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ABSTRACT 

Reading a book together with a family member who has 

impaired vision or other difficulties reading is an important 

social bonding activity. However, for the person being read 

to, there is little support in making these experiences 

repeatable. While audio can easily be recorded, 

synchronizing it with the text for later playback requires the 

use of forced alignment algorithms, which do not perform 

well on amateur read-aloud speech. We propose a human-in-

the-loop approach to augmenting such algorithms, in the 

form of touch metaphors during collocated read-aloud 

sessions using tablet e-readers. The metaphor is implemented 

as a finger-follows-text tracker. We explore how this could 

better handle the variability of amateur reading, which poses 

accuracy challenges for existing forced alignment 

techniques. Data collected from users reading aloud as 

assisted by touch metaphors show increases in the accuracy 

of forced alignment algorithms and reveal opportunities for 

how to better support reading aloud. 
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INTRODUCTION 
Many assistive applications need to synchronize audio and 

text, such as closed captioning [27]. For many of these, the 

aim is purely to address an impairment, but there are many 

other applications where the ability to synchronize audio and 

text will enhance both the accessibility of the application and 

user experience. One such application is collocated family 

reading, which is an enjoyable social activity among family 

members, especially when one has impaired vision, limited 

literacy, or other difficulties reading. Reading aloud is a skill 

that is common in many professions, like lecturing, but for 

casual readers, such as within a family, it can be an 

unfamiliar or even uncomfortable activity. 

Alignment of text with speech has been shown to benefit 

marginalized users (such as low-literacy adults) trying to 

read e-texts, especially when accompanied by a moving 

prompt that shows the synchronization of text and speech 

[30,31]. The audience for casual read-alouds, however, is 

also more accepting of errors such as mispronounced words 

or filled pauses (e.g., “um”, in English). Additionally, 

recordings of these readings, while easy to create, are likely 

of a lower quality than those of professional readings (e.g., 

lectures or audio books) because of substandard recording 

conditions and equipment [24]. Due to these factors, forced 

alignment and available tools to align speech to text are 

unsuited for these settings.  

To aid the alignment of text and speech, this research 

investigates how a classic forced alignment (FA) algorithm 

can be enhanced by using a human-in-the-loop approach 

with assistive touch metaphors. The motivation for this is to 

move towards options that better suit casually read-aloud 

speech. Human-in-the-loop approaches can aid in the 

development and use of adaptive systems [29] and other 

technologies [37]. This approach combines system and 

human efforts to provide the individualized support readers 

need. The system learns from the people who interact with it 

by deferring part of the decision process to those users 

[29,34]. Improving adaptive systems with similar systems 

has previously supported underrepresented users [29,36]. As 

such, we explore a human-in-the-loop system in this casual 

reading setting, using a family member to support those with 

various reading difficulties. 

We explore and analyze the effects of these interaction 

metaphors and their text to speech alignment on the 

assessment of speech. We use measures of reading time and 

accuracy, and analyze how these measures change over the 

course of reading a text. We expand on these findings by 

building on a classic FA algorithm to create a new algorithm 

that accounts for the less precise nature of the expected 
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speech. Our Touch-Enabled Forced Alignment algorithm 

(TFA) proposes improvements to classic FA by accounting 

for expected human behaviours in casually read-aloud 

speech, which limits outlier data found in classic FA. These 

expected reading behaviours include interruptions, out of 

sync speech and touch, and variations in readers’ timing of 

interaction, while also incorporating data from assistive 

touch interaction. We compare these to parallel results using 

a classic FA algorithm and human-aligned speech to text. 

This paper contributes to the evaluation of intelligent user 

interfaces by demonstrating that touch interaction support for 

forced alignment more accurately aligns text to speech. We 

show that these alignment results better represent the 

accuracy of reading aloud for amateur readers by accounting 

for their normal variations is reading. We also explore 

opportunities to augment forced alignment in order to better 

support casually read-aloud data. 

RELATED WORK 

Previous research on forced alignment showed that, although 

such speech processing algorithms have greatly improved 

recently, there are significant shortcomings in the application 

of forced alignment to several application areas. Assisted 

reading research, especially when providing support to 

various marginalized groups of readers, commonly 

encounters some of these difficulties of aligning speech to 

text. The intersection of these areas reveals various possible 

approaches to address these shortcomings in order to better 

meet the needs of a wide range of readers. 

