabozzi (1993) as the initial baseline.10   This

curve is upward sloping with a 558 basis point difference between the 6 month (.08) and ten year

(.1358) spot interest rates.

   Table 1 reports the partial durations, the nt* and extreme duration bounds calculated from the

Cauchy-Schwarz inequality (see Appendix).  Comparison of the bounds between the low and high

surplus cases depends crucially on the observation that the bounds relate to the percentage change

in the surplus, e.g., an extreme bound of ±8.86 means the extreme change in surplus is 8.86%.  Due

to the smaller position in the 6 month asset, the larger bounds for the low surplus case also translate

to a slightly larger extreme market value change when compared to the high surplus case.  This

result is calculated by multiplying the reported bound by the size of the surplus.11  As expected,

because all cash flow dates are used the extreme shift vector for duration, N*, exhibits a sawtooth

change, with about 80% of the worst shift concentrated on a fall in the 5 year yield and 17-20% on

an increase in the 10 year rate.12  This is an immediate implication of the limited exposure to cash

flows in other time periods.  However, even in this relatively simple portfolio management problem,

the nt* provide useful information about the worst case shift.  With the proviso that the precise

connection to unit shifts is obscured, there is not much loss of content to 'fill in' the sawtooth pattern

as in the ‘key rate’ approach, due to the small partial durations in the intervening periods.

Consistent with basic intuition, the worst type of shift has a sizeable fall in midterm rates combined

with smaller, but still significant, rise in long term rates.
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   In using only the 6 month zero and 10 year bond as assets, Table 1 is constructed to be roughly

comparable to the example in Reitano (1991a, 1992, 1996).  A possible extension to the asset

portfolio is to increase the number of assets to include a maturity matching bond.  The impact of

including such a bond directly addresses a variant of the 'duration puzzle', albeit in a situation where

both portfolios being compared are surplus immunized.  Table 2 provides results for two cases with

similar surplus levels but with somewhat different asset compositions.  One case increases the

number of assets by including a par bond with a maturity that matches that of the zero coupon

liability (T=5).  This is referred to as the maturity bond portfolio.  The other case does not include

the maturity matching bond but, instead, increases the number of assets by including 3 and 7 year

par bonds.  This is referred to as the split maturity portfolio.  For both portfolios the 1/2 year and

10 year bonds of Table 1 are included, with the position in the 10 year bond being the same in both

of the Table 2 asset portfolios.  In order to achieve surplus immunization, the 1/2 year bond position

is permitted to vary, with the maturity matching portfolio holding a slightly higher market value of

the 1/2 year asset.  A priori, the split maturity portfolio would seem to have an advantage as four

assets are being used to immunize instead of the three bonds in the maturity matching portfolio.

     Given this, the results in Table 2 reveal that the portfolio with the maturity matching bond has

a smaller surplus and much smaller extreme bounds even though more bonds are being selected in

the split maturity portfolio.  The partial durations reveal that, as expected, the presence of a maturity

matching bond reduces the partial duration at T=5 compared to the split maturity case.  The partial

durations at T=3 and T=7 are proportionately higher in the split maturity case to account for the

difference at T=5.  The small difference in the partial duration at T=10 is due solely to the small

difference in the size of the surplus.  Examining the nt*  reveals that there is not a substantial
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difference in the sensitivity to changes in five year rates, as might be expected.  Rather, the split

maturity portfolio redistributes the interest rate sensitivity along the yield curve.  In contrast, the

maturity bond portfolio is relatively more exposed to changes in 10 year rates even though the

market value of the 10 year bond is the same in both asset portfolios.  This greater exposure along

the yield curve by the split maturity portfolio results in wider extreme duration bounds because the

norming restriction dampens the allowable movement in any individual interest rate.  In other words,

spreading interest rate exposure along the yield curve by picking assets across a greater number of

maturities acts to increase the exposure to spot rate curve shifts of unit length.

     Table 3 considers the implications of immunizing a liability with a decidedly different cash flow

pattern.  In particular, the liability being immunized is an annuity over T=10 with the same market

value as the zero coupon liability in Tables 1-2.  The immunizing asset portfolios are a ‘maturity

matching' portfolio similar to that in Table 2 combining the 6 month zero coupon with 5 year and

10 year bonds.  The market value of the 10 year bond is the same as in the Table 2 asset portfolios.

The other case considered is a ‘low surplus’ portfolio, similar to that of Table 1, containing the 6

month zero and 10 year bond as assets.  Table 3 reveals a significant relative difference between the

extreme bounds for the two portfolios compared with the similar portfolios in Tables 1 and 2.  The

extreme bound for the low surplus portfolio has been reduced to about one third the value of the

bound in Table 1 with the N* vector being dominated by the nt* value for T=10.  The extreme bound

for the maturity bond portfolio has been reduced by just over one half compared to the optimal

bound for the Table 2 portfolio with the N* vector being dominated by the nt* values at T=5 and

T=10. When the extreme bounds for the two portfolios in Table 2 are multiplied by the size of the

surplus, there is not much difference in the potential extreme change in the value of the surpluses
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between the two portfolios in Table 3.  This happens because, unlike the zero coupon 5 year liability

of Table 2, the liability cash flow of the annuity is spread across the term structure and the addition

of the five year asset provides greater coverage of the cash flow pattern.  In the annuity liability case,

the dramatic exposure to the T=10 rate indicated by the nt* of the low surplus portfolio is a

disadvantage compared to the maturity bond portfolio which distributes the rate exposure between

the T=5 and T=10 year maturities.

