
Chapter Summary

Chapter 3     Theoretical Developments in Modern Finance

3.1    Decision Making Under Uncertainty #

A.  Expected Utility Theory*
B.  Cost of Risk and Risk Aversion Properties*
C.  Expected Utility and Moment Preference*

3.2    Basics of Mean-Variance Portfolio Analysis #

A.  The Analytical Preliminaries
B.  The Optimization Model
C.  Capital Allocation Lines: Introducing a Riskfree Asset
D.   The Capital Market Line and Market Equilibrium
E.   Criticism of Mean-Variance Portfolio Analysis

3.3    Separation, the CAPM and the Market Model #

A.  Two Fund Separation
B.  The Capital Asset Pricing Model*
C.  The Market Model*

3.4    Financial Engineering with Derivative Securities
A.  The Derivative Security Renaissance
B.  The History of Portfolio Insurance
C.  Dynamic Portfolio Insurance

End of Chapter Questions
Notes

# Indicates some sub-sections contain advanced material
* Indicates complete section is advanced material



Chapter 3    Development of Modern Finance 

3.1   Decision Making Under Uncertainty

A.  Expected Utility Theory*

   The study of decision making under uncertainty is a vast subject.  Theoretical applications in
Finance almost invariably proceed under the guise of the expected utility hypothesis: people rank
random prospects according to the expected utility of those prospects.  Analytically, financial
decisions typically involve solving optimization problems by selecting choice variables to maximize
an expected utility function subject to a budget constraint.  The choice variables are typically the
proportion of the initial budget to allocate to a given asset or security.  In some cases, such as the
basic optimal hedging problem, e.g., Poitras (2002, ch.2), the budget constraint is embedded in the
argument of the utility function.  In other cases, such as in optimal portfolio diversification models,
the budget constraint appears as the restriction that the sum of the value weights equals one.  In
either event, the central concern is expected utility.  As such, a key step in the optimization problem
is to specify an expected utility function which captures the preference mapping of the decision
maker over random outcomes.
   Expected utility calculations involve taking expectations, which are conventionally modeled using
statistical properties of random variables.  This may involve the explicit introduction of probability
densities.  There is a profound connection between the choice of a specific probability distribution
and the risk aversion properties required of the expected utility function, e.g., Heaney  and Poitras
(1994).  As for the utility component of the expected utility function, even before von Neumann and
Morgenstern (1947), it had been recognized that choosing over risky prospects is decidedly different
than the textbook model of consumer choice under certainty.  As is well known, von Neumann and
Morgenstern made a seminal contribution by proposing a set of axioms governing choice under
uncertainty.  Accepting that the axioms are difficult to reject lends strong support to the von
Neumann and Morgenstern approach.1

   The key construct of the axiomatic approach to decision making under uncertainty is the ‘linear
choice function over risky prospects’, better known as the expected utility function:

where: EU[x] is the expected utility of x; S is the number of possible futures states of the world; 2j

is the probability that state j will occur, where the sum of the 2’s across all j=1to S states is equal
to one; and, U[xj] is the utility associated with the amount of x received in state j.  While there are
a number of possible selections for x, in what follows variables such as terminal wealth, portfolio
return or terminal profit will typically be used.  (The implications of this selection will be examined
shortly.)  The EU function ranks risky prospects with an ordering that is unique up to a positive
linear transformation.  This is different than the case where just U[xj] is being maximized, as in the
theory of consumer choice in microeconomics where the amounts are know with certainty.  In this
case, the U ranking is unique up to a positive monotonic transformation. 
   While the difference between a monotonic and linear transformation may not seem too
significant, demonstrating the difference does provide some insight into the mechanics of the
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expected utility calculation.  Consider the case where there is a single good, x.  Two prospects A and
B have to be ranked with EU[x], prospect A is a lottery with two possible outcomes of either 0 units
of x or 16 units of x, with each event equally likely, 21 = 22 = .5.  This lottery is being compared with
prospect B which is a certain outcome of 7 units of x.  Let the utility function be U[x] = x, the
expected utility is then EU[A] = .5(16) + .5(0) = 8 > 7 = EU[B].  Now consider what happens when
a square root transformation is applied to the x: EU[A] = .5(4) + .5(0) = 2 < /7 = EU[B].  Though
the utility ranking is unchanged under the monotonic transformation of taking a square root, U[16;4]
> U[7;/7] > U[0], the EU ranking did change.  However, when U[x] = a + bx, then the expected
utility calculation gives: EU[A] = .5(a + b(16)) + .5(a + b(0)) = a + .5 b(16) > a + b(7) = EU[B]
for all positive linear transformations, b > 0.
   Given the basic specification of the EU function, developing the empirical implications of models
based on EU can be tricky because EU is a construct that cannot be directly observed.  In addition
to the difficulties of specifying U[xj] encountered in microeconomics (e.g., satiation points and
externalities) it is also not apparent how to determine the 2j.  The axiomatic foundation cannot say
much more than that the probabilities are available.  Davidson (1991) and others emphasize the
importance of the approach taken to identifying the probabilities in the expected utility calculation.
In modern Finance, it is conventional to proceed, either explicitly or implicitly, along the lines of
Ingersoll (1987, p,30): “We assume throughout the discussion that the economic agents making the
decisions know the true objective probabilities of the relevant events.  This is not in the tradition of
using subjective probabilities but will suffice for our purposes.”  In assuming that the probabilities
are objective, Ingersoll follows the approach used in rational expectations modeling in economics.
   Davidson (1991, p.132) develops the philosophical implications of assuming that the
probabilities are objective:

The objective probability environment associated with the rational expectations hypothesis presumes not only  that

probability distributions regarding historical phenomena have existed, but also that the same probabilities which

determined past outcomes will continue to govern future events.  In the context of forming expectations which do

not exhibit persistent errors, it holds that time averages calculated from  past data will converge with the statistical

averages computed from any future time series.  Knowledge of the future merely involves projecting averages based

on past or current realizations to forthcoming events.  The future is merely the statistical reflection of the past and

econom ic actions are in some sense timeless.  There can be no ignorance of upcoming events for those who believe

the past provides reliable, unbiased, statistical information (price signals) regarding the future, and this knowledge

can be obtained if only one is willing to spend the resources to exam ine the past.

Ergodicity provides the basis for empirically extracting objective probabilities from past data (see
sec. 1.2).  As such: “In the ergodic circumstances of objective probability distributions, probability
is knowledge, not uncertainty”.  This is strong stuff.  If correct, it means that the core theories of
modern Finance  deal with the uncertainty of future outcomes in a fashion that could be called into
question.  As such, predictions derived from the core models require, at the least, careful
interpretation.
   Taking probabilities as objectively determined proceeds beyond the intentions of the developers
of the axiomatic approach to decision making under uncertainty where probabilities are subjectively
determined.  In the case of von Neumann-Morgenstern (1947), the subjective probabilities are given
by assumption while in Savage (1954) the subjective probability assessments can be deduced.  Yet,
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objective probabilities are implied by the general equilibrium formulation needed to derive models
of security prices or returns, such as the CAPM. General equilibrium models often proceed by
assuming that expectations are homogeneous or that individual agents are homogeneous, both of
which are facilitated by objective probabilities.  If probabilities are subjective then it is necessary
to assume investor heterogeneity.  However, if heterogeneity is the case, then key results, such as
those concerning the properties of the market portfolio, are undermined.  As a consequence, essential
prescriptions, such as two fund separation, require reinterpretation.  
   In the absence of objectively known probabilities or, less stringently, probabilities estimated from
past data under the assumption of ergodicity, it is still possible to use the techniques of decision
making under uncertainty to develop useful prescriptions and predictions.  In the world of Old
Finance, for example, the theoretical requirements needed to satisfy general equilibrium concerns
were of little use.  The decision problems typically encountered were partial equilibrium.  The ad
hoc theoretical results applied to investors and traders confronted with a parametric world of
atomistic competition where their activities did not impact prices.  In this process, the expected
utility function can still be an invaluable analytical tool.  A number of useful results can be readily
derived by applying an essential tool from functional analysis: the Taylor series expansion (see sec.
5.1).  In addition, much of the intuition of the mean-variance portfolio optimization model can still
be exploited, albeit in the framework of subjective estimates of risk and expected return.
   Given the probabilities, analytical solutions derived using EU[x] will depend of the selection of
the argument x.  In the theory of consumer choice under certainty covered in basic microeconomics,
e.g., Henderson and Quandt (1980), x refers to two or more goods, e.g., U[q1, q2].  Analysis of the
consumer choice problem for a two good world proceeds by maximizing U[q1, q2] subject to a
budget constraint, y = p1 q1 + p2 q2, where y is the initial endowment level and p and q refer to the
price and quantity of the commodity.  Solving the first order conditions for the Lagrangian problem
(L) gives the results: 

 

By specifying a functional form for U together with specific prices and an endowment level, it is
possible to solve the optimal quantities of q1 and q2.  Varying prices will permit demand functions
to be determined and so on.  Using appropriate mathematical complications, the results generalize
in a natural way to n commodities.  Useful results are obtained when q1 and q2 refer to income and
leisure or consumption in two different time periods.
   Despite the use of U there is a significant change in orientation when attention shifts from the
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certainty model of consumer choice to decision problems involving EU[x].  Instead of being
concerned with allocating a fixed income endowment among a number of goods, concern shifts to
a one good (plus numeraire) world of allocating the endowment between current consumption C(0)
and the purchase of capital assets that generate the endowment in the next period.  As discussed in
Chapter 11, there is an assumed separation between the generation of future income from the asset
investment decision and from future labor income, with the implications of the latter usually being
suppressed.  The initial endowment, W(0), is conventionally referred to as initial wealth.  For the
simple two period case where there is only one capital asset that has a random return, then terminal
wealth, W(1), is specified: 

W(1) = {W(0) - C(0) - A(0)}(1 + r) +  A(0)(1 + R(1)) 
= {W(0) - C(0) - A(0)}(1 + r) + {A(0) + B(1)}  

where A(0) = P(0)Q(0) is the value of the capital asset purchased at t=0, r is the riskless return on
holding the numeraire (cash), C(0) is the consumption at t=0.  Unless the consumption decision of
immediate interest, it is conventional to omit consideration of C(0).
   Given this, because the choice variable is A(0), the amount of the capital asset to purchase at t=0,
it follows that the decision problem can be specified with terminal wealth EU[W(1)], asset returns,
EU[R(1)], or profit, EU[B(1)].   Though there is no substantive differences between the selection
of x in the simple case, the level of W(0) can be important in some cases making the selection of
EU[W(1)] appropriate in those cases.  In other cases, such as the important mean-variance
optimization model, attention focuses on the portfolio returns and how to allocate the initial wealth
among k assets.  This leads to the use of EU[R(1)], where R(1) refers to the return on the asset
portfolio which is, in turn, dependent on the individual asset returns.  The use of EU[B(1)] is
common in problems involving derivative securities, such as the selection of the optimal amount of
a forward contract to establish in order to hedge a spot position.  In this case the profit on the forward
contract is of interest.
   Many of the basic properties of EU in the portfolio selection problem can be illustrated by a simple
two state example (Mossin 1973, p.16-9).  Setting r=0 and C(0) = 0 for convenience, assume that
the value of the asset in state 1 is zero with probability 21 and in state 2 is 2A(0) with probability 22

= (1 - 21).  Taking the initial endowment to be W(0) = 100, these payoffs define a range of outcomes.
For example: if A(0) = 0, then W(1) = 100; if A(0)= 20, then W(1)  = 21 (80) + (1 - 21)(140); and if
A(0) = 60, then W(1) = 21 (40) + (1 - 21)(220).  In general: 

EU[W(1)] = 21 U[W(0) - A(0)] + (1 - 21) U[W(0) + 2A(0)].