Assisted Reading 

Audio-books and e-readers have been proposed as 

alternatives to interacting with text for members of groups 

who have limited access to text-based information. This lack 

of access may be due to low literacy or impaired vision 

[31,32]. Professionally created audio books are expensive 

and time consuming to create [45]. Synthetic speech, which 

has been used to read to adults with vision impairments [39], 

is still found to be unnatural [21,38,42] and sometimes 

difficult to understand [12,18]. There are also few available 

texts that are properly formatted to be read aloud completely 

by commercial e-readers [1,3,32], and current accessibility 

features (e.g. screen readers) have limitations, such as 

navigation within a long text [5]. Other solutions allow 

people to record their own reading for children (e.g., 

http://explore.hallmark.com/recordable-storybooks) and 

adults [13], though these can take significant effort from the 

reader. 

Alignment of text and recorded speech has been shown to 

benefit marginalized users [31] and to aid users in reading e-

texts by using tools such as prompts that move along the text 

[13]. This alignment should enable access to those who 

cannot read on their own, but this is blocked by technical 

barriers [11]. Additionally, the variability of human reading 

behaviours, including self-correction and filled pauses, are a 

major factor in the high error rates found with standard 

options for alignment [11,15]. 

Speech to Text Alignment 

There are several different methods to align long audio to 

text depending on the context [8,17,20,28]. Forced alignment 

is one such method of speech recognition that uses a 

transcription of what was expected to have been said and 

attempts to align the speech to the given transcript. It then 

produces time segments corresponding to particular words in 

the transcript. This information can be used to analyze 

speech data, including correctness through measures like 

Word Error Rate (WER). Since a transcript is provided, it is 

a logical approach when what is going to be said is known 

ahead of time, such as when a book is being read aloud. 

Classic FA is commonly used to align speech from a variety 

of settings such as lectures or other public speeches [16] or 

broadcast media subtitles [27]. It is also employed in the 

production of synchronized materials for students learning 

the pronunciation of a foreign language [4,40]. 

In some cases, the performance of FA is measured by the 

time differential of various anchors (e.g., words or sentences) 

between the gold standard manual alignment and some test 

data. This is useful for very long audio recordings [28] or 

when it is important to improve alignment of small phonetic 

units [19]. However, as found by Hazen, the role of FA is 

often to support “downstream” applications [16], including 

when the original text is known, such as for forced alignment 

of audio books with their corresponding texts [8], and even 

for medium-length audio recordings of broadcast news [27]. 

As our work is similar to these examples, we too use WER. 

There are several examples of recent improvements to 

accuracy of forced alignment including those done in the 

areas of real time forced alignment [26] and precision 

requirements for different settings and ease of use [14]. Other 

work has looked at the shortcomings of forced alignment and 

how to improve upon them. Zhang et al [44] found that their 

system for scoring reading quality avoided known 

disadvantages of forced alignment by switching to large 

vocabulary continuous speech recognition (LVCSR). 

LVCSR was able to recognize more miscues (mistakes in 

reading) than forced alignment. 

Anguera et al [1] argued that improving alignment accuracy 

and speech recognition will enable more effective 

synchronization of speech to texts. However, many 

challenges remain as speech recognition and alignment must 

account for human errors that make up 15% of speech [15]. 

These errors and human behaviours include 

mispronunciations [43] and added or off-script speech 

[6,23], including re-reading [29]. Other work further 

demonstrated the limitations of forced alignment [21,29,41], 

including inadequate miscue detection. All of this 

contributes to the at least 19% error rate of standard 

alignment methods [11], which interferes with the 

effectiveness of assistive tools and metaphors for reading on 

assessment. 
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Alignment of Assisted Reading 

Much of the existing research into the assessment of read-

aloud speech is focused on children or language learning 

[9,22]. One project not focusing on these groups investigated 

a more accurate alignment option for large amounts of 

coherent text, such as audio books [8], and supports that 

forced alignment, on its own, is not ideal for large read-aloud 

recordings. More recent work improves on long text speech 

recognition by improving the recognition of types of pauses 

including inhalations, which are more common in longer, 

casual readings [7]. Other research has explored the use of 

multimodal books for language learning [4] by developing a 

system that uses synchronized reading to aid language-

learner spelling. This system plays the audio for a given text 

while a cursor follows, pointing at the current phoneme. 