VI. Convexity Bounds and Time Value

   Table 4 provides incrementally more information on the portfolios examined in Tables 1-3.

Certain pieces of relevant information are repeated from Tables 1-3: the surplus and the extreme

bounds for duration. In addition, Table 4 provides the time value, the sum of the partial convexities

(N0'CT N0), the maximum and minimum partial convexities and the quadratic form defined by the

duration-optimal-shift convexities, N*'CT N*, where N* = (n1*,....,nT*)  is the vector containing the

optimal n*'s from Tables 1-3 and CT is a diagonal matrix with the CONt,t elements along the

diagonal.13  The quadratic form calculated using the N* for the duration bound is of interest because

it provides information about whether the convexity impact will be improving or deteriorating the

change in surplus when the extreme duration shift occurs.  Using these measures, Table 4 illustrates

the importance of examining the convexity and time value information, in conjunction with the

duration results.  Of particular interest is the comparison between the maturity matching and the split

maturity portfolios of Table 2.

   The primary result in Table 2 was that the split maturity portfolio had greater potential exposure

to spot rate (yield) curve shifts, as reflected in the wider extreme bounds associated with a spot rate

curve shift of length one.  Whether this was a positive or negative situation was unclear, as the
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extreme bounds permitted both larger potential gains, as well larger potential losses, for the split

maturity portfolio. Yet, by identifying lower potential variability of the surplus of the maturity bond

portfolio, this provides some insight into the duration puzzle.  In this vein, Table 4 also reveals that,

despite having a smaller surplus, the maturity bond portfolio has a marginally higher time value.

This happens because, despite having a higher surplus and a smaller holding of the 1/2 year bond,

the split maturity portfolio has to hold a disproportionately larger amount of the three year bond

relative to the higher yielding seven year bond.  With an upward sloping yield curve, this lower time

value is combined with a higher convexity, as measured by N0'CT N0.  This is consistent with the

results in Christensen and Sorensen (1994) where a tradeoff between convexity and time value is

proposed, albeit for a classical stochastic model using a single interest rate process to capture the

evolution of the yield curve.14  As such, there is a connection in the maturity bond portfolio between

higher time value, lower convexity and smaller extreme bounds that is directly relevant to resolving

the ‘duration puzzle’.

     Table 4 also provides a number of other useful results.  For example, comparison of the high and

low surplus portfolios from Table 1 adds to the conclusions derived from that Table.  It is apparent

that, all other things equal, the time value will depend on the size of the surplus. However, as

illustrated in Table 4, the relationship is far from linear: the surpluses of the two portfolios from

Table 1 differ by a factor of 10.9 and the time values differ by a factor of 2.5.  High surplus

portfolios permit a proportionately smaller amount of the longer term security to be held with

corresponding impact on all the various measures for duration, convexity and time value.  In

addition, unlike the classical interpretation of convexity which is often associated with the single

bond case where all cash flows are positive, convexity of the surplus can, in general, take negative
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values and, in the extreme cases, these negative values can be larger than the extreme positive

values.  However, this is not always the case, as evidenced in the Table 3 portfolios where the

liability is an annuity.  The absence of a future liability cash flow concentrated in a particular period

produces a decided asymmetry in the Max CON and Min CON measures for individual Ct,t

convexities, with the Max values being much larger than the absolute value of the Min values.  This

is a consequence of the large market value of the 10 year bond relative to the individual annuity

payments for the liability.

VII. Immunizing Against Specific Shifts

     The appropriate procedure for immunizing a portfolio against arbitrary yield curve shifts is

difficult to identify, e.g., Reitano (1996).  Some previous efforts that have approached this problem,

e.g,, Fong and Vasicek (1984), have developed duration measures with weights on future cash flows

depending on a specific stochastic process assumed to drive term structure movements.  This

introduces 'stochastic process risk' into the immunization problem.  If the assumed stochastic process

is incorrect the immunization strategy will not perform as anticipated and may even underperform

portfolios constructed using classical immunization conditions.  In general, short of cash flow

matching, it may not be possible to theoretically solve the problem of designing a practical

immunization strategy that can provide "optimal" protection against arbitrary yield curve shifts.  In

the spirit of Hill and Vaysman (1998), it is possible to evaluate a specific portfolio's sensitivity to

predetermined types of yield curve shifts.  In practical applications, this will be sufficient for many

purposes.  For example, faced with a steep yield curve, a portfolio manager is likely to be more

concerned about the impact of the yield curve flattening than with a further steepening.  If there is

some prior information about the expected change in location and shape of the yield curve, it is
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possible to explore the properties of portfolios that satisfy a surplus immunizing condition at the

initial yield curve location.