The optimization problem is to choose the amount of the risky asset to purchase in order to
maximize the expected value of terminal wealth.  Assuming that the initial price, P(0), is not affected
by the quantity of the asset purchased, A(0), it is sufficient to solve this problem using the first order
condition (foc) (dEU / dA)and evaluating the second derivative to ensure the solution is a maximum.
   Evaluating the foc for the simple problem gives:
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Solving for an optimal value of A requires a specific functional form for U to be assumed.  For
example, let U[W(1)] = ln[W(1)].  It follows that:

where E[RA] = {E[W(1)] - W(0)} / A(0).  This illustrates an important property of the log utility
function: that the proportion of initial wealth invested in the risky asset, ( A(0)/W(0) ), is constant
and independent of the amount of initial wealth.

B. Cost of Risk and Risk Aversion Properties *

   The expected utility function is a useful tool for analyzing the problem of determining the cost of
risk.  The solution to this problem would be useful in assessing whether to buy insurance or to invest
in a risky capital project.  While there are a number of possible methods to extract the cost of risk,
consider the following solution.  Let the expected value of terminal wealth be: E[W(t+1)] = S.
Observe that S is a parameter which permits the certainty equivalent income of a risky prospect to
be defined as S - C, where C is the cost of risk.  It follows from the expected utility axioms that the
cost of risk, C, can be calculated as the difference between the expected value of the risky prospect
and the associated certainty equivalent income:

It is now possible to expand U[S - C] in a Taylor series and estimate the cost of risk by manipulating
the first and second order approximations.
   More precisely, expanding the function US - C] around S the first order approximation is:

Similarly, a second order approximation for the function U[W(t+1)] can provide:
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Using U[S-C]=EU[W(t+1)] and manipulating gives:

where W(t+1) = W(t) (1 + R).  This demonstrates theoretically that the cost of risk will vary across
utility functions.  This result also provides theoretical measures of the cost of risk.  The measures
of absolute risk aversion, A[W] = -{U''/U'}, and relative risk aversion, R[W] = -{U'' W(t)}/U ' = W(t)
A[W] are now textbook concepts, e.g., Elton and Gruber (1995).  The risk tolerance function is
defined to be T[W] = (1 / A[W]).
     The notions of relative and absolute risk aversion, R[W] and A[W], provide tools for evaluating
the properties of various possible functional forms that could be used to model the EU[W] function.
Following Ingersoll (1987, p.39-40), the most widely used functions belong to the hyperbolic
absolute risk aversion (HARA) or linear risk tolerance class.  These functions can be represented,
in general form, as the HARA utility function:

where ", ( and b are parameters and the function is defined for (b + {"W/(1 - ()}) > 0.  It can be
verified by evaluating the first and second derivatives of the HARA function and solving for the risk
tolerance function that T[W] = (W/(1 - ()) + (b/").  It follows that the level of risk tolerance is linear
with T[W] increasing for ( > 1 and decreasing for ( < 1.  Recalling that T[W] = 1/A[W], the measure
of absolute risk aversion will be increasing for ( < 1 and decreasing for ( > 1.
    Specific functional forms for the HARA class can be derived by assuming values for the
parameters of the HARA utility function.  For example, the theoretically important quadratic utility
function is specified using  ( = 2.  Setting b=1/" for convenience, evaluating the HARA function
for this case gives:

It follows that the quadratic utility function possesses increasing absolute risk aversion (A[W] = {2c
/ (1 - 2cW)} ÷ A’[W] = {4c2 / (1 - 2cW)2} > 0)and increasing relative risk aversion (R[W] = {2cW
/ (1 - 2cW)} ÷ R’[W] = {2c / (1 - 2cW)2} > 0).  These properties of quadratic utility imply that
investors will reduce both the dollar amount and the percentage amount invested in risky assets as
wealth increases.  This result is, seemingly, contrary to generally observed behavior: don’t the richest
people hold the bulk of risky assets?
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   The properties of the quadratic utility function create a potential quandary for modern portfolio
theory.  This is because quadratic utility functions provide a possible and expedient theoretical
rationale for the use of mean-variance expected utility functions, a fundamental building block used
to develop the Markowitz mean-variance portfolio optimization model and the capital asset pricing
model.  The other possible and expedient rationale is to assume that the relevant random variables,
the security returns, are normally distributed.  To see how quadratic utility leads to mean-variance
expected utility, take expectations of the quadratic U[W] and manipulate to get EU[W] = E[W]+
c{var[W] + E[W]2}.  It follows that assuming quadratic utility leads to mean-variance expected
utility.  Given the theoretical importance of mean-variance models, at least since Mossin (1973)
there have been efforts to rescue quadratic utility.  For example, by allowing the parameter c to vary
as wealth changes it is possible to specify a quadratic utility function that has, say constant absolute
or relative risk aversion.
   Though quadratic utility has a direct correspondence to mean-variance expected utility functions,
it is a natural progression to consider the implications for asset pricing and portfolio selection models
of assuming other possible specifications of the utility function.  Three popular models are the log
utility function,  U[W] = ln[W], the power utility or isoelastic utility function, U[W] = {W( / ( } and
the negative exponential utility function, U[W] = -exp[-"W].  In the general HARA function:
negative exponential utility is specified with ( = - 4 and b = 1; power utility is specified with ( <
1 and b = 0; and log utility is specified with ( = b = 0 (with L’Hospital’s rule being needed to make
the requisite derivations in this case).  It follows that the negative exponential utility function
possesses constant absolute risk aversion and decreasing relative risk aversion; while both the power
utility and log utility functions have decreasing absolute risk aversion and constant relative risk
aversion.  The presence of different utility functions with different risk aversion properties begs the
question: which theoretical specification is most descriptive of investor behavior?
   It is difficult to obtain empirical evidence that directly addresses the absolute and relative risk
aversion properties of a ‘representative investor’.  The risk aversion measures are applicable to the
behavior of a given investor at different wealth levels.  Evidence on the holdings of risky assets for
different investors at different wealth levels are only suggestive.  For example, Blume and Friend
(1975) examined Federal Reserve data on the financial holdings of consumers and found evidence
in favor of constant relative risk aversion (decreasing absolute risk aversion).  Recent research has
found that risk aversion varies across individuals due to a range of factors such as age, income, even
gender, e.g., Donkers et al (2001), Jianakoplos and Bernasek (1998).  Estimates of aggregate risk
aversion also vary over time, with the state of the market and where the investor is situated in their
life cycle. Many studies employ complicated joint hypotheses to arrive at specific estimates of an
aggregate risk aversion coefficient. For example, Hahm (1998) estimates the coefficient of relative
risk aversion to be 1.25.

C.  Expected Utility and Moment Preference* 

   Given the theoretical importance of the mean-variance expected utility function, the relationship
between moment preference and expected utility has received considerable academic attention.
Important topics have included: the conditions under which mean-variance analysis is consistent
with maximizing expected utility, e.g., Kroll, Levy and Markowitz (1984), Bell (1995); and, the
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implications of introducing skewness preference into the mean-variance framework, e.g., Kraus and
Litzenberger (1976), Poitras and Heaney (1999).  Brockett and Kahane (1992) among others, have
shown that there is not a direct correspondence between the derivatives of the expected utility
function and moments of the return distribution.  The implication is that maximization of a function
defined over moments, such as mean-variance or mean-variance-skewness, may not give the same
solution as directly maximizing expected utility.  Yet, Meyer (1987), Ormiston and Quiggin (1994)
and others demonstrate that the conditions on the random variables sufficient for mean-variance
rankings to provide solutions consistent with expected utility rankings are relatively weak.  
     As discussed in numerous sources, e.g., Loistl (1976), Levy and Markowitz (1979), Poitras and
Heaney (1999), the relationship between expected utility and moment preference objective functions
can be motivated using a Taylor series expansion (see sec. 5.1) of U[W], the decision maker's utility
function for wealth U[W], evaluated at the expected value for terminal wealth [S] (E[W(t+1)] = S):

Exploiting this type of expansion requires certain technical conditions be satisfied.  For example,
convergence of the series within the interval of interest is needed.2  In addition, desirable properties
for utility functions require: U'[W] > 0, non-satiation; U''[W] < 0, risk aversion; and, U'''[W] > 0,
preference for positive skewness. 
   With relatively weak distributional restrictions, e.g., Hassett et al. (1985), the Taylor series
representation of U[W] can be transformed into an approximation for a general expected utility
function based on the moments of the conditional distribution for W(t+1).  The relevant
approximation is derived by taking conditional expectations at time t and ignoring terms associated
with moments higher than the second, for a mean-variance approximation, and moments higher than
the third, for a mean-variance-skewness approximation.  Taking expectations for the mean-variance
and mean-variance-skewness case gives:

where var[W(t+1)] is the variance of terminal wealth, skew[W(t+1)] is the skewness or centralized
third moment for terminal wealth.  Restrictions imposed by assuming risk aversion and positive
skewness preference permit the coefficients in EUMVS to be immediately signed as b, c > 0.  Further
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restrictions on b and c, as well as the admissible range of W, can be derived by taking further
derivatives of the Taylor series expansion and invoking Jensen's inequality.  Setting c=0 permits the
mean-variance-skewness moment preference function to be reduced to the mean-variance function,
EUMV.
     What are the implications of introducing this additional skewness term into the moment
preference objective function?  Currently, limited information is available comparing solutions from
mean-variance and mean-variance-skewness approximations.  Information about such comparisons
would be relevant for a range of decision making situations, especially those involving skewness
altering securities such as options and insurance.  The few studies that do compare the mean-variance
and mean-variance-skewness objective functions illustrate some confusion as to the implications of
introducing skewness, e.g., Prakash et al. (1996), Horowitz (1998), Poitras and Heaney (1999).
Studies examining the impact of skewness on the asset pricing and portfolio theory problems include
Kraus and Litzenberger (1976), Sears and Trennepohl (1983), Lim (1989), Simaan (1993).
Combining of securities into portfolios almost certainly reduces the skewness of the portfolio
relative to the value weighted sum of the individual asset skewness values.