Their preliminary findings show that spelling can be 

improved with the bimodal approach of audio and visuals. 

The bimodal interaction from this work is similar to the 

interaction that produced the data used in this paper. 

THE ALLT PROJECT 

For this work, our researchers were given access to the data 

from a study assessing the usability of assistive touch 

metaphors within the ALLT e-book reader (Figure 1) [13]. 

The ALLT (Accessible, Large-print Listening and Talking) 

e-book tablet reader uses a bimodal touch and speech 

interface and provides assistive interfaces for users to read 

aloud and record books that can be played back by other 

family members. ALLT is intended to support collocated 

reading between an older adult (likely with some vision 

impairment) and an adult grandchild (e.g. university-aged). 

A grandchild can record a read-aloud text with some level of 

tracking and a grandparent can later listen and follow (read) 

along while hearing the familiar voice of the grandchild. 

While recording, the user is presented with a karaoke-style 

reading prompt, based on the tracked position of the user’s 

finger under the text they are reading. This prompt advances 

as the text is read aloud, as described below. As we have 

shown in [13], this assisted tracking can guide a user through 

audio content production. It is also expected to ease reading 

for low-vision older adults by highlighting each sentence as 

it is read [2,25]. This metaphor is grounded in prior work on 

finger-tracking of text to support reading [10,33]. 

Assistive Touch Metaphors 

The ALLT e-book reader offers four assistive touch 

metaphors, which were tested empirically against a control 

condition (no touch interaction). The metaphors use touch 

interaction (F: finger) to highlight either the current word 

(W) or sentence (S) as the user reads through the text. Each 

level can either be advanced manually (M), or can use timer 

(T) to advance the highlighting automatically based on the 

user’s initial reading speed. The four modes are: 

• FSM – sentence level, manual highlight advance 

• FST – sentence level, advance highlight with timer 

• FWM – word level, manual highlight advance 

• FWT – word level, advance highlight with timer 

These touch metaphors help to align text to speech as the user 

interacts with the text and is expected to better support forced 

alignment for this data. 

Initial ALLT Study and Observations of Reading 

For the initial user study, users read sections of Anne of 

Green Gables aloud using an Android Nexus 7 tablet, with 

the different assistive modes that ALLT provides through 

touch interactions. This book was selected because it is 

publicly available. The assistive modes allowed the user to 

track what they were currently reading aloud using touch 

metaphors at the sentence or word level. Basic timing 

information from this input could be used to advance the 

tracking automatically after a certain amount of manual use. 

The font size was approximately the size of a large-text print 

book to mimic the books most likely used by low-vision 

older adults. Users were not able to change the font size, and 

touch error was not measured in the original experiment. No 

participant’s performance was noticably affected by touch 

error and none commented on font size as an issue. 

The audio was recorded for each sentence separately based 

on a user’s touch interaction. However, there were observed 

differences in how participants used this interaction. For 

example, at the sentence level, some users tapped exactly as 

they began to read, some paused their reading as they tapped 

and then began again, and others tapped after they began 

each sentence. As such, speech associated with a particular 

sentence may actually be captured in the audio recording for 

the next or previous sentence. Occurrences of disfluencies 

and mispronunciations are also not uncommon in this data 

due to the outdated nature of the language and the uncommon 

 

Figure 1. A version of the finger-tracking metaphor used to 

augment recording. The user is currently reading barrens.  
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nature of the activity. Additionally, during the study, users 

occasionally interrupted themselves to comment on their 

activity or to ask questions without first pausing the 

recording (as they had been instructed to do). This likely 

mimics the reality of casually recording reading, as readers 

may be interrupted while recording or may make comments 

themselves without pausing the recording. Forced alignment 

cannot currently account for these digressions from the 

expected text. 

AUGMENTED FORCED ALIGNMENT FOR READING 

Typically, forced alignment uses the Viterbi algorithm and a 

pre-trained language model with a pronunciation dictionary 

to extract speech features from the provided audio and force 

its alignment to the given script [16,35]. The Viterbi 

algorithm, commonly used to find the most likely path 

through hidden states, is used to provide the optimal 

alignment for the sounds in the audio file by using the 

transcription as a state machine (in this case, a sequence of 

words). Our proposed algorithm (TFA) augments the classic 

forced alignment algorithm, implemented here by the 

CMUSphinx tool (https://cmusphinx.github.io/), to measure 

the alignment and timings for a sentence of a read-aloud text 

with multimodal interaction. 