     The basic procedure for evaluating the impact of specific yield curve shifts requires a spot rate

shift vector (∆i) Ni = {(z1,1 - z1,0), (z2,1 - z2,0),....(zT,1 - zT,0)} to be specified that reflects the anticipated

shift from the initial location at z0 = (z1,0, z2,0...zT,0) to the target location z1 = (z1,1, z2,1...zT,1).  This step

begs an obvious question: what is the correct method for adequately specifying Ni?  It is well known

that, in order to avoid arbitrage opportunities, shifts in the term structure cannot be set arbitrarily,

e.g., Boyle (1978).  If a stochastic model is used to generate shifts, it is required that Ni be consistent

with absence of arbitrage restrictions on the assumed stochastic model.  These restrictions, which

apply to the set of all possible paths generated from the stochastic model, are not needed when the

set of assumed future shifts is restricted to yield curve movements based on historical experience

or ex ante expectations.  Where such empirical shifts are notional, relevant restrictions relate to

maintaining consistency between individual spot rates.  In terms of implied forward rates, these

restrictions take the form:

(1 % zj)
j
' (1 % zi)

i (1 % fi, j)
j&i

' (1 % z1)(1 % f1, 2)(1 % f2, 3)....(1 % fj&1, j)

where the implied forward rates are defined as (1 + f1,2) = (1 + z2)
2 / (1 + z1) and  f j-1, j = (1 + zj)

j  / (1

+ z j-1)
j-i with other forward rates defined appropriately.  This imposes a smoothness requirement on

spot rates restricting the admissible deviation of adjacent spot rates.

    In addition to smoothness restrictions on adjacent spot rates, the use of the partial duration

approach requires that admissible Ni shifts satisfy the norming condition 2 N 2 = 1.  In the associated

set of unit length spot rate curve shifts, there are numerous shifts which do not satisfy the spot rate

smoothness requirement.   Because smoothing will allocate a substantial portion of the unit shift to
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spot rates that have small partial durations, restricting the possible shifts by using smoothness

restrictions tightens the convexity and duration bounds compared to the extreme bounds reported

in Tables 1-4.  To illustrate this, three scenarios for shifting the initial yield curve are considered:

flattening with an upward move in level, holding the T=10 spot rate constant; flattening with a

downward move in level, holding the T=6 month rate constant; and, flattening with a pivoting

around the T=5 rate, where the T > 5 year rates fall and the T < 5 year rates rise.  In empirical terms,

these three shift scenarios are plausible unit length shifts.  Given these scenarios, what remains is

to specify the elements of Ni for shifts of unit length.  The (absence of arbitrage) smoothness

restrictions require that changes in yield curve shape will distribute the shift proportionately along

the yield curve.  For example, when flattening with an upward move in level, the change in the T=6

month rate would be largest, with the size of the shift getting proportionately smaller as T increases,

reaching zero at T=10.

   Solving for a factor of proportionality in the geometric progression, subject to satisfaction of the

norming condition, produces a number of possible solutions, depending on the size of the spot rate

increase at the first step.  The following three unit length Ni shift vectors were identified:

Time    Flatten      Flatten Pivot
  Up (YC1)    Down (YC2) (YC3)

        1     0.400        0.000 0.371 
        2     0.368       -0.090         0.180 
        3     0.339       -0.097         0.164 
        4     0.312       -0.106         0.146 
        5     0.287       -0.115         0.126 
        6     0.264       -0.125         0.105 
        7     0.243       -0.136         0.082 
        8     0.224       -0.147         0.057 
        9     0.206       -0.160         0.030 
       10    0.189       -0.174         0.000 
       11    0.174       -0.189        -0.032 
       12    0.160       -0.206        -0.067 
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       13    0.147       -0.224        -0.105 
       14    0.136       -0.243        -0.146 
       15    0.125       -0.264        -0.191 
       16    0.115       -0.287        -0.240 
       17    0.106       -0.312        -0.293 
       18    0.097       -0.339        -0.351 
       19    0.090       -0.368        -0.413 
       20    0.000       -0.400        -0.481 

As in (1) and (2), the actual change in a specific spot rate requires the magnitude of the shift to be

given.  Observing that each of these three scenario Ni vectors is constructed to satisfy the norming

condition 2 N 2 = 1, the empirical implications of this restriction are apparent.  More precisely, unit

length shifts do not make distinction between the considerably higher volatility for changes in short

term rates compared to long term rates.  Imposing both unit length shift and smoothness restrictions

on spot rates is not enough to restrict the set of theoretically admissible shifts to capture all aspects

of empirical consistency.  While it is possible impose further empirically-based restrictions on the

set of admissible shifts, for present purposes it is sufficient to work with these three empirically

plausible spot rate curve shift scenarios.

   Given the three unit length spot rate curve shifts, Table 5 provides the calculated values associated

with (2) and (3) for the six portfolios of Tables 1-3.  Because the initial duration of surplus is

approximately zero and the portfolio convexity (N0' CT N0) is positive in all cases, classical

immunization theory predicts that  the portfolio surplus will not be reduced by interest rate changes.