3.2   Basics of Mean-Variance Portfolio Analysis

A. The Analytical Preliminaries

   Many of the essential analytical tools used in mean-variance portfolio analysis can be found in the
results for linear combinations of random variables from mathematical statistics.  One basic result
is the following, e.g., Freund (1971, p.195):
__________________________________________________________________________

Theorem: Moments of Linear Combinations of Random Variables

   If X(1), X(2), ... , X(N) are random variables and a1, a2, ... , aN  are constants and Y = a1 X(1) +  a2

X(2) + ... + aN X(N) then:

where the double sum over i > j extends over all values of i and j, from 1 to N, for which i > j.
_____________________________________________________________________________

Derivation of var[Y] requires the observation that cov[X(i), X(j)]= cov[X(j), X(i)].  One immediate
corollary is that if cov[X(i), X(j)] = 0 for all i and j where i � j, i.e., the random variables are all
independent, and a1 = a2 = ... = aN = 1/N then  var[Y] has the property:
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This result has applications in insurance where the random variables are policy payouts and the ai

are the fraction of the portfolio of policies attributable to policy i.  
   Extending these results to portfolios follows immediately from identifying the random variables
as the returns on individual securities held in a given portfolio, i.e., let X(i) = Ri for all i.  The
definition of the portfolio expected return follows:
______________________________________________________________________

Definition:  The expected return on the portfolio E[Rp] is the value weighted sum of the expected
returns on the individual securities, the E[Ri]:

where k is the number of securities in the portfolio.  To calculate the value weights, wi:

with $Ai being the dollar value invested in security i and the sum over all $Ai being the total amount
of money invested in the portfolio
___________________________________________________________________

   As a simple example, consider having $1 million invested in a portfolio of 2 securities, and there
is $500,000 in each security, then each wi = .5.  As a slightly more complicated example consider
the following problem: At the beginning of the year, Joe Investor owned four securities in the
following amounts: A, 100 shares; B, 400 shares; C, 200 shares; D, 200 shares.  The current prices
of the securities are: A = $12.50; B = $17.50; C = $25; and, D = $50.  In one year's time, Joe expects

the prices to be: A = $25; B = $20; C = $30; and D = $55. What is the expected return on Joe' s

portfolio for the year? The solution to this problem is determined by calculating the total value
invested as: 100 (12.50) +  400 ($17.50) +  200 ($25) +  200 ($50) =  $23,250.  This permits the
calculation of the value weights: wA =  1250/23250 =  .054; wB =  .301; wC =  .215; wD =  .430.
The expected return on the portfolio can now be calculated as: E[Rp] =  .054(E[RA]) +  .301(E[RB])
+  .215(E[RC]) +  .430(E[RD]) =  .054 (1.00)  +  .301 (.143)  +  .215 (.2)    +  .430 (.1)  =  .183
(18.3%).
    The other key element in the mean-variance portfolio model is the standard deviation of portfolio
returns.  As with calculating the risk for individual securities, calculations are done for the variance
and the standard deviation is determined by taking a square root.  The standard deviation, as opposed
to the variance, is of the appropriate measure of risk because it is in the same units as the expected
returns.  However, calculations are done using the variance.
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_____________________________________________________________________

Definition: The standard deviation of portfolio returns, Fp is the square root of the variance of
portfolio returns var[Rp] / Fp

2.  Various equivalent forms for the portfolio variance formula are
available:

where cov[Ri , Rj] = Fi j.  In the double sum expression, when i=j the covariance is a variance.  These
expressions can be further manipulated by making further substitutions using the definition for Di j,
the correlation between Ri and Rj, i.e., cov[Ri , Rj] = Fi j / Di j Fi  Fj.
_________________________________________________________________________

It is easiest to understand these results for the case where k = 2, when there are only two securities
in the portfolio.  In this case:

An end of chapter exercise is provided to illustrate the manual application of this result.  Similarly

for 3 assets in the portfolio:

When there are k securities in the portfolio, the resulting portfolio variance will contain k variance
terms and {k(k - 1)}/2 covariance terms. The substitutions using the definition for the correlation
coefficient and the restriction that the sum of the value weights equals one is left as an exercise.
   Having the formula for the variance of portfolio return permits the ready identification of an
important special case of an optimum portfolio: the minimum variance portfolio, the portfolio that
has the smallest risk in the set of all possible portfolios.  This formula for this portfolio can be
derived by minimizing var[Rp] with respect to the choice variables, the value weights for each of the
individual securities, subject to the restriction that the sum of the value weights be equal to one. In
the simple case of the minimum variance portfolio for two securities, using the result that w1 + w2

= 1:
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This result demonstrates that the minimum variance portfolio will be a combination of the two
securities and not just be fully invested in the security with the lowest risk.
   The intuition behind the portfolio diversification problem can be illustrated with the following
artificial situation: assume that all the securities in the market have the same expected return of 10%
and the same standard deviation of security return of 15% with the covariance between all security
returns being .02.  Construct an equally weighted portfolio containing N securities.  While the
expected return on this portfolio will be 10%, the variance of the equally weighted portfolio
containing N securities will be:

While the expected return is a linear combination of the individual security expected returns, the
result same does not apply to the variance.  This property of the variance for a linear combination
of random variables is an essential ingredient in the portfolio optimization models.
   Recall the result stated previously where, if the random variables are uncorrelated, then the
variance of an equally weighted linear combination will go to zero as N goes to infinity. What
happens to the portfolio expected return and standard deviation of this portfolio as N gets large?
Because it is assumed that all standard deviations are the same, there are N equal terms in the first
sum and, because the covariances have been assumed to be equal, there are N(N - 1) terms in the
second sum and the portfolio variance reduces to:

As N 6 4, the first term goes to zero and the portfolio variance is reduced to the covariance.  To get
this result, N must be very large.  Even for portfolios containing, say, 100 securities, there is still
some contribution to variance from the Fi.  As noted, when the covariance between all available
securities is zero (independent returns), the standard deviation of the portfolio will go to zero as N
gets large.
   This simple example provides a pedagogical basis for illustrating the gains to diversification. 
Examining the variance of the equally weighted portfolio described above, the (Fi

2 / N) term applies
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to the specific risk associated with the individual securities, where the Fi
2 for each of individual

ecurity are associated with individual firm specific risks.  Because this component of portfolio
variance goes to zero as the number of securities gets large, it is appropriately described as
diversifiable risk.  The (1 - (1/N)) Fi j term is associated with the covariance between security returns.
Because this source of portfolio risk does not go to zero as N goes to infinity, it is appropriately
described as nondiversifiable risk.  It follows that the portfolio standard deviation can be
decomposed into the sum of diversifiable risk and nondiversifiable risk.  Hence, the risk associated
with any portfolio of securities equals the sum of the diversifiable risk and nondiversifiable risk for
that specific portfolio.  ‘Efficiently diversified’ portfolios have eliminated diversifiable risk.
   As securities are added to the equally weighted portfolio, the risk of the portfolio is reduced until
the lower bound provided by non-diversifiable risk is reached.  However, the amount of risk
reduction decreases as the number of the securities in the portfolio increases to the point where there
is no more firm specific risk that can be eliminated.  The lower bound on portfolio risk, associated
with the non-diversifiable risk, is due to the covariance between security returns.  Modern portfolio
theory expends considerable theoretical effort in developing the capital asset pricing model (CAPM)
where individual security returns depend on a combination of the riskless interest rate and the
covariance of the individual security return with the return on the market portfolio.  In this model,
it is the nondiversifiable risk, referred to as systematic risk, that is compensated with higher expected
return.  Hence, there is a tradeoff between systematic risk and expected return.  Because firm
specific risk (unsystematic risk) can be eliminated in an efficiently diversified portfolio, the security
market will not reward this source of risk with higher expected return.

B.  The Optimization Model

   The mean-variance portfolio optimization model is a central paradigm of modern Finance.  The
essence of the model is captured in the following quadratic optimization problem, e.g., Elton and
Gruber (1995), Luenberger (1998):3

where: k is the number of risky securities or assets available for investment; E[Ri] is the (conditional)
expected return on security or asset i; E[Rp] is the expected return on the portfolio; cmv is the return
on the minimum variance portfolio; and, var[Rp] is the variance of portfolio return.  In this model,
the {wi} are the value weights, the fraction of the total value of the portfolio invested in each asset.
Though it is conventional to develop the model under the assumptions of perfect capital markets (see



15

BOX), it is possible, even desirable, to impose additional restrictions on the optimization problem.
One such additional restriction is wi $ 0 for all i.  This restriction prevents short selling of securities.
Without this restriction, all or almost all securities will be held in some form, either long or short.
With the short selling restriction, the resulting optimal portfolios will have many securities that have
value weights equal to zero.  

INSERT BOX   Perfect capital markets assumptions

   The quadratic optimization problem is to determine the value weights for each security which
minimize the variance of the return on the portfolio, subject to a target level of expected return.
Because there is range of possible expected returns that can be chosen, the solution to the
optimization problem will be a set of portfolios, each with its own set of optimal weights.  This set
of optimal portfolios is typically referred to as the efficient  frontier.  Other terms such as efficient
set (Fama 1976), portfolio possibilities curve (Elton and Gruber 1995) and mean-variance efficient
locus (Ingersoll 1987) are also used.  There are a number of solution methodologies that can be used
to solve quadratic optimization problems.  A simple iterative method involves initially solving the
minimum variance problem.  The resulting optimal minimum variance weights are used to identify
cmv. This value is used to specify c1 = cmv + ,, where , ( > 0 ) is specified according to the desired
precision required in the solutions.  Using c1 it is now possible to solve the Lagrangian problem for
the next portfolio along the frontier. This process continues for c2 = cmv + 2,, c3 = cmv + 3, and so on
until the desired efficient frontier is determined.  With the short sales constraint, the maximum ci is
given by having all funds invested in the highest returning security.  Without the short sales
constraint, the efficient frontier can be extended indefinitely.  Because the underlying problem is
quadratic, there will be two ‘optimal’ solutions, one of which is ignored because it will have higher
risk for the same expected return.  Hence, the efficient frontier only contains the portfolios with high
return/lowest risk.
   The number of variations that have emerged from this basic model is staggering.4  Initially,
implementation of the model was impeded by the large number of parameters required to make the
model operational.  In addition to the k individual asset returns, E[Ri], there are k variances, Fi

2, and
{k(k-1)}/2 covariances which have to be estimated from past data.  Even if these parameters are
available, the model is only capable of generating a set of mean-variance optimal portfolios, the
efficient  frontier.  Additional structure is needed to select a specific portfolio from the set of optimal
portfolios.  Tobin (1958), Sharpe (1963, 1964) and others handled this problem by introducing a
riskless asset.  This permits the investor to form portfolios which combine the riskless asset with an
efficient frontier portfolio.  In this fashion,  the investor is able to achieve the same level of expected
return as that generated by an efficient frontier portfolio, again with a lower level of risk.
Effectively, the addition of a riskless asset transforms the investment opportunity set from a convex
function, the efficient frontier, to a set of linear functions, the capital allocation lines.
   In general, where there are many possible securities available for inclusion in the portfolio,
solution of the efficient set from the optimization problem is complicated.  For purposes of
illustration, it convenient to assume that there is only two risky securities.  In this case it is possible
to derive the efficient frontier directly, permitting basic concepts to be illustrated.  So, assume you
are considering creating a portfolio combining a stock fund composed of large stocks (S) and a bond
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fund (B).  The statistics for these funds are: E[R], large stock fund = 12%, bond fund = 5%;  F, large
stock fund = 15%, bond fund =  8%.  For ease of calculation, assume the correlation coefficient
between the funds is zero. It is now possible to calculate E[Rp] and Fp for all possible portfolios,
starting from 0% invested in the stock fund (ws = 0) and going to 100% (ws = 1), in increments of
20%.  This produces:

ws                E[Rp]                  Fp  

0                 5.0%                8.0%
.2                6.4%                7.07%
.4                7.8%                7.68%
.6                 9.2%               9.55%
.8                10.6%              12.11%
1.0                12%                15%

Plotting these values in {E[R],F} space produces the efficient frontier.  From these values, it is
apparent that an investment of 100% in the bond fund (ws = 0) does not make sense because
portfolios with values  such as ws = .2 and ws = .4 both provide a higher portfolio expected return
with a lower level of portfolio risk.  Recalling that the returns were assumed to be independent, the
portfolio weights, E[Rmv] and Fmv for the minimum-variance portfolio are:

It follows that E[Rmv] =  .0655 and Fmv =  .0706.
  Suppose the number of securities available for selection in the portfolio included a third fund
composed of small stocks which has E[R] = 15% and F = .20.  How would you derive the efficient
frontier for portfolios combining the three funds?  Attempting to use the method of direct calculation
that worked for the two security case is no longer possible.  The two security case reduced to solving
for one weight because it was possible to substitute out the other weight using the constraint that the
sum of the weights equals one.  Hence, there was no optimization problem to solve as there was only
one effective weight.  Barring trivial cases, when there are three or more securities the optimal
weights have to be determined by solving the first order conditions of the optimization problem in
order to identify how much of a given frontier portfolio is invested in each security.  Ingersoll (1987)

discusses the relevant solution procedure.