To incorporate the different timings of users’ touch inputs, 

this measure of alignment accounts for audio files that 

correspond to the sentences immediately preceding and 

following. It also disregards speech that is not part of the 

intended reading by skipping many concurrent insertions. 

This produces the following outputs: individual alignments 

for each word within a sentence, a measure of accuracy for 

each sentence (Word Error Rate - WER), and an adjusted 

total time for each sentence. 

Modifications to Classic Forced Alignment 

All use of forced alignment for both TFA and classic FA uses 

CMUSphinx’s implementation of forced alignment with 

three minor changes: allowing for alignment of one-word 

sentences, allowing alignment to exclude a given number of 

milliseconds from the start of an audio file, and adding a 

standard count of substitutions (used for the WER measure 

described later). The original code only included deletions 

and insertions. Substitutions are defined as adjacent 

insertions and deletions, regardless of order. 

Additionally, there were minor changes made to the 

pronunciation dictionary to include words in the read texts 

missing from the provided CMU Sphinx English language 

pronunciation dictionary (Table 1). It is not unexpected that 

some words would need to be added because of the source’s 

use of regional language. These added words were either 

names (e.g., Avonlea) or already present in the dictionary as 

another part of speech (e.g., bewitching from bewitch; 

marillas from marilla; scornfully from scornful). The 

phoneme transcriptions were derived using a grapheme to 

phoneme tool within CMU Sphinx. 

Description of TFA 

Because of how people interacted with the text being read, 

any audio file produced by reading with various touch-based 

assistive modes may not contain only and exactly the speech 

of the sentence that was expected to be read. The TFA 

algorithm produces an adjusted total time for each sentence 

representing the actual time spent reading the sentence, 

disregarding when users spoke off the script (e.g., to 

comment or ask a question of the researchers), and including 

the time spent reading the sentence before or after the 

associated audio file. If an audio file contains only exactly 

the speech corresponding to the expected sentence, this 

adjusted time would be the same as the total time of the 

original audio file. 

Ideally, the chronologically-ordered speech files each 

correspond exactly to the text of one sentence in the same 

order. This is the case that classic FA algorithms expect; a 

provided text corresponds precisely to some provided 

speech. In this work, classic FA is modified to account for 

the case when the start or end of a sentence is in the preceding 

or following audio file, respectively. 

When describing TFA, the terms “previous audio” and 

“previous sentence” refer respectively to the audio file from 

the previous round of alignment and the sentence of text that 

Word in text Phoneme transcription 

airily EH R IH L IY 

avonlea AE V AH N L IY 

bashfully B AE SH F AH L IY 

betaken B IH T EY K AH N 

bewitching B IH W IH CH IH NG 

birches B ER CH IH Z 

bootjack B UW T JH AE K 

budded B AH D IH D 

creakily K R IY K IH L IY 

dizzily D IH Z IH L IY 

dreamily D R IY M IH L IY 

dryads D R AY AE D Z 

heedlessness HH IY D L AH S N AH S 

marillas M AA R IH L AH Z 

mayflowers M EY F L AW ER Z 

mossy M AA S IY 

resignedly R IH Z AY N IH D L IY 

scornfully S K AO R N F AH L IY 

sloanes S L OW N Z 

sloped S L OW P T 

smilelessly S M AY L L AH S L IY 

starrier S T AA R IY ER 

unobservant AH N AH B Z ER V AH N T 

unvarying AH N V EH R IY IH NG 

upspringing AH P S P R IH NG IH NG 

woodbox W UH D B AA K S 

woodsy W UH D Z IY 

Table 1: Words added to the provided CMU Sphinx 

pronunciation dictionary and their phoneme 

transcriptions (using CMUBET phoneme codes) 
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the audio is expected to contain. Likewise, “current audio” 

and “current sentence” are the audio and sentence for the 

current round, and “next audio” and “next sentence” are 

those for the next round. This algorithm is applied to each 

audio file from a reading of a text in the recorded order and 

consists of three main steps: 

1. If there was unaligned audio at the end of the previous 

sentence, align this sentence to that remaining audio. 