The information in Table 5 illustrates how the partial duration approach generalizes this classical

immunization result to  assumed non-parallel spot rate curve shifts.  Comparison of the size of Ni'DT

with the Cauchy bound reveals the dramatic reduction that smoothness imposes on the potential

change in surplus value.  In particular, from (2) it follows that a negative value for the partial

duration measure Ni'DT is associated with an increase in the value of the fund surplus projected by
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the duration component.  All such values in Table 5 are negative, consistent with Ni'DT indicating

all three curve shifts produce an increase in the value of surplus. As in Tables 1-3, the change in the

surplus from the duration component can be calculated by multiplying the surplus by the Ni'DT value

and the assumed shift magnitude ∆i.  For every portfolio, the YC3 shift produced a larger surplus

increase from the duration component than YC1 and YC2.  Given that the YC3 shift decreases the

interest rate for the high duration 10 year asset and decreases the interest rate for the low duration

6 month asset, this result is not surprising.  In contrast, while the YC2 shift increased surplus more

than YC1 in most cases, the reverse result for the maturity bond portfolio with the annuity liability

indicates that portfolio composition can matter when the spot rate curve shift is non-parallel.  

   Following Chance and Jordan (1996) and Poitras (2005, p.275), interpreting the contribution from

convexity depends on the assumed shift magnitude ∆i2.  A positive value for the convexity

component (Ni' CT Ni) indicates an improvement in the surplus change in addition to the increase

from Ni'DT.  For all portfolios, there was small negative contribution from convexity for the spot rate

curve flattening up (YC1).  When multiplied by empirically plausible values for ∆i2 the negative

values are small relative to Ni'DT, indicating that the additional contribution from convexity does not

have much additional impact.  Results for the spot rate curve flattening down (YC2) and the pivot

(YC3) produced positive convexity values for all portfolios.  While for empirically plausible shift

magnitudes the convexity values for the YC2 shift were also not large enough to have a substantial

impact on the calculated change in surplus, the YC3 values could have a marginal impact if the  shift

magnitudes were large enough.  For example, assuming ∆i = .01, the 23.7% surplus increase

predicted by Ni'DT in the low surplus portfolio in Table 1 is increased by 1.12% from the convexity

contribution.  Also of interest is the magnitude of Ni' CT Ni relative to N0' CT N0.  While the
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calculated Ni'DT term is small in comparison to the Cauchy bound even for YC3, the calculated Ni'

CT Ni is over half as large as N0' CT N0 for YC3 and more than one third the value for YC2.

   Results for partial duration and partial convexities are relevant to the determination of the change

in surplus associated with various non-parallel yield curve shifts.  Table 5 also reports results for the

change in time value for the six portfolios and three spot rate curve shift scenarios.  From (3) and

(4), time value measures the rate of change in the surplus if the yield curve remains unchanged over

a time interval.  For portfolios with equal duration and different convexities, such as those in Table

2, differences in time value reflect the cost of convexity.  For a steep yield curve, the cost of

convexity is high and for a flat yield curve the cost of convexity is approximately zero. From (3),

it is apparent that yield curve shifts will also impact the time value.  While YC1-YC3 all reflect a

flattening of the spot rate curve, the level of the curve after the shift is different.  In addition, because

the calculation of time value involves discounting of future cash flows, it is not certain that an

upward flattening in the level of the spot rate curve (YC1) will necessarily produce a superior

increase in time value compared to a flattening pivot of the curve (YC3).

   Significantly, the YC3 shift produced the largest increases in surplus for all portfolios except the

high surplus portfolio of Table 1 where the YC1 shift produced the largest increase in time value.

In all cases, the YC2 shift produced the smallest increase in time value.  These results are not

apparent from a visual inspection of the different shifts, which appear to favour YC1 where spot

rates increase the most at all maturity dates.  To see how this occurs, consider the partial time values

from the low surplus portfolio in Table 1.  For the initial yield curve, θ t associated with the largest

cash flows are  θ 1 = .18698, θ 10 = -.97942 and θ 20 = .30677.  For YC3, these values become θ 1 =

.19513, θ 10 = -.97942 and θ 20 = .30990 while for YC1 the values are θ 1 = .19576, θ 10 = -.98683 and
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θ 20 = .30677.  While the pivot leaves the time value of the liability unchanged and increases the time

value of the principal associated with the10 year bond, the overall upward shift in rates associated

with YC1 is insufficient to compensate for the negative impact of the rate increase for the liability.