C. Capital Allocation Lines: Introducing a Riskfree Asset

   The efficient frontier specifies a set of portfolios that achieve optimal combinations of the
available risky assets.  In order to provide a practical guide to portfolio selection, some method
is required to identify a specific portfolio from the efficient frontier.  Observing that the efficient
frontier is a convex relationship between E[R] and F for portfolios of risky assets,  by introducing
a riskfree asset it is possible to produce a linear set of available portfolios.  In particular, when
a riskfree asset is introduced a range of portfolios can be identified which are not available with
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risky assets alone. What is the riskfree asset?  This depends on the investment horizon or the
portfolio rebalancing period.  The riskfree asset must be free of default risk, have no coupons to
reinvest (this would create coupon reinvestment risk),  have maturity equal to the investment
horizon and be denominated in domestic currency.   For US investors,  it is typical to use the 3
month Tbill rate as the riskfree interest rate.   Though it is conventional to proxy the riskfree asset
with a 3 month US Treasury bill, some presentations, e.g.,  Damodaran (1994), argue that the US
Treasury long term bond yield is appropriate.   The problem of specifying the riskfree asset will
be explored in more detail shortly.

INSERT FIGURE 3-a (CAL with efficient frontier)

   The riskfree asset permits the creation of portfolios which combine the riskfree asset with a risky
portfolio located on the efficient frontier (see Figure 3-a).  In (E[R], F) space, the line connecting
the riskfree rate with a point on the efficient frontier is referred to as a capital allocation line
(CAL).   (This terminology is used in Bodie, Kane and Marcus 1999).  There are as many capital
allocation lines as there are portfolios on the efficient frontier.  Each point on a given capital
allocation line defines a range of possible portfolios which combine the riskfree asset and an
efficient portfolio composed of risky assets.  Along a given capital allocation line connecting the
riskfree rate,  r,  with an efficient portfolio X,  the expected return (E[RR]) and standard deviation
(FR) of a portfolio combining the efficient frontier portfolio and the riskfree asset can be specified:

E[RR] =  wr r +  (1 - wr) E[Rx]

The result for the variance of the portfolio follows because the riskfree asset has no risk or
covariance because it is risk free.
   Some care has to be taken in interpreting the weight wr.   Though the notation w is used, this
weight is not associated with the wi weights for the various efficient frontier portfolios.  The wr

weight is the fraction of the portfolio in the riskfree asset and (1 - wr) is the fraction held in the
efficient portfolio.  When 1 $ wr $ 0,  this implies that the portfolio involves a positive investment
in both the riskfree asset and the efficient portfolio.   In Figure 3-a this condition is applicable to
all the portfolios lying on the portion of the CAL between r and X.  At r, wr =  1 and at X on the
efficient frontier wr =  0.  When wr # 0, this implies that the riskfree asset is held short,  i.e.,  the
investor is borrowing at the riskless rate.  This is equivalent to saying that, in addition to
investment of the original capital,  the investor has also borrowed money at the riskfree rate and
has purchased additional units of the risky portfolio X.  For example, if the investor has $1 million
of original capital to invest and wr =  -.5 (wX =  1.5), then the investor has borrowed an additional
$500,000 and has used this money to purchase an additional $500,000 of X.  Portfolios where wr

# 0 lie to the right of X on the CAL.   The key point to recognize is that the presence of the
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riskfree asset permits the investor to attain portfolios which are not available using risky assets
alone.

D. The Capital Market Line and Market Equilibrium

   To this point, the problem of picking an individual portfolio from the set of efficient frontier
portfolios has not been solved.  A convex set has been replaced by a set of CAL’s,  each of which
has a theoretically infinite number of possible portfolios.  What has been demonstrated is that,
with a riskfree asset, it is possible to specify (E[R], F) tradeoffs that are unattainable with risky
assets alone.  In order to identify the best CAL and the appropriate portfolio to select on that
CAL, it is conventional to introduce the mean-varance expected utility function: EU[R] =  E[R] -
b var[R].   As depicted in Figure 3-b, the mean-variance EU function defines a preference ordering
over the (E[R], F) space.  Movements in a northwest direction indicate increasingly higher levels
of expected utility.  It follows that the CAL which is just tangent to efficient frontier will attain
the highest level of expected utility and the tangency of that CAL with the highest EU curve will
be the specific portfolio that maximizes EU.   This importance of this particular CAL is recognized
specifically by referring to it as the capital market line (CML).

INSERT FIGURE 3-b (EU map for Mean-Variance function)

    As it turns out, the slope of the capital allocation line for any efficient portfolio X will be of
interest in identifying the properties of the capital market line.   Observing that the rise of the CAL
is E[Rx] - r and the run from the origin is Fx it follows that the slope of any CAL is (E[Rx] - r)/Fx.
Using this result, the equation of the capital allocation line for X becomes:

Refer to Figure 3-b describing the indifference curves in (E[R],F) space for a risk averse investor.
Because utility increases as the slope of the capital allocation line increases,  the rational investor
will achieve the maximum level of utility by selecting the capital allocation line with maximum
slope, i.e.,  the CAL that is just tangent to the efficient set.   Under perfect market assumptions,
the CAL that is just tangent to the efficient set represents the highest level of utility.  This
tangency portfolio is the portfolio which represents the market equilibrium.   With the additional
theoretical apparatus provided by the capital asset pricing model (CAPM) it can be demonstrated
that the tangency portfolio associated with the capital market line is the market portfolio.
   To illustrate the process of identifying a specific portfolio,  refer back to the stock/bond fund
portfolio discussed previously.   Assume that a riskfree asset is available with r =  3%.  By
maximizing the slope of the CAL, the weights for the tangency portfolio are given to be wS =  .561
and wB =  .439.  For these weights, E[RM] =  .0893 and FM =  .0912 where M indicates the
tangency portfolio.  Observing that the slope of CML is  (.0893 - .03)/.0912 =  .65, the equation
of the capital market line can be specified as: E[RR] = .03 + .65 FR .  Now, suppose the investor’s
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indifference map is given by the expected utility function: EU[R] = E[R] - {3.25 var[R]}.

Recognizing that var[R] = ((1 - wr) FM )2 and E[RR] =  wr r +  (1 - wr) E[Rx], the process of

maximizing EU[R] gives wr =  -.096 as the optimal holding for the riskless asset.  This implies that,
for the specified mean-variance expected utility function, the optimal solution involves a solution
on the CML to the right of the tangency with the efficient frontier.  It can be verified that alternative

values of the risk aversion parameter b give: b =  5, wr =  .2875; b =  3, wr  =  -.01786; and, b =

2, wr  =  -.78125.

E.  Criticism of Mean-Variance Portfolio Analysis

   While the mean-variance portfolio model has considerable theoretical appeal, there are a number
of substantive problems that arise in implementing the model.  One obvious problem concerns the
large number of parameters that have to be estimated.  Even if this problem can be overcome,
attempting to capture the gains, out-of-sample, has proved to be illusive, particularly when
international assets are permitted to be part of the set of available securities.  In practice, the use of
ex post (in-sample) data to estimate the relevant ex ante (out-of-sample) parameters creates
numerous problems, not the least of which is instability in both the mean and variance-covariance
parameter estimates.  This is especially the case where expected returns are of interest.  As pointed
out by Eaker, et.al. (1991): "The problem with including returns in the portfolio selection decision
is that such portfolios generally perform poorly in out-of-sample tests."
   The mean-variance portfolio model is a central tenet of modern Finance.  Much like another central
tenet, the efficient markets hypothesis, enthusiasm for the mean-variance portfolio model within
Finance has evolved considerably.  In recent years the model has been subjected to substantial
critical scrutiny.  The first wave in the assault on the mean-variance approach can be attributed to
Jorion (1985, p.265), which describes the problems emphatically in the context of internationally
diversified portfolios:

Mean-variance analysis has serious shortcomings which are too often ignored ... Perhaps the most

serious defect in the classical (portfolio) approach is the poor out-of-sample performance of the

optimal portfolios.  Performance measures always deteriorate substantially outside the sample period,

and the supposedly optimal choice is sometimes dominated by a naive method....Another problem is

the instability in the optimal portfolio: the proportions allocated to each asset are extremely sensitive

to variations in expected returns, and adding a few observations may change the portfolio distribution

completely.  Also, optimal portfolios are not necessarily well diversified.  Often a corner solution

appears, where most of the investments are zero and large proportions are assigned to countries with

relatively small capital markets and h igh average returns. 

As it turns out, this attack is decidedly overstated.  However, the basic point remains: ex post
estimates of expected returns, based on arithmetic or weighted average estimators, are not reliable
estimates of future returns. Relative to estimates of variances and covariances, Jorion (1985), Eun
and Resnick (1988) and others demonstrate that estimates of expected returns are considerably more
unstable over time.
   Empirically, the parameter instability problem has a number of implications.  For example, ex ante
results concerning the return on a given portfolio may vary significantly from sample to sample.



20

Jorion (1985) examines the out-of-sample performance of the two ex post optimal internationally
diversified portfolios identified by Grubel (1968) and Levy and Sarnat (1974), together with two
"naive" portfolios, the equally weighted and market value weighted portfolios.  As measured by the
Sharpe ratio, Jorion found that over the next investment horizon, the ex ante performance of the two
mean-variance efficient portfolios was inferior to the performance of the naive equally weighted
portfolio.  Jorion (1985) also provides evidence that, in estimating ex post returns, longer sampling
windows, e.g., five years for monthly data, provides superior ex ante forecasting when compared
with shorter sampling windows, e.g., 1 year of monthly data.  The difficulty with longer sampling
windows is that it takes a longer time interval for the estimates to react to changing market
conditions.5