2. Align the expected sentence to this audio. This excludes 

any text that was just aligned in step one and excludes 

any audio that was aligned to the end of the previous 

sentence in the last round’s step three. 

3. If there is unaligned text at the end of this sentence, align 

that remaining text to the next audio file. Compare this 

alignment with the next sentence’s standard alignment. 

Use the alignment with the better (lower) resulting 

WER. 

The comparison in step 3 is to prevent the remaining 

alignment from using the entirety of the next audio that 

should truly be aligned to the next sentence. For example, if 

both the remaining text and the next sentence contain a 

common word, there is no way to know if the remaining 

alignment has correctly found the remaining audio or the 

next sentence’s audio. To protect against this, both 

alignments are compared and the more accurate is used. This 

is not a perfect approach, but it should cover the majority of 

cases. 

In order to handle off-script speech, insertions are excluded 

from WER calculations if there is a section at least two 

seconds long that contains only concurrent insertions. This is 

because it is unlikely that text would be incorrectly read in a 

manner that would produce a long series of insertions when 

the user is reading along with a provided text. In the case 

where many seconds worth of insertions are detected, it is 

most likely the user is no longer reading the text. The 

adjusted time for this sentence also excludes this time. 

TFA is expected to improve upon classic FA to better suit the 

work of aligning amateur read-aloud text especially in a 

multimodal, assistive setting. See Figure 2 for a pseudocode 

explanation of TFA. 

METHODS 

Data 

TFA was assessed using the data resulting from a previous 

study into touch-assisted casual reading [13]. This included 

speech data from 22 English-speaking participants. Each 

participant read the same five 2-page texts on the assistive 

ALLT tablet using a different touch interaction for each text 

or a control condition without touch interaction. This 

resulted in over 2,500 audio files each corresponding to 

either a sentence in a text (when using a touch metaphor) or 

the whole text (when in the control condition). The speech 

was recorded in separate audio files for each sentence based 

on the interaction from the reader. Recording for each 

sentence began when a user tapped on it or when a user’s 

finger highlighted the first word, depending on the condition. 

The data presented in this paper consist of Word Error Rate 

(WER) scores and durations of each sentence read by each 

participant as measured from three sources: 

1) Classic FA algorithm as offered by CMU Sphinx 

2) The augmented algorithm proposed in this paper 

(TFA) 

3) Human alignment completed by a researcher not 

involved in this project 

WER is a simple and standard measure of correctness in 

speech, which is regularly used to assess FA results, 

especially when the text is known ahead of time [8,16]. It 

assesses how correct speech is compared to a text by 

FOR EACH audio file for text by participant: 

//1: align missing audio from last round to 
this sentence 

IF previous audio had unaligned audio at end: 

Align current sentence to remaining 
unaligned previous audio 

Update adjusted time and WER for this 
sentence 

END IF 

 
//2: base alignment of current sentence to 
this audio 

// (exclude audio aligned in step 1 or the 
previous round's step 3) 

IF step 1 unaligned words left in this 
sentence: 

Align current unaligned sentence to this 
audio 
Update adjusted time and WER for this 
sentence 

END IF 

IF end of this alignment does not include the 
end of the audio: 

Set the time that unaligned starts for 
next round's step 1 

Remove this time from this sentence's 
adjusted time 

 

//3: align remaining text to next audio 

ELSE IF final alignment does not include end 
of sentence text: 

Align remaining expected sentence to next 
audio 
Align next sentence to next audio file 
IF remaining WER is lower (more accurate): 

Use this alignment 
Update adjusted time and WER for this 
sentence 

ELSE: 
Use next sentence alignment instead 

END IF 

END IF 

END FOR EACH audio file 

Figure 2: Pseudocode for the TFA algorithm, which accounts 

for amateur reading behaviours 
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measuring the number of deletions (D), insertions (I), and 

substitutions (S). A visual representation of how such errors 

are relevant to forced alignment is given by [28, Figure 2]. A 

deletion is a word that is expected to be said but was missing, 

an insertion is a word that was spoken that does not 

correspond to a word in the script, and a substitution is a 

replaced word. WER is defined as (D + I + S) / N where N is 

the number of words in the script. A WER of 0 represents a 

perfectly read sentence, and higher values are less correct. 