Comparing this to the high surplus case where YC1 had a superior increase in time value compared

to YC3, the initial yield curve values for the high cash flow points are θ 1 = .056045, θ 10 = -.090227

and θ 20 = .026552 which change to θ 1 = .058678, θ 10 = -.09091 and θ 20 = .034144 for YC1 and θ

1 = .058489, θ 10 = -.090227 and θ 20 = .034493.  Because the higher surplus portfolio has more

relative asset value, the higher overall level of rates associated with YC1 can be reflected in the time

value change

     Finally, Table 5 provides further evidence on the duration puzzle.  Based on the results in Table

4, comparison of the maturity matching portfolio with the split maturity portfolio reveals the time

value-convexity tradeoff identified by Christensen and Sorensen (1994).  The higher reported time

value measure for the maturity bond portfolio was offset by the higher convexity values for the split

maturity portfolio.  Under classical conditions, this implies a superior value change for the split

maturity portfolio if interest rates change sufficiently.  Yet, in Table 5 the maturity matching

portfolio has a larger change in surplus than the split maturity portfolio for the flattening up shift

(YC1) while retaining the time value advantage across all three scenarios.  However, for both the

flattening down and the pivot shifts, the surplus increase for the split maturity portfolio does

outperform the maturity matching portfolio as expected.  This is another variant of the duration

puzzle.  Because the result does not apply to all three scenarios, this implies that the duration puzzle

is not a general result but, rather, is associated with specific types of yield curve shifts.  If this result

extends to real time data, the presence of the duration puzzle can be attributed to the prevalence of
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certain types of yield curve shifts compared to other types.  The presence of the duration puzzle in

the selected scenarios is due to a complicated interaction between the partial durations, partial

convexities and time values.  As such, the partial duration approach is well suited to further

investigation of this puzzle.

VIII. Conclusion

   This paper extends the partial duration, surplus immunization model of Reitano (1992, 1996) to

include a measure of the time value.  This measure captures the impact of the force of interest

function on the change in fund surplus.  The extreme duration and convexity bounds  for assessing

the impact of non-parallel yield curve shifts on fund surplus provided in the Reitano model are

examined and it is demonstrated that these bounds are considerably wider than actual surplus

changes for shifts that are likely to occur.  Recognizing that classical immunization is an idealized

objective, the paper provides a range of measures –  based on the partial durations, convexities and

time values –  that can be used to assess different aspects of portfolio immunization and return

performance.  These measures are used to examine a variant of the ‘duration puzzle’ where the

performance of an immunizing portfolio with a maturity matching bond is compared with that of an

immunizing portfolio without an asset that matches the maturity of the zero coupon liability.  It is

demonstrated that the superior performance of the maturity matching bond depends on the type of

assumed shift and is not a general result.  In addition, the partial duration, convexity and time value

measures provide more detailed evidence on the tradeoff between convexity and time value

identified by Chance and Jordan (1996), Barber and Copper (1997) and others.

    In the spirit of Redington (1952), there is a considerable distance to travel from the simple

portfolio illustrations of immunization theory presented in this paper to the complex risk
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management problems arising in financial institutions such as pension funds, life insurance

companies, securities firms and depository institutions (e.g., Poitras 2006).  In particular, cash flow

patterns in financial institutions are decidedly more complicated.  Not only are the cash flows more

numerous, there is also an element of randomness that is not easy to model.  This paper develops

a theoretical method for capturing the impact that non-parallel yield curve shifts and time values

have on fixed income portfolio returns.  This is done by increasing the amount of data that is needed

to implement the risk management strategy.  Whereas classical duration can make use of the

simplification that the portfolio duration is the value weighted sum of the durations of the individual

assets and liabilities, the approach used here requires the net cash flows at each payment date to be

determined.  In simple portfolio illustrations this requirement is not too demanding.  However, this

requirement could present problems to a financial institution faced with large numbers of cash flows,

a significant fraction of which may be relatively uncertain.  Extending the partial duration approach

to incorporate randomness in cash flows would provide further insight into practical immunization

problems.
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     Appendix

Solution for the Optimal Duration Weights n1, n2, .... , nT:

The optimization problem is to set the N weighted sum of the partial durations of surplus equal to
zero, subject to the constraint that the N'N equals the norming value.  Without loss of generality
assume that the norming value is one, which leads to:

opt
{ ni}

L ' j
k

i'1
ni Di & 8({j

k

i'1
ni

2} & 1)

This optimization leads to k + 1 first order conditions in the k ni and λ.  Observing that the first order
condition for the ni can be set equal to λ/2, appropriate substitutions can be made into the first order
condition for λ that provides the solution for the individual weights.

Solution for the Optimal Convexity Weights n1, n2, .... , nT:

The optimization problem for convexity involves the objective function:

opt
{ ni}

Lc ' N ) CT N & 8 (N )N & 1)

Recognizing that CT is a real symmetric matrix permits a number of results from Bellman (1960,
Sec.4.4, Sec. 7.2) to be accessed.  In particular, if A is real symmetric then the characteristic roots
will be real and have characteristic vectors (for distinct roots) that are orthogonal.  Ordering the
characteristic roots from smallest to largest, the following bounds apply to the quadratic form N'CT

N:

81 $ 82 $ ..... $ 8t 6 81 $ N ) CT N $ 8T

Morrison (1976, p.73) develops these results further by recognizing that the solution to the
optimization problem corresponds to the defining equation for characteristic vectors: [CT - λI]N =
0, where premultiplication by N' and use of the constraint gives: λ = N' CT N.  Hence, for the
maximum (and minimum) characteristic roots of CT, the optimum shift vector is the characteristic
vector associated with that characteristic root.
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Table 1