   In addition to the length of the sampling window, the type of estimator also can have a significant
impact on the ex ante results. In applications, means and variances are estimated from the most
recent data available at the time the portfolio is rebalanced.  Grauer and Hakansson (1992) provide
data on the behavior of the mean-variance efficient portfolio over time, using quarterly rebalancing
of the portfolio, based on the most recent 40 quarters of data.  The investment universe includes US
equities and bonds, seven non-US equities (Canada, Japan, UK, Switzerland, Netherlands, Germany
and France).  The simulations try four different methods of estimating the mean and provide results
over a wide range of possible investor preferences.  Their results indicate the importance of mean
estimation to portfolio composition.  When simple historical averages are used to estimate the
means, the average portfolio contains 3 risky assets or less for the "typical" range of investor
preferences.  When the CAPM is used, eight to the maximum possible ten risky assets is common
in the average portfolio.
   In addition to the estimation method used to determine the relevant parameter inputs, the presence
or absence of short-selling has been found to be fundamental in assessing the performance of mean-
variance efficient portfolios. Even though the early studies implicitly assumed short selling was not
permitted, at least since Jorion (1985) it has been recognized that odd results can be obtained when
short selling is permitted.  For example, Jorion reports  results for the time series properties of the
optimal weight on domestic assets in the ex post tangency portfolio (see below). A considerable
amount of short-selling is indicated at various times, as much as -2.4 times the total principal value
of the portfolio at one point in 1978.  For many types of investment situations, e.g., pension funds,
life insurance companies, this amount of short selling would be unacceptable and unobtainable.
Evidence on portfolio composition with short selling restrictions, e.g., Glen and Jorion (1993),
indicates a dramatic narrowing of the number of assets held in the portfolio is likely, amplifying the
concentration of a given portfolio in a small number of assets.
  Somehow, proponents of the model believe that the out-of-sample prediction problems can be
resolved by improving the estimation methods that are used.  This still leaves the problem of
identifying the appropriate portfolio from the set of mean-variance efficient portfolios.  Following
Sharpe and others, the efficient frontier portfolio to be selected is that portfolio associated with the
capital allocation line which is just tangent to the efficient frontier, i.e., the portfolio associated with
the capital market line.  This tangency portfolio can be determined by solving the following
optimization problem, e.g., Eun and Resnick (1994):
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where r is, as before, the riskfree interest rate.  On theoretical grounds, the tangency portfolio is the
ex ante mean-variance-expected-utility optimizing risky portfolio.  Even though the precise
combination of riskless asset and risky tangency portfolio for any given investor requires
specification of the relevant parameters for the investor's mean-variance expected utility function,
the optimal risky portfolio has been determined.
   Given the ex post estimates of the relevant means, variances and covariances, the optimality
problem is solved and the resulting tangency portfolio will represent the optimal, in-sample
portfolio.  Whether this in-sample optimality translates into superior out-of-sample performance is
an open question.  The answer to this question becomes even more complex when foreign assets are
admitted into the asset universe.  In particular, the domestic currency return on a foreign asset
depends on a combination two random variables: the return denominated in foreign currency terms;
and, the change in the exchange rate.  The correlation between foreign and domestic asset returns
will tend to be lower than the correlations between domestic assets, making foreign assets excellent
candidates for diversification.  In addition, foreign assets can also provide the possibility of
significantly higher returns than domestic assets.  As demonstrated by Eun and Resnick (1994), the
difficulties associated with estimating expected returns results in the minimum variance portfolio
having generally superior ex ante performance compared to the tangency portfolio.

3.3   Separation, the CAPM and the Market Model

A.  Two Fund Separation

   The combination of mean-variance expected utility, perfect markets and the CML provides the
basis for a version of the two fund separation property:  in market equilibrium, rational risk
averse investors will hold portfolios which combine the riskfree asset with the tangency portfolio.
The precise combination of the riskfree asset and the tangency portfolio will depend on the risk
preferences of the individual investor.   The CML result does not provide any information about
how to determine the return on individual assets,  or any portfolio of assets which is not efficient.
The CML also does not provide specific information about the asset composition of the tangency
portfolio.   This information is provided by the capital asset pricing model (CAPM).   If the CAPM
is incorporated, then it can be shown that the tangency portfolio will be the market portfolio.  In
this case, the two fund separation property says that,  in market equilibrium, rational risk averse
investors will hold portfolios which combine the riskfree asset and the market portfolio.
   Two fund separation provides the theoretical basis for a persuasive and implementable
investment strategy.   This strategy requires a strong belief in efficient markets.  If markets are
efficient then the gains to individual security selection strategies,  using either fundamental or
technical analysis, will be illusory.  The decision problem facing the rational investor is to
determine what fraction of  invested capital to hold in the risky market portfolio and what fraction
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to hold in the riskfree assets.   Investors with high levels of risk tolerance will leverage up,  by
borrowing at the riskfree rate,  and purchase more of the market portfolio.  Investors with
moderate to low levels of risk tolerance will have positive investment weights for both the riskfree
asset and the market portfolio.  Though this perfect markets result requires some adjustment to
account for market imperfections, e.g., differences between lending and borrowing rates, the basic
intuition survives in tact.  As pointed out by Roll (1978), the main practical ambiguities lies with
the specification of the riskfree asset and the market portfolio.
   The CAPM provides a method for determining the expected return,  E[Ri],  for any asset i,  not
just for portfolios on the efficient frontier.  The CAPM is an ex ante model that can be expressed
as:

E[Ri] =  r +  {E[Rm] - r} $i

where E[Rm] is the expected return on the market portfolio and $i is a measure of the systematic
risk of asset i.   In words, the CAPM can be expressed as: the expected return on asset i =  risk
free rate +  systematic risk premium for asset i.   A key variable in the CAPM is $ which is
specified as:

where Fm
2 is the variance of the return on the market portfolio.

   Some examples of mechanical calculations that can be done with CAPM are: assume that the rate
of return on the market E[Rm] =  .15 and r =  .05 and $i =  1.5 then the expected return on asset
i is E[Ri] =  .05 +  (.15 - .05)(1.5) =  .20; assume that E[Ri] =  .1, E[Rm] =  .105 and $i =  .9 then
the riskfree rate r is 5.5%; assume that E[Ri] =  .2, E[Rm] =  .15 and r =  .10, then $i =  2.  Beta
is applicable not only for individual securities but also for portfolio of securities.  The following
useful result can readily be derived: the beta of a portfolio,  $p is the value weighted sum of the
individual betas (the $i' s).  This follows because the CAPM holds for any asset,  including
individual assets as well as portfolios of assets.   Recognizing that the CAPM will hold for the
efficient portfolios on the efficient frontier, the CAPM can be used to show that the tangency
portfolio in the CML is the market portfolio.
   To demonstrate this result,  assume that the CAPM is true.  If the tangency portfolio is the
market portfolio, the CML provides the result:

where m refers to the market portfolio.  Using the result that FR =  (1 - wf )Fm this can be rewritten:
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If the CAPM is true then it will hold for any portfolio along the CML.  If the market portfolio is
the tangency portfolio for the CML  then E[R] =  wr r +  (1 - wr ) E[Rm] and evaluating $ gives:

Substituting this result back into the CML shows that the CAPM and CML are equivalent when
the tangency portfolio is the market portfolio.

INSERT FIGURE 3-c (Security Market Line)

   The relationship between the CAPM and the CML can be expressed in a linear form in (E[R],
$) space. This linear relationship is the security market line (SML).  While the CAL and CML
provide a linear relationship in (E[R], F) space between total risk, as measured by standard
deviation, and expected return, the SML provides a linear relationship between systematic risk,
as measured by $,  and expected return.  The equation for the SML can be derived by identifying
two points on the line: the riskfree rate where $f =  0 and  E[Ri] =  r and the market portfolio
where $m =  1, E[Ri] =  E[Rm].   It follows that the slope is (E[Rm] - r).  From this the equation for
the SML can be stated: E[Ri] =  r +  (E[Rm] - r) $i.  Hence, the SML is the graphical representation
of the CAPM.  A useful pedagogical application of the SML is to describe whether a particular
security is over or underpriced relative to its measure of systematic risk.

B. The Capital Asset Pricing Model*

   The Markowitz model of mean-variance portfolio optimization is concerned with the behavior of
an individual investor selecting securities for inclusion in an optimal portfolio.  Practical application
of this model is complicated by the large number of parameters that have to be estimated and the
associated complexity of the solutions as the number of securities is increased.  The CAPM provided
a theoretical mechanism for handling this problem.  Using the CAPM, the problem of estimating the
optimal weights for the individual assets in the tangency portfolio is replaced with a method of
identifying the predetermined set of weights associated with the market portfolio.  Though the notion
of a ‘market portfolio’ is somewhat nebulous, in practice it has been interpreted to be a widely
diversified value-weighted portfolio of common stocks such as the S&P 500, e.g., Damodaran
(1994).  This all raises the need to examine the derivation of the CAPM in more detail.
   In the years since the CAPM was introduced by Sharpe (1964), Lintner (1965) and Mossin (1966),
considerable effort has been given to extending and expanding the basic model (see Chapter 10).
The basic CAPM, also referred to as the one factor or single index model, is derived under perfect
markets assumptions.  The process of extending and expanding has been largely concerned with
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relaxing these assumptions.  Unlike the partial equilibrium approach of the mean-variance portfolio
model, the CAPM is a general equilibrium model.  It is this feature that permits the CAPM to go
beyond the basic portfolio structure to make statements about the expected returns for individual
assets.  General equilibrium requires market clearing conditions for all assets to be satisfied.  To
accomplish this, the CAPM relies on the assumption the investors are homogeneous, possessing the
same expectations about the means and variances of returns and the same investment horizon.  All
investors are assumed to have the same form of mean-variance expected utility function.
   Much of the derivation of the CAPM follows the mean-variance optimization procedure.  The
homogeneity assumption is invoked after the riskfree rate is introduced and the optimality of the
tangency portfolio is established.  Because investors are homogeneous and market clearing is
required, it must be that the tangency portfolio is the market portfolio.  Fama (1976, p.274-5)
describes the logical argument:

... a market equilibrium  requires a market-clearing set of prices; a market equilibrium requires that, in aggregate,

investors demand them in the proportions in which they are ou tstanding.  Given the nature of the efficient set when

there is risk-free borrowing and lending, this market-clearing condition means that a market equilibrium is not

attained until the  one tangency portfolio that all investors try  to combine with risk-free borrowing or lending  is a

portfolio of all the positive variance securities in the market, where each security is weighted by the ratio of the total

market value ... of all its ou tstanding units to the total market value of all outstanding  units of securities.  In short,

a market equilibrium is not reached until the tangency portfolio ... is the value-weighted version of the market

portfolio ... A market equilibrium – a set of security prices that clears the securities market and a value of (the risk-

free rate) that clears the borrowing-lending  market –  requires that the tangency portfolio be the market-weighted

version of the market portfolio.

This last step, the identification of the tangency portfolio with the market portfolio, follows
immediately from the investor homogeneity assumption.  In the derivation of the CAPM, this step
is something of an afterthought.
   The key parts of the CAPM relate to developing the relationship between the expected return on
a given asset and the expected return on an efficient portfolio.  This derivation requires one useful
result associated with linear combinations of random variables:6

Given this, the derivation of the CAPM proceeds by solving the Lagrangian arising from the mean-
variance portfolio model:

This optimization problem will produce k first order conditions associated with the {wi} together
with two additional first order conditions for the constraints to produce a system of k+2 equations.
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   For jth security, the first order condition provides:

As the ordering of the securities is arbitrary, this result can be equated with the first order condition
for the first security to obtain:

The next step involves multiplying both sides by wj and summing over j.  This affects the right and
left hand sides differently.  The left hand side produces:

The right hand side produces:

This result follows because there is no j on the right hand side and, as a result, the sum of the weights
equals one and has no impact.
   Observing that the weights apply to a mean-variance efficient portfolio, i.e., Rp is on the efficient
frontier, manipulating the right and left hand sides produces the result:

What remains is to determine 8, which is the Lagrange multiplier associated with the impact of
changes in the target level of portfolio expected return on the variance of the portfolio.  When there
is a riskfree rate, the 8 for the tangency portfolio can be determined as:

Substituting this 8  result back into the prior equation and manipulating gives the CAPM.
   Nothing in this derivation demonstrates that the tangency portfolio is the market portfolio.  This
result is obtained from the logical argument about market clearing with homogeneity of consumers.
In a sense, two fund separation, where the rational investor holds combinations of the market
portfolio and the riskless asset, is too strong a condition.  A more appropriate result would be a
partial equilibrium result where the rational investor holds combinations of a mean-variance efficient
portfolio and the riskless asset.  But this would require the mean-variance efficient portfolio to be
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determined, falling back to the problems associated with complexity, number of parameters to
estimate, estimator forecasting error and the like.  That the CAPM assumptions make proponents
of modern Finance queezy is apparent in the following quote from Elton and Gruber (1984, p.273):

It is worthwhile pointing out ... that the final test of a model is not how reasonable the assumptions behind it appear

but how well the model describes reality.  As the reader proceeds with this chapter, he will, no doubt, find many

of its assumptions objectionable.  Furthermore, the final model is so simple the reader may well wonder about its

validity.  As we shall see, despite the stringent assumptions and the simplicity of the model, it does an amazing ly

good job of describing  prices in capital markets.