There is no upper bound on WER as there is no limit to how 

many insertions may be present. For example, a five-word 

sentence where nothing is read will have a score of 100 (N = 

5, D = 5, I = 0, S = 0) as will that same sentence where each 

word is incorrect (S = 5), but the same sentence read 

correctly with a ten-word diversion in the middle will have a 

score of 200 (N = 5, D = 0, I = 10, S = 0). 

Reading time was measured as (duration of the sentence 

reading in milliseconds / number of words in sentence). This 

was done to normalize times across the large variety in 

sentence lengths (1 to 53 words). Higher values of reading 

time indicate the user is reading at a slower pace (more time 

spent on each word) and vice versa. There is no human 

measure of reading time because of the nature of the audio 

files – the audio for individual sentences was split between 

different files, making it difficult to accurately measure 

manually. 

We also analyze how WER and reading time changed over 

the course of reading a text. This is measured as the slope of 

the trendline for all the WERs or reading times for each 

sentence from a text as read by one participant. In order to 

compare trends in WER and reading times to each other, we 

scale all trends to be between -100 and 100. These trends can 

show how the effect of an assistive mode may change over 

the course of a session. For example, readers may become 

more comfortable with an interaction or may be rushed by 

the timer if it continues to get ahead of them. 

RESULTS 

Since WER measures insertions, deletions, and substitutions 

between a reference text and the automatic transcript of an 

audio recording, it is sensitive to the alignment between the 

reference text and the audio recording. As such, differences 

in alignment are expected to yield different WERs. We thus 

analyze the data between the three alignment methods tested 

in our investigation (classic FA, TFA, and human) as these 

are expected to measure WER in different ways. Beside these 

accuracy comparisons, we also analyze data that is relevant 

to the user’s experience, such as reading time for the two 

automated alignments. We measure changes in WER and 

reading time over the course of a reading session for each of 

the assistive modes. This is not possible for the control 

sessions as there is no subdivision of the speech data. A 

summary of WER and reading time measures are provided 

in Tables 2 and 3, respectively. 

Supporting Classic FA with Touch Metaphors 

We discuss here the performance of the classic FA according 

to the measures stated above. It should be noted that, while 

we did not modify the classic FA, its performance has 

already benefitted from the assistive touch metaphors. This 

is in the form of intrinsic alignment of speech to text through 

the human-in-the-loop approach used during the touch-

enabled assisted reading sessions from which data was 

collected. This further highlights the usefulness of a human-

in-the-loop approach to intrinsically capture the start time of 

each audio segment from the users’ touch interaction as it 

corresponds to each sentence. Additionally, we have labelled 

this baseline “classic” as this algorithm was not modified 

from the standard. This or similar algorithms have been 

previously employed both with segmented audio [8] and with 

unsegmented medium-length recordings [27,28]. 

WER and Reading Time 

In classic FA, only the sentence-level metaphor (FSM) 

significantly improved WER scores over the control scores, 

as shown by a Wilcoxon Signed-rank test (W = 237, Z =3.59, 

p < 0.001, r = 0.77). Reading time for the sentence-level with 

timer mode (FST) was significantly faster than for the 

control case (W = 202, Z = 2.45, p < 0.014, r = 0.52). 

Using Spearman’s correlation, the only significant 

correlation between WER and reading time was in the FST 

mode. WER was strongly negatively correlated with reading 

time (rs = -0.73, p < 0.001). This could reflect two situations; 

either WER increases as reading time per word decreases 

(i.e., pace of reading increases), or WER increases as more 

insertions are introduced, both cases demonstrate that faster 

reading in this mode leads to more errors. 