Partial durations, {nt} and extreme bounds
for the 5 Year Zero Coupon Liability Immunized

with High and Low Surplus Examples*

            High  Low
           Surplus Surplus

Date    D t      n t *    D t     n t *  

0.5  0.687  0.0775    2.292 0.0236    

1.0  0.075  0.0085  0.870 0.0089    
1.5  0.107  0.0121  1.238 0.0128    
2.0  0.136  0.0153  1.569 0.0162
2.5  0.161  0.0182  1.863 0.0192
3.0  0.183  0.0206  2.111 0.0217
3.5  0.201  0.0226  2.318 0.0239
4.0  0.214  0.0241  2.472 0.0254    
4.5  0.226   0.0255  2.611 0.0269

5.0 -7.933 -0.89545 -86.115 -0.88658

5.5  0.244  0.0275  2.815 0.0290
6.0  0.246  0.0277  2.837 0.0292
6.5  0.247  0.0279  2.854 0.0294
7.0  0.246  0.0278  2.845 0.0293
7.5  0.243  0.0275  2.810 0.0289
8.0  0.242  0.0273          2.792 0.0287
8.5  0.239  0.0269  2.758 0.0284
9.0  0.231  0.0260  2.664 0.0274
9.5  0.221  0.0249  2.551 0.0263

10.0  3.786 0.42733         43.742 0.45033

Extreme    Cauchy = 2D2    Cauchy = 2D2
Duration
Bounds:  ± 8.860% ± 97.131%

Surplus:  50.75 4.66735

* The market value of the High Surplus Portfolio is  composed of ($68.3715) 1/2
year zero coupon and ($69.89445) 10 year semi-annua l coupon bonds.  The market
value of the Low Surplus Portfolio is composed of ( $17.8382) 1/2 year and
($74.343) 10 year bonds.  The liability for both th e High Surplus and Low Surplus
Portfolios is a 5 year zero coupon bond with $150 p ar value and market value of
$87.51.  The extreme Cauchy bounds are derived usin g 2 N 2 = 1.
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Table 2

Partial durations, {nt} and extreme bounds
for the Five Year Zero Coupon Liability Immunized
with the Maturity Bond and Split Maturity Examples*

           Maturity  Split
               Bond Maturity

Date    D t      n t *    D t     n t *  

0.5  0.476  0.0183   0.251 0.0063    

1.0  0.454  0.0174  0.446 0.0112    
1.5  0.646  0.0248  0.635 0.0159    
2.0  0.818  0.0314  0.804 0.0201
2.5  0.971  0.0373  0.955 0.0239 
3.0  1.101  0.0422  7.737 0.1939
3.5  1.208  0.0464  0.834 0.0209
4.0  1.288  0.0494  0.889 0.0223    
4.5  1.361   0.0522  0.939 0.0235       

5.0 -23.866 -0.91558 -36.998 -0.92716

5.5  0.636  0.0244   1.012  0.0254     
6.0  0.641  0.0246   1.020  0.0256 
6.5  0.645  0.0247   1.026  0.0257    
7.0  0.643  0.0247   8.177  0.2049
7.5  0.635  0.0244   0.601  0.0151
8.0  0.631  0.0242            0.597  0.0150    
8.5  0.623  0.0239   0.590  0.0148    
9.0  0.602  0.0231   0.569  0.0143    
9.5  0.577  0.0221   0.545  0.0137       

10.0  9.884 0.37921             9.350  0.23430

Extreme    Cauchy = 2D2    Cauchy = 2D2
Duration
Bounds:  ± 26.07% ± 39.905%

Surplus: 10.32685 10.91804

* The market value of the Maturity Bond Portfolio i s composed of ($5.13) 1/2
year, ($55.54) 5 year and ($37.172) 10 year bonds.  The market value of the Split
Maturity Portfolio is composed of ($0.4105) 1/2 yea r, ($33.8435) 3 year, (27.0)
7 year and ($37.172) 10 year bonds.  The liability is a 5 year zero coupon bond
with $150 par value and market value of $87.51.  Th e extreme Cauchy bounds are
derived using 2 N 2 = 1.
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Table 3

Partial durations, {nt} and extreme bounds
for the 10 Year Annuity Liability Immunized with

the Maturity Bond and Low Surplus Examples*

            Maturity   Low
             Bond Surplus

Date    D t      n t *    D t     n t *  

0.5  1.034  0.0841  2.856 0.0869

1.0 -0.275 -0.0224 -0.705 -0.0214
1.5 -0.392 -0.0319 -1.003 -0.0305
2.0 -0.497 -0.0404 -1.271 -0.0387
2.5 -0.590 -0.0480 -1.509 -0.0459
3.0 -0.668 -0.0543 -1.710 -0.0520
3.5 -0.734 -0.0597 -1.877 -0.0571
4.0 -0.782 -0.0636 -2.001 -0.0609
4.5 -0.826  -0.0672 -2.115 -0.0643      