   The real world is sufficiently complex that to understand it and construct models of how it works, one must

assume away those complexities that, hopefully have only a small (or no) affect on its behavior.  As the physicist

builds models of the movem ent of matter in a frictionless environment, the economist builds models where there

are no institutional frictions to the movem ent of stock  prices.

These words reflect the place of the CAPM at the foundation of the positivist superstructure that is
modern Finance.

C. The Market Model*

   Because the CAPM is an ex ante model it depends on expected returns and other unknown
values, that are not directly observable or testable.   The statistical representation of the CAPM
which is testable is known as the market model.   The market model is a bivariate regression model
of the form:

where Rit is the observed return on asset i at time t,  Rmt is the observed return on the market
portfolio at time t,  "i and $i are statistical parameters to be estimated and eit is the asset specific
error which is assumed to obey the statistical properties for ordinary least squares regression.  For
the market model the ordinary least squares (OLS) assumptions (in vector notation) are: E[ei] =
0, the firm specific error has mean zero; E[ei Rm] =  0, the firm specific risks are uncorrelated with
the market return;  E[ei ej] =  0 for i not equal to j,  the firm specific risks for different securities
are uncorrelated; in addition, it is assumed that the ei are iid random variables.  The additional
assumption of normality of ei facilitates hypothesis testing.  With these assumptions, ordinary least
squares can be used to estimate the coefficients "i and $i.   The market model is sometimes referred
to as the single index model, e.g., Elton and Gruber (1995).
   Taking expected values for the market model gives for any t:

E[Ri] =  "i +  $i E[Rm]    because E[ei] =  0

If the CAPM is true,  it follows that "i =  (1 - $i) r ,  ($i has the same interpretation as cov[Ri,
Rm]/var[Rm]).  This interpretation for " depends on the riskless rate being a constant.  While this
assumption is correct in one-step-ahead decision making, it is problematic when estimating
parameters in a time series.   To account for changes in r over time, the market model is often
expressed in risk premium form,  by subtracting the observed riskless rate, in any given period,
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from the observed returns:

where ui is also a firm specific risk with ordinary least squares properties.  In this form,  taking
expectations and assuming that the CAPM holds gives "i =  0 and $i with the same interpretation.
   Beta is a measure of systematic or market risk.   It provides information on how the stock return
reacted historically when the market portfolio changed.  Beta estimates are reported at a number
of websites, such as www.bloomberg.com.  For $i >  1  (high beta), when the return on the
market portfolio changes,  the return on the stock will tend to change by more than the return on
the market portfolio.  Stocks with higher than market betas are considered to be aggressive.   When
the market is expected to move up, shifting into stocks with high beta is indicated.  In the US
market,  examples of high beta stock groups occur in industries such as trucking,  consumer
durables, construction and air transport.  For $i <  1  (low beta) when the return on the market
portfolio changes, the return on the stock will tend to change by less than the return on the market
portfolio.   Stocks with lower than market betas are considered to be defensive.   When the market
is expected to move down, shifting into stocks with high beta is indicated.  In the US market,
examples of low beta stock groups occur in telephone stocks,  utilities,  breweries and food
producers/distributors.
   Alpha is an asset specific measure which indicates the excess return that the security earned
beyond that warranted by the risk premium captured by the security' s beta.  For the market model
expressed in risk premium form, positive alpha indicates that the stock outperformed the market,
after adjusting for systematic risk.   Negative alpha indicates that the stock underperformed the
market, after adjusting for systematic risk.  The market model provides a useful simplification for
determining the betas and alphas for a portfolio from the alphas and betas of the individual
securities:

In other words,  the alpha and beta for the portfolio are the value weighted sums of the individual
portfolio alphas and betas.
   The market model can also be used to demonstrate that portfolio diversification leads to the
elimination of unsystematic or firm specific risk leaving only systematic risk as the determinant
of portfolio variance.  If the market model is true then the variance for individual security returns
reduces to:

Similarly,  the covariance between the security returns becomes:

http://www.bloomberg.com.
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These results follow from the assumptions made in the market model.  Substituting these results
into the formula for the portfolio variance, Fp

2 gives:

Observing that the variance of the market portfolio is a common term in the double sum, it is
possible to do some factoring:

Using the result that the beta of the portfolio is the value weighted sum of the individual security
betas, the following simplification is available for the portfolio variance:

The term involving $p is the systematic or market related risk.  It depends only on the composition
of the portfolio and the variance of the return on the market.  The second term involves only firm
specific or unsystematic risks.
   To show the impact of diversification on both systematic (market) risk and unsystematic (firm
specific) risk,  observe that the first term involving the beta of the portfolio is not much affected
by increases in the number of securities in the portfolio.  The second term involving the firm
specific risks is directly affected by the number of securities in the portfolio.  Take the case of an
equally weighted portfolio where wi =  1/N.   In this case, as the number of the securities in the
portfolio increases the firm specific risks are reduced at the rate of (1/N2), which is converging
to zero quite rapidly.  This follows from observing that when the firm specific risk has been
eliminated then the last term on the rhs of the last equation is zero.   Taking square roots and
observing that the portfolio beta is the weighted sum of the individual security betas provides the
required result.   However,  because there are a large number of securities in a portfolio,  this does
not mean that the firm specific risks are eliminated.  Rather, the elimination of firm specific risk
depends on reducing the value weights attached to each security as N increases.  For example, if
w1 =  .5 for a particular security,  and this value does not change as the number of securities in the
portfolio increases, then the firm specific risk associated with that security is not eliminated as the
number of securities in the portfolio increases.
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3.4   Financial Engineering with Derivative Securities

A.  The Derivative Security Renaissance

   The Securities Act (1933, as amended 2000) makes specific reference to both options and futures
contracts written on securities.  Extending the scope of the Securities Act to include derivative
securities captured the growth and importance of these contracts.  The substantive increase in the
practical importance of derivative securities has been paralleled by a corresponding increase in the
theoretical and empirical analysis of these contracts within modern Finance.  To this point, modern
Finance has been associated primarily with the elements of modern portfolio theory, i.e., the EMH,
the CAPM, the Markowitz portfolio optimization model and related concepts.  Yet, in addition to
these developments, modern Finance has also been intensely concerned with the development of
financial engineering.  This aspect of modern Finance is sufficiently distinct from the security
pricing and portfolio optimization aspect that there has been little loss in content from treating it
separately for pedagogical purposes.  However, the practical implications of derivative securities for
security analysis and portfolio strategy cannot be overlooked and the subject has to be addressed at
some point.
   Derivative securities are contingent claim contracts that have payoffs that depend on the future
value of some commodity, where the ‘commodity’ is broadly interpreted to include securities.
Conventionally, the set of “derivative securities” is defined to be options, futures, forward and swap
contracts, though there are also numerous hybrids that embed a contingent claim, e.g., convertible
preferred stock, callable bonds.  When added to a portfolio of securities, derivative securities can
permit the investor to significantly alter the distribution of terminal wealth.  For example, forming
a portfolio that contains a common stock together with a put option on the stock produces a truncated
payoff distribution for the portfolio that is bounded below. The payoff on this portfolio replicates
the payoff of another portfolio that combines a call option on that stock with an investment in bonds.
In other words, the availability of derivative securities opens up the practical possibility of strategy
replication providing the basis for a range of new securities products that can be financially
engineered.  The practical implementation of these notions has created the hugely successful
financial engineering industry.
   The practical developments of the financial engineering industry have been accompanied by a
corresponding revolution in modern Finance.  This revolution has resulted in the development of a
corpus of theory and empirical evidence that lies outside the stream of the developments associated
with modern portfolio theory.  This is possible because modern portfolio theory is concerned with
the valuation of the underlying commodity while derivative security analysis is concerned with the
valuation and application of contracts written on the commodity.  Attempts to integrate the two
streams are difficult because the notions of derivative security analysis are derived from a distinct
approach to valuation.  In particular, derivative securities are largely priced using absence-of-
arbitrage, an approach that is concerned with the relationship between current prices.  Modern
portfolio theory, on the other hand, is concerned with the expected values and variances of prices
that are not currently known.
  To observe that derivative securities have revolutionized modern Finance is, at the same time, both
an understatement and a misleading statement.  The statement is misleading because revolutions in
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academics usually involve the removal of one body of theory and its replacement with another.  In
this case, modern Finance has been expanded to encompass a new body of theories and empirical
results that are treated separately from the other body of theory and empirical results.  In addition,
in terms of intellectual history there has been a rough correspondence in the development of modern
portfolio theory and derivative pricing theory.  Important contributors in the derivative pricing
stream, such as Robert Merton and Fischer Black, were also important contributors to the modern
portfolio stream.  The practical successes that were facilitated by the derivative pricing theories of
academics implicitly gave credence to the security pricing and portfolio management theories that
were being advanced by the same group of academics.  
   Poitras (2002) refers to the Renaissance in derivative securities that can, roughly, be dated from
the creation of the Chicago Board Options Exchange in 1973 and the introduction of a range of
exchange and OTC traded derivative securities over the following decade.  Historically, derivative
securities trading, especially options trading, has been the subject of considerable criticism and
legislative sanction due to the potential for speculative abuses.  The last quarter of the 20th century
is remarkable in the breadth and depth of derivative security trading.  Securities markets both in the
US and globally have embraced these new products.  The financial engineering industry has become
an important profit center for many of the largest firms in the securities industry. Within academic
Finance, the virtues of derivative securities are expounded in introductory investment texts and
advanced courses.  The importance of financial engineering has permitted a proliferation of advanced
graduate programs with titles such as Masters in Financial Engineering.
   Yet, the Renaissance in derivative securities has had its blemishes.  Due to a significant number
of high profile and expensive losses, trading of derivative securities attracted considerable attention
during the 1990s (e.g., Poitras 2002, ch.1).  The list of companies involved is striking, as is the size
of the losses.  From Barings Bank to Gibson's Greetings to Sumitomo Corporation, from Long Term
Capital Management to Proctor and Gamble to Orange County, losses ranging from hundreds of
millions to billions of dollars have been reported.  Such events induce a state of uneasiness among
policy makers, corporate managers, investment professionals, even academics.  While it is tempting
to draw glib generalizations about the apparent misunderstanding of risk management practices,
closer inspection reveals a decidedly more complicated situation.  In some cases, the relevant lessons
that could be learned cannot be convincingly determined, due to the veil of corporate secrecy
surrounding specific events.  In cases where the activities and motivations of the participants can be
precisely determined, it seems that different debacles raise different types of quandaries.  Upon
closer inspection, it seems that some so-called debacles were not debacles at all.
   Large losses associated with derivative security trading are not unique to the 1990s.  Even though
the largest losses in absolute terms have happened more recently, this is consistent with the
increasing use, availability and complexity of derivative products.  This has produced an evolution
in the types of problems which are arising.  Since the early 1970s, there has been a progressive
relaxation in the US of a range of restrictions on derivative security trading, many of which had
originated in the anti-speculation atmosphere of the post-Depression era.  In conjunction with this
relaxation, there has been an almost bewildering expansion in the variety of derivative securities
being traded, both on the OTC markets and on the futures and options exchanges.  From financial
commodities to energy to equities to currencies, it is difficult to keep track of the rapid progress
which has been and is being made in the development and application of derivative securities.
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B.  The History of Portfolio Insurance

   Despite the role the derivative securities have played in the evolution of modern Finance, this
book is not about the pricing of derivative securities, if only because this subject is covered to
great depth in other sources,  e.g., Poitras (2002).  Rather practical applications of derivative
securities to security analysis and investment strategy are of interest.   In particular, derivative
securities facilitate the implementation of risk management strategies that fall under the general
title of portfolio insurance.  The different forms of portfolio insurance illustrate the replication
properties of derivative securities and how concepts from financial engineering can be used to
guide portfolio allocation decisions.   In other words, the ‘investment strategy’ implications of
derivative securities will be examined.   The ‘security analysis’ of derivative securities would
require discussion of pricing with arbitrage methods,  a subject that would take the discussion too
far afield.
   Though portfolio insurance techniques were popularized during the 1980' s, heuristic forms of
portfolio insurance have been used for decades.  For example, a form of portfolio insurance can
be achieved with the systematic use of order placement strategies, such as stop-loss and limit
orders which have been acceptable market practice at least since the 19th C.   These types of
trading dependent strategies suffer from the defect of being “path dependent”, an undesirable
property of insurance schemes.  In addition to trading related techniques, option replication
strategies using stock/bond combinations were also likely in use, though in the realm of
proprietary management practices.  These techniques also suffer from the defect of path
dependence and, in the absence of ‘Greek’ information,  would probably have been imprecise
(Poitras 2002, ch.9).  The application of option replication to specifying dynamically traded
stock/bond portfolios was not of academic interest until much later, after the development of the
Black-Scholes formula.
   As for the history of insurance related financial products,  some of the insurance schemes of the
late 17th and 18th century did offer payouts based on specific outcomes associated with joint stock
performance.  Being introduced prior to the development of actuarial science,  these insurance
schemes were more like gambling than insurance.  In more recent history, Benninga and Blume
(1985) report the selling of insurance against investment losses in the UK as early as 1956.   In the
US, Gatto et al. (1980) report on portfolio insurance plans offered to individuals by both the
Harleysville Mutual Insurance Company and Prudential Insurance Company of America.   Brennan
and Schwartz (1987) observe that the Harleysville plan was the first without any element of
mortality insurance.   Academically, Brennan and Schwartz (1976) were the first to make the
connection between the potential for integrating insurance and equity returns.   Leland,  O' Brien,
Rubinstein and Associates were important proponents in the marketing of dynamically traded
option replication strategies to institutional clients.
   The explosion in the use of the various types of portfolio insurance techniques can be traced to
the introduction of exchange trading in options.  Liquid options markets made possible the
implementation of numerous portfolio insurance strategies.  Even more strategies were permitted
with the development of futures and options markets for stock indices.  Analytical contributions
based on Black-Scholes resulted in further portfolio insurance strategies being introduced.   Many
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"alternative paths to portfolio insurance" (Rubinstein 1985) were proposed and implemented.  The
widespread use of dynamically traded portfolio insurance techniques has been identified as an
important contributing factor in the Oct. 1987 stock market "crash",  e.g. ,  Tosini (1988).
Academic understanding of notions associated with portfolio insurance have expanded
considerably since the early work by Leland (1980) and Rubinstein and Leland (1981).  The 1987
"crash" provided a textbook illustration of the inadequacies of the academically inspired option
replication strategies; sizable unexpected losses were experienced by investors holding what were
expected to be "insured" portfolios.
   One of the fundamentals driving institutions to use dynamic trading strategies was the absence
of risk management products with maturities and other characteristics that captured the time profile
of their particular risk exposures.   Since the crash, an array of OTC and exchange traded risk
management products have been introduced which greatly enhance the ability to implement path
independent strategies.  Included in the list of such new products would be: long dated exchange
traded option products,  such as LEAPS for individual stocks and longer dated index options and
equity swaps.  Despite these improvements,  the bulk of contract liquidity on both the exchanges
and OTC is still concentrated in short dated contracts (see Table 3-z).   The relative absence of
strict mark-to-market rules in OTC contracts provides a strong incentive to use short dated
contracts.
   An important element in the modern Renaissance in derivative securities was the emergence of
trading in stock index futures.  Sufficient liquidity in these futures contracts has facilitated the
trading of futures options on these indexes.  The first stock index futures contract, based on the
Value Line Index, was introduced in Feb. 1982 on the KCBT.  The most important stock index
futures contract, the S&P 500 traded on the CME/IMM, was introduced shortly thereafter in April
1982.  A raft of stock index futures contracts has appeared since that time, starting with the
introduction of the NYSE Composite on the NYFE in May 1982 and the Major Market Index on the
CBT in 1984. More recently, there has been the introduction of foreign indexes traded on US
exchanges, such as the Nikkei 225 on the CME.  This has been accompanied by the trading of
domestic equity indexes on futures markets around the world, including markets in Japan, Hong
Kong, Holland, Australia, England, France, Germany, Switzerland, and Canada.  Another recent
development has been the start of trading in the DJIA index futures in October 1997.  The slow pace
associated with the introduction of the DJIA was not due to a lack of interest in such a contract.  On
the contrary, perceiving considerable demand, the CBT had attempted to introduce a DJIA contract
as early as July 1984.  However, these plans were thwarted by Dow Jones and Company which
initiated legal action to prevent trading of the contract.   What ensued was a process lasting over a
dozen years, ending with the CBT eventually introducing DJIA futures and options contracts.

INSERT TABLE 3-z (Stock Index Futures Prices)

C.  Dynamic Portfolio Insurance

   The basic mechanics of “path independent” portfolio insurance can be isolated from the put-call
parity arbitrage condition for a non-dividend paying stock: S +  P =  C +  X e-rt*.   Because the
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concern is portfolio insurance,  S refers to the price of a portfolio of stocks (instead of an individual
stock), X is the exercise price (strike price), t* is the time to expiration measured as the fraction
of a year remaining to expiration,  P is the price of a put written on the portfolio with exercise
price X and time to expiration t*,  C is the call price written on the portfolio with the same X and
t* as the put, and r is the riskless interest rate.  Dividends have been ignored for simplicity of
exposition.  As stated, put-call parity provides two path independent insurance strategies.  One
strategy is S +  P,  buy puts against the portfolio.   If S is an index portfolio,  relevant exchange
traded puts may be available.  Another strategy is C +  X e-rt*,  buy calls and invest the remainder
in appropriately dated bonds.  Again, if the portfolio is an index portfolio, exchange traded calls
may be available.  One important advantage of this strategy is that transactions costs in bond
markets are typically lower than transactions costs for stocks and the bond portfolio can be actively
managed, e.g., by riding the yield curve,  to earn potentially higher returns than the S +  P
approach.
   While the path independent strategies have some desirable features, there are some drawbacks.
One disadvantage is the inability to accurately replicate insurance for portfolios that do not track
an index for which there are traded options, i.e.,  the relevant portfolio options are not available.
Constructing a portfolio of options using options on the individual stocks will be more expensive
and there is the possibility that not all stocks will have traded options.   Using index options as
surrogates for the portfolio options eliminates the potential for gains from individual security
selection.  Combining index options with options on individual stocks raises the problem of finding
the appropriate combination of these options to replicate the payout on the desired portfolio.
Another disadvantage is that the maturity dates for options may not be long enough to match the
portfolio' s investment horizon,  i.e.,  there is insufficient “time invariance”.  This requires options
positions to be rolled forward which is more expensive and has pricing risk.
   To handle these types of problems, dynamic trading strategies have been developed that involve
actively trading portfolios composed of stocks and bonds in order to replicate the payoff on an
insured stock portfolio.  Such strategies are intuitively appealing to large institutional investors
such as pension funds and insurance companies that already hold stock/bond portfolios that are
actively managed.  These strategies can be illustrated by substituting the Black-Scholes formula
into the put-call parity condition:

 S +  P =  S N[d1] - X e-rt* N[d2] +  X e-rt* =  S N[d1] +  X e-rt* (1 - N[d2]) =  w1 S +  w2 X e-rt*.

where N[d] is the cumulative normal distribution evaluated at d with d1 and d2 as specified in the
Black-Scholes formula, e.g., Poitras (2002, p.441).  The weights w1 and w2 indicate the proportions
of the portfolio held in stock and bonds in order to achieve insurance with an exercise price of X and
time to maturity of t*.  Unlike the portfolio optimization models, the weights here will not sum to
one, as the relationship is derived to equate values on the rhs and lhs.  The sum of the weights will
be close to one but not equal to one unless the put value is zero.
   From a practical perspective, it is important for the potential portfolio insurer to identify why
dynamic replication strategies, i.e., strategies dynamically replicating a call option payoff using
stock/bond positions, should be used.  Related to this are subsidiary issues concerning how to
replicate and when to replicate.  In this vein, large fund managers would consider the liquidity
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needed to establish large enough positions using derivatives and whether there are suitable X and
expiration dates available.  For example, while a well-diversified fund (e.g., an index fund) could
make use of options or futures written on the appropriate index, funds targeted at non-systematic risk
are more likely to be obligated to use dynamic replication strategies.  However, even a well-
diversified fund may find that available expiration dates on traded derivatives are not long enough,
i.e., sufficient "time convexity" cannot be achieved.  Because the dynamic replication strategies can
be designed to theoretically achieve almost any desired expiration date and exercise price, this
provides another reason for the use of these strategies.
   To illustrate the use of dynamic replication where dividends are paid on the portfolio, consider the
creation of a synthetic put option for an index portfolio.  Given that the dividend yield on the index
is q, Hull (1987, p. 204) shows that the delta of a European put on the index is:

Assuming that S = 300, X = 290, r = .09, q = .03, F = 0.25 and t* = .5, evaluation of the delta of
the put gives ) = -0.322.  It follows that if dynamic replication of a put is being used that 32.2% of
the index fund should be sold and invested in (riskfree) fixed income securities.  From the properties
of the put delta (Poitras 2002, p.486), as the value of the index fund drops, the delta of the put will
become more negative, indicating that a larger proportion of the index fund has to be sold, i.e., a
large fraction of the portfolio will be invested in fixed income securities.  A similar result would hold
where the value of the index was increasing.  In this case the delta of the put would be less negative,
indicating that fixed income securities should be sold to purchase more units of the index fund.  In
this case, the proportion of the portfolio invested in the index fund would increase.