5.0  8.257 0.67159 -2.201 -0.0670

5.5 -1.401 -0.1139  -2.280 -0.0694
6.0 -1.412 -0.1148  -2.298 -0.0699
6.5 -1.420 -0.1155  -2.311 -0.0703
7.0 -1.415 -0.1151  -2.304 -0.0701
7.5 -1.398 -0.1137  -2.276 -0.0693
8.0 -1.389 -0.1130            -2.262 -0.0688
8.5 -1.372 -0.1116  -2.234 -0.0680
9.0 -1.325 -0.1078  -2.157 -0.0656
9.5 -1.269 -0.1032  -2.066 -0.0629

10.0  7.855 0.63888           31.647  0.9629 

Extreme    Cauchy = 2D2    Cauchy = 2D2
Duration
Bounds: ± 12.29%  ± 32.87%

Surplus:  10.5979 4.68

* The market value of the Maturity Bond Portfolio i s composed of ($25.97) 1/2
year, ($34.956) 5 year and ($37.172) 10 year bonds.   The market value of the Low
Surplus Portfolio is composed of ($31.388) 1/2 year  and ($60.791) 10 year bonds.
The liability has market value of $87.51 with annua l coupon, paid semi-annually,
of $14.96. The extreme bounds are derived using 2 N 2 = 1.
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Table 4

Time Values, Convexity and Other Measures
for the Immunizing Portfolios*

TABLE 1  (5 Year Zero Liability) High Surplus Low Surplus

Surplus  50.75  4.667

Time Value = 2 N 0' Θ   0.07118   0.0278
N0' C T N 0  17.18  221.94
N*' C T N* -25.34 -259.59
Max CONt  37.23  430.09
Min CON t -41.34 -448.79
Cauchy Duration Bound   ± 8.86%  ± 97.13%
N0'D T  -0.000 -0.102

TABLE 2  (5 Year Zero Liability)   Maturity Bond    Split Maturity  

Surplus  10.327  10.918 

Time Value = 2 N 0' Θ   0.0664   0.0648
N0' C T N 0  42.37   44.21
N*' C T N* -85.39 -142.06
Max CONt  97.19   91.93
Min CON t -124.38 -192.81
Cauchy Duration Bound  ± 26.07%    ± 39.90%
N0'D T  -0.025 -0.022

TABLE 3  (10 Year Annuity Liability)    Maturity Bond Low Surplus

Surplus 10.598   4.68

Time Value = 2 N 0' Θ   0.0724   0.0510
N0' C T N 0  11.96  109.34
N*' C T N*  21.61  287.65
Max CONt  77.23  311.17
Min CON t -11.89  -19.36
Cauchy Duration Bound  ±12.29%   ±32.86%
N0'D T  -0.019   -0.077

* See Notes to Tables 1-3.  Multiplying by 2 to mak e appropriate adjustment to
convert semiannual to annual rates, the time value N0' Θ is defined in (3).  The
sum of the partial convexities is N 0'C T N 0  The quadratic form, N*'  C T N*, is the
sum of squares for the relevant N* from Tables 1-3 multiplied term-by-term with
the appropriate partial convexities. Max CON and Mi n CON are the maximum and
minimum individual partial convexities.
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Table 5

Partial Durations and Convexities 
for the Immunizing Portfolios under

Different Yield Curve Shift Assumptions*

TABLE 1  (5 Year Zero Liability)
   

High Surplus Low Surplus
Surplus     50.75     4.667

   YC1     YC2    YC3    YC1     YC2    YC3 
Ni 'D T  -0.606  -.879 -1.875 -8.205 -11.127 -23.75
Ni 'C T N i  -0.828  6.082  9.778 -9.398  71.151 112.23
2 N 0' Θi  .09144  .0878 .08922 .0436 .0408 .0554

Cauchy Bound ( 2DT2)   ±8.86%       ±97.13%
N*' C T N* -25.34 -259.59
N0' C T N 0  17.18  221.94
Time Value = N 0' Θ  .07118 .0274

TABLE 2  (5 Year Zero Liability)
   

  Maturity Bond    Split Maturity  
Surplus  10.327  10.918 

   YC1     YC2    YC3    YC1     YC2    YC3 
Ni 'D T  -1.532  -2.328 -4.955 -1.451 -2.478 -5.289
Ni 'C T N i  -1.976  15.667  25.489 -2.039  16.281 25.51 
2 N 0' Θi  .07274 .06864 .07398 .07108 .06674 .07182

Cauchy Bound ( 2DT2)  ±26.06%  ±39.90%
N*' C T N* -85.39 -142.06
N0' C T N 0  42.37    44.21
Time Value = N 0' Θ .0664 .0648

TABLE 3  (10 Year Annuity Liability)

Maturity Bond Low Surplus
Surplus      10.598         4.68

   YC1     YC2    YC3    YC1     YC2    YC3 

Ni 'D T  -0.874  -0.638 -1.360 -5.086 -5.287 -11.298
Ni 'C T N i  -0.847   5.902 12.01 -5.039 36.520 62.55
2 N 0' Θi .07736  .07408 .07592 .0616 .0600 .07156