____________________________________________________________________________

INSERT TABLE 3-x and 3-y Examples of Portfolio Insurance

** Note, add the following to the bottom of theTables: To value the European put, it is assumed: the
index pays no dividends; r = .08; F = .2; X = 100; and t* = .5 and the discrete rebalancing case
assumes a trigger value of 5%.
_____________________________________________________________________________

   There are a number of different methods of approaching the portfolio insurance problem.  In
addition to strategies already examined such as combining stocks with purchased puts or
dynamically replicating such positions, the remaining strategies attempt to achieve the same
objectives by using derivative positions as surrogates for stock ownership, on the presumption that
there are execution advantages (e.g., greater liquidity and lower transactions costs) to using
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derivatives.  For example, instead of owning stock, it is possible to form portfolios composed of
purchased call options and fixed income securities.  Another strategy would alter the dynamic
replication strategies by substituting short futures positions for the stock sales required when the
value of the stock position declines.  However, if this approach is used, for example, to insure an
index fund, it is important to recognize that the number of stock index futures to be shorted for a
given long index fund will be different than in the case where the stock position is being sold directly
(and invested in bonds).  In addition, there is the mechanical problem of calculating the dollar
equivalency hedge ratio for the futures and cash positions.
    Table 3-x has a helpful tabular presentation of how various methods of portfolio insurance would
perform to insurance a stock index across a range of index levels.  The first table gives payoff for
the path independent strategy, S + P.  Comparing the distribution of S with S + P reveals, in a simple
tabluar form, what Bookstaber and Clark (1983) have examined in much more general detail using
distributional plots.  The addition of a put transforms the symmetric S distribution to a positively
skewed S + P distribution.  In terms of the return distribution, the additional cost of the put will
result is a lower mean value for the S + P distribution.  The second table gives the results from
applying the dynamic replication portfolio insurance strategy derived from S + P = S N[d1] + X e-rt*

(1 - N[d2]). 
   In practice, dynamic replication faces substantive implementation issues.  Trading cannot be
conducted under the perfect markets, continuous trading assumptions required for the Black-Scholes
formula to capture the price of the option.  Nevertheless, assuming that the Black-Scholes
assumptions apply, permits the decomposition of S + P into  the exact holdings stocks and bonds
to hold in order to precisely replicate the S + P payoff.  As the stock index level falls away from S
= 100, the stock index position will be continuously reduced to the point where the stock position
is nearly zero at S = 59.87.  Similarly, as the stock index rises, the bond is sold to the point where
at S = 162.89, there are no funds left in bonds.  From this, it is apparent how dynamic portfolio
insurance strategies, if applied by a large enough fraction of market traders, would amplify market
movements.
   In practice, dynamic trading strategies have to deal with the realities of discrete trading.  Rules
have to be determined about how large a movement in S is required before the rebalancing decision
is executed.  There are a number of possible methods of specifying a rebalancing trigger value.  The
example in Table 3-y assumes that the trigger value is 5%.  From this point, the tabular presentation
method can only provide an accurate picture of the  distribution of weights, and the associated
impact on portfolio value.  For example, upside movements of S will produce increasing weights for
S which lag the continuously rebalanced weights, resulting in a slight reduction in portfolio value.
A similar result happens for downside movements of S where the reduction in S weights lacks the
continuously rebalanced weights, again resulting in a slight reduction in portfolio value.  Hence, the
simple introduction of discrete rebalancing results in a deterioration of the  performance of the
dynamic replication strategy.
   As it turns out, the discretely rebalanced case has considerably more complications than can be
captured in one table.  Being path dependent, the terminal portfolio value can take a range of values,
depending on the particular time path realized by S.  For the path independent cases, S + P and
continuous rebalancing, the distribution of portfolio value can be determined precisely because the
terminal portfolio value does not depend on the particular time path realized by S.  This does not
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happen with discrete rebalancing.  For example, a price path which starts at 100 and goes to 95
generates a rebalancing involving a sale of S to produce a weight change of  .638 to .495.  If the next
step is back to 100, the rebalancing involves the weight returning from .495 to .638.  The resulting
portfolio value will now be less than a portfolio value along a price path where S was unchanged and
no rebalancing happened.
   Table 3-y also provides results for the case where a stock/bond portfolio is created using the
dynamic portfolio weights but no rebalancing is done along the time path. This is another type of
path independent strategy.  Though not immediately apparent from the tabular presentation, the
distribution of the portfolio value for the no rebalancing case is not unlike the S distribution.  Unlike
the dynamically traded portfolio, the no rebalancing distribution retains the symmetric shape of the
S distribution, though there is less dispersion due to the presence of a long investment in the riskless
asset.7  In all of this, the no rebalancing and static portfolio insurance cases are being unfavorly
compared with the discrete rebalancing case because there are no transactions costs factored into the
various calculations.  In the limit, continuous rebalancing with transactions costs, the dynamic
strategies may produce infinite losses.  In practice, there will be a tradeoff between rebalancing
frequency, the various transactions and execution changes and the terminal value of the insured
portfolio.  Wider rebalancing frequencies will permit greater deviation from the path independent
static portfolio insurance case, but this loss of precision will be balanced out with a savings in
transactions costs due to reduced trading frequency.
   As discussed in Poitras (2002, p.523-4), there is nothing unique about a portfolio of domestic
stocks.  The notions of portfolio insurance can be applied to any commodity.  One useful extension
involves insuring the domestic currency value of a foreign bond position.  Much as with dynamic
portfolio insurance for stocks, dynamic portfolio insurance for foreign bonds can be derived using
put-call parity for currency options.  The objective is to dynamically trade a portfolio composed of
domestic bonds and foreign bonds in order to achieve the same payout as a path independent
portfolio composed of a foreign bond plus a currency put option.  If the exchange rate increases, the
value of the domestic currency rises relative to foreign currency, then the dynamic strategy involves
selling foreign bonds and buying domestic bonds.  If the exchange rate deteriorates, the domestic
bond is sold in favour of buying the foreign bond.  As before, the Black-Scholes formula for a call
can be substituted into the put-call parity condition to derive the appropriate portfolio weights.
   To see this consider the path independent value of a portfolio which contains a foreign currency
bond which has the domestic currency value protected with a currency put option.  The associated
dynamic replication portfolio can new be derived:

In this formulation, S exp{-rf t*} is the domestic currency value of the foreign bond position and X
exp{-rt*} is the domestic currency value of the domestic bond.  More precisely, exp{-rf t*} is the
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foreign currency value of a continuously compounded zero coupon bond which matures to one unit
of domestic currency; multiplying this foreign bond price by S, the time t spot exchange rate
expressed in domestic direct terms, converts the foreign bond price to units of domestic currency.
Similarly, X exp{-rt*} is the domestic currency value of a continuously compounded zero coupon
bond which matures to the number of units of domestic currency reflected in the exercise price for
the currency option.
   As with portfolio insurance for stocks, portfolio insurance for foreign bonds involves dynamic
trading of the position.  When the value of domestic currency rises relative to foreign currency, S
will fall and the dynamic strategy requires selling a portion of the foreign bond and using the funds
to purchase domestic bonds.  The dynamic replication formulation identifies the precise amount of
foreign bonds which have to be sold in order to maintain the same payout as the path independent
portfolio [S exp{-rf t*} + P].  While much the same theoretically, dynamic replication for foreign
bonds can differ in practice.  Unlike the dynamic strategies for stock portfolios, which can suffer
from inaccurate replication due to illiquidity in the underlying stocks, the cash markets involved in
the dynamic insurance for foreign bonds are typically liquidity.  The foreign exchange market, as
well as the domestic and foreign bond markets, are unlikely to be subject to the types of pricing
discontinuities which precipitated the October 1987 market break.

QUESTIONS

1.* a)  For the simple expected utility example of Sec. 3.1.A, solve for the optimal investment in the
risky asset (A(0)*) when the utility function has the quadratic form: U[W(1)] = W(1) - b W(1)2.
Demonstrate that A(0) decreases with the amount of initial wealth W(0), i.e., the greater the initial
wealth level, the smaller is the investment in the risky asset.  
b) Evaluate the second derivative of the general EU function and derive the conditions required for
solution to be a maximum.

2.*  By evaluating the first derivatives for A[W] and R[W], solve for the relative and absolute risk
aversion properties of the log utility, negative exponential and power utility functions.

3.   To see how to use this formula to evaluate the variance of portfolio return, consider the following
information given about three securities, A, B and C:

Stock      Expected Return    Standard Dev.    Correlation Coefficients
                                                  A        B     C 
 A             14%                12%        1.00          0   .20
 B             16%            15%             0          1.00  .60
 C             12%            10%            .2           .60   1.00

(a)  If the market value of a portfolio is compsed of 30% of A and 70% of C, what is the expected
return and standard deviation of the portfolio?
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(b)  If the portfolio is 21% in A, 30% in B and 49% in C what is the expected return and standard
deviation of the portfolio?

(c)  If a portfolio contains only A and C,  what combination of A and C has the lowest possible
standard deviation?  What is the expected return and standard deviation on this portfolio?

4.  Create a numerical example applicable to the trente demoiselles to illustrate how the basic
notions of portfolio diversification apply to this case.  To construct this example define the risk
associated with one individual and carry this through to the case of a portfolio of life annuities
written on the lives of thirty individuals.  This will involve decomposing the basic risk into parts
and assessing the impact of increasing the number of lives affecting the portfolio.   (Hint: see the
discussion of diversification in section 3.2).

5.  Given the following information about four risky securities:

a) Derive the value weights (w1, w2, w3, w4), mean and variance of the minimum variance portfolio
which combines these four securities.

b) How do the value weights (w1, w2, w3, w4), mean and variance of the minimum variance portfolio
change if D1,2 = D1,3 = D2,3 = ... = D3,4 = .5?

6.  Assume the standard Capital Asset Pricing Model is true, e.g., there is unrestricted lending or
borrowing at the same riskfree rate of interest.  From your stock broker your are able to obtain the
following information about two stocks:

                       Expected Return       Standard Deviation  Correlation with the Market                     
                                                                        Portfolio

Stock (A)                   .18                  .30                                 .4
Stock (B)                   .30                  .60                                 .75

The variance of the return on the market is .16

a)  Compute the $'s for each security?   (5 points)
b)  What is the expected return on the market portfolio?   (5 points)
c)  What are the equations for the Capital Market Line and the Security Market Line? (10 points)

7. Assuming the market model holds, explain why unsystematic risk is diversifiable while systematic
risk is not diversifiable.  Be sure to identify the relevant assumptions which are being made about
the error terms and where these assumptions are used in your derivation.  What is the standard



39

1.  The axiomatic approach to choice under uncertainty has produced a considerable number of
studies.  Accessible and brief overviews are available in various sources, e.g., Henderson and Quandt
(1980, Sec. 3.8), Layard and Walters (1979, ch.13), Ingersoll (1987, ch.1) Duffie (1988, ch.1, sec.
5).  A more advanced and complete treatments is available in Fishburn (1982).  The following
discussion presumes that the student has already had an introductory exposure to expected utility
theory.

2  Further discussion of issues related to the general properties of a Taylor series expansion for
approximating a general expected utility function can be found in Loistl (1976).  Hassett et al. (1985)
examine specific types of problems with the Taylor series which arise where skewness is involved.
Brockett and Kahane (1992) discuss the connection between preference for moments and expected
utility rankings of risky prospects, arguing that U'' < 0 and U''' > 0 are not related to variance
avoidance or skewness preference.  Poitras and Heaney (1999) illustrate a theoretical difficulty that
can arise when optimizing a mean-variance-skewness objective function.

3  The Fij term is interpreted as being a covariance when i =/  j and as a variance when i = j.  Because
the basic optimization problem is quadratic, it follows that the optimal solutions will take the form
of an ellipse or a parabola.  Consider the case where the {wi} are restricted to be non-negative, then
the solution will be an ellipse.  At any given target level of expected return, there will be two values
of F which solve the optimization problem.  In evaluating the solutions, it is conventional to ignore
the optimal solution which has the higher level of F and consider only the portfolios which have the
lowest F.

4.  Markowitz (2000) reviews the historical development of the model.

5.  Such is the reason for using moving sampling windows instead of using all the data available.
For example, 100 years of monthly data produces estimates of the arithmetic average which would
not be affected by an additional observation.  Hence, the optimal weights would not change over
time.

deviation of a fully diversified portfolio?

8. a)  A long stock position can be "protected" by buying a put.  How can the payoff on this portfolio
of a stock and option be replicated using "dynamic hedging" strategies involving portfolios which
combine only stock and bond positions? 

b) Describe the various forms of portfolio insurance.  How would these various forms of portfolio
insurance perform in the face of discontinuous movements in equity prices such as the July 2002
market break?   

NOTES
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6.  The general approach in the following discussion is adapted from Fama (1976).  

7.   This observation provides a window into the various complications that non-linear payoffs,
such as options, can have for mean-variance optimization analysis.  