Cauchy Bound ( 2DT2)  ±12.29%   ±32.86%
N*' C T N*  21.61  267.49
N0' C T N 0  11.96  109.34
Time Value = N 0' Θ .0724 .0510

* See Notes to Tables 1-3.  YC1 has the spot rate c urve flattening up, with the
T=10 rate constant; YC2 has the spot rate curve fla ttening down with the T=.5 (6
month) rate constant; and, YC3 has a flattening piv ot with the T=5 year rate
constant.  2N 0' Θi  annualizes (3) evaluated using the N i  shifted spot rates.
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1.  Reitano can be credited with introducing the terms "partial duration", "partial convexity" and the
"direction vector".

2.  H.O.T. refers to higher order terms which will be ignored.  This assumption, which could be
problematic for bonds with special features, such as call provisions, implies that the discussion
centres on default free, straight bonds.  At this point, it is possible to reduce the dimension of the
vector of spot rates, and the associated partial derivatives, using key rates or other factors in place
of spot rates.

3.  In applying the Cauchy-Schwarz inequality, Reitano recognizes that the extreme bounds are
achieved when the vectors are collinear.  In effect, the extreme yield curve shift is calculated and
these values are used to calculate the bounds using N*'DT.  The result is tighter bounds than those
provided by direct application of the Cauchy-Schwarz values.  In Reitano's case, the upper and lower
Cauchy-Schwarz bounds, calculated from the product of the inner products of N and D, are 303.6
and -303.6, respectively.

4.  D’Antonio and Cook (2004) provide a useful overview of various approaches to the classical
convexity formulas.

5.  Shiu (1990, p.171-2) demonstrates that, in the classical immunization framework, because the
force of interest is constant, the time value will equal a constant.

6.  In actuarial science, the terminology ‘force of interest’ (function) is used in place of ‘time value’
(function), e.g., Kellison (1991).  Observing the (4) has the appearance of a Taylor series expansion
of S[z,t], exact determination of the second order Taylor series expansion would involve the
inclusion of the second derivative information for the time values, i.e., the second cross derivative
terms and the second derivative with respect to time, e.g., Poitras (2005, p.279-83).  Consistent with
a priori reasoning, Chance and Jordan (1996) and Poitras (2005) indicate that these terms are likely
to be relatively small.  Hence, only information from the first derivative with respect to time is used.

7.  These values can be determined directly from the formula for the partial duration, taking account
of the relevant par values and, where applicable, the coupon cash flows of the various assets and
liabilities as given in Reitano.

8.  Identifying key rates as "factors", it is possible to extend the discussion to include the directional
duration models where, instead of key rates, empirically determined estimates of yield curve slope,
shape and location are used.

9.  This is because the size of individual partial durations and convexities depend on the size of the
cash flow on the payment date.  By using key rate durations and interpolating yields off key rates,
the sawtooth pattern associated with the extreme upper and lower bounds will be smoothed out.  If
key rates are not used, then the nt* will reflect the size of the cash flow in period t, small cash flow
periods will have nt*  close to zero and large cash flow periods will have relatively large nt*.

NOTES
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Consistent with the approach, in Tables 1-3 it would be possible to aggregate the partial duration
and N elements across cash flow dates and report a smaller number of these values.

10. This par bond curve has semi-annual yields from 6 months to 10 years, i.e., y = (.08, .083, .089,
.092, .094, .097, .10, .104, .106, .108, .109, .112, .114, .116, .118, .119, .12, .122, 124, .125)'.  The
6 month and 1 year yields are for zero coupon securities, with the remaining yields applying to par
coupon bonds.  This yield curve produces the associated spot rate curve, z = (.08, .083, .0893, .0925,
.0946, .0979, .1013, .106, .1083, .1107, .1118, .1159, ,1186, .1214, .1243, .1256, .1271, .1305, .1341,
.1358)'.

11.  The relevant calculation for the change in surplus value with a shift magnitude of )i = .01 using
the extreme Cauchy bound for the low surplus portfolio would  be (.01)(97.131)(4.66735) = 4.5334.
For the high surplus portfolio the solution is (.01)(8.86)(50.75) = 4.49645.

12.  To see this, recall that the length of the shift vector is one.  As a consequence, the sum of the
squares will equal one and the square of each n* is the percentage contribution of that particular rate
to the extreme directional shift vector.

13.  This follows from the previous discussion in section III which identified the off-diagonal
elements as being equal to zero.

14.  In these one factor models, the spot interest rates for various maturities are constructed by
taking the product of the generated one period interest rates along each specific paths, treating each
future short term interest rate as a forward rate.  This will produce the predicted spot rate structure
for each path, e.g., Fabozzi (1993, Chp.13).  While useful for generating analytical results, it is well
known that such processes cannot capture the full range of potential term structure behaviour.
Without restrictions on the paths, some paths may wander to zero and the average over all the paths
may not equal the actual observed spot interest rate curve.