 FSM FST FWM FWT Control 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Classic FA 30.26 (10.85) 44.69 (15.11) 41.32 (13.22) 42.42 (12.68) 47.97 (22.24) 

TFA 32.14 (9.96) 45.22 (15.07) 41.16 (12.34) 41.11 (10.02) 44.93 (19.61) 

Human 3.28 (2.54) 14.45 (14.78) 7.36 (6.37) 3.09 (2.58) 1.56 (1.09) 

Table 2: WER scores per participant across assessment methods and touch metaphors 

 FSM FST FWM FWT Control 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Classic FA 358.39 (51.10) 283.05 (70.65) 353.42 (72.15) 372.73 (61.11) 340.49 (67.99) 

TFA  340.73 (47.18) 310.87 (59.27) 322.96 (53.43) 362.38 (52.98) 336.20 (67.83) 

Table 3: Reading time per participant across assessment methods and touch metaphors 
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There was, however, positive correlations for reading time 

between all other modes (FSM, FWT, FWM) and the control 

case (see Table 4). This shows that participants who read 

slower during the control case also read slower during other 

modes (with the exception of FST) and vise versa. 

There was a significant positive correlation between WERs 

between the control case and FSM (rs = 0.52, p = 0.012). This 

shows that if a participant’s reading was more accurate in the 

control case, it would be better in FSM as well. This parallels 

the reading time correlation, but only in this mode. 

Trends in WER and Reading Time 

Trends in how WER and reading time changed over the 

course of reading show how the different metaphors affect 

reading. Using classic FA, three modes (FSM, FST, and 

FWT) had significantly higher trends in WER than in reading 

time (see Table 5). These modes also had negative 

correlations between the trend of the WER over the course 

of reading and the reading time (see Table 6). This 

demonstrates that, at the sentence level and when using a 

timed mode, readers either slowed their reading pace and 

decreased their error rate over the course of a reading, or sped 

up their reading and increased their error rate. When using a 

timer, this was likely caused by the timer getting ahead of the 

reader without the reader adjusting the timer. In FSM, it is 

likely users adjusted their speed to be slower as they were 

reading as accuracy was best in this mode and users had full 

control over their reading speed. 

Touch-Enhanced FA 

Results from TFA largely correspond to classic FA, which 

was already partially optimized for amateur reader speech 

through the assistive metaphors. FST is also the least 

accurate mode, and FSM is the most (see Table 1). TFA did 

not see significant improvements in WER across the assistive 

modes as compared to classic FA. The standard deviations 

for all modes are lower in TFA. This is because TFA detects 

human variations in reading and interaction, which are 

outliers in the data, and normalizes them to more realistically 

represent casually reading aloud. This shows that TFA 

handles the irregularities of casual reading aloud better than 

classic FA, even if not resulting in lower WERs. 

Parallels and Differences Between Algorithms 

Just as was found with classic FA, the WER for FSM shows 

significant improvement (W = 210, Z = 2.71, p = 0.007, r = 

0.58) over the control case. There was also the same negative 

correlation between WER and reading time for FST (rs = -

0.62, p = 0.002), but TFA revealed a weak negative 

correlation in the FSM mode (rs = -0.43, p = 0.046). 

Similar changes are seen in the trends over WER and reading 

time. As in the results with classic FA, FST and FWT are 

found to have significantly higher trends in WER than 

reading time (FST: W = 237, Z = 3.59, p < 0.001, r = 0.77; 

FWT: W = 189, Z = 2.03, p = 0.043, r = 0.43), and a negative 

correlation between the WER trend and that of the reading 

time is found for FST (rs = -0.49, p = 0.024), but this is no 

longer found for FWT. TFA also finds a similar negative 

correlation for FSM (rs = -0.43, p = 0.048), but no longer 

finds a significant difference for this condition. So, both 

sentence-level conditions, but not the word-level ones, show 

correlations between faster reading and lower accuracy, and 

slower reading and higher accuracy. This also finds that 

FSM, in which readers have complete control over the 

interaction, has no correlation between reading speed and 

accuracy.  

TFA also finds a positive correlation between the reading 

times for FSM and the control case (rs = 0.63, p = 002.), and 

between WERs for the same conditions (rs = 0.56, p = 0.007). 

However, there is no correlation in reading time with the 

control case for either FWM or FWT, which was found in 

classic FA. 

Effects on WER and Reading Time 

WER with TFA has a significant positive correlation with 

WER in classic FA for each mode. This is also true for 

reading time between the algorithms. The strengths of these 

correlations show how these measures have been changed by 

TFA. The two sets of reading times for the control case are 

nearly perfectly correlated, showing there was very little 

change in that data. This can be seen in Figure 3; the data for 

the control case are nearly all on the diagonal. Reading times 

for FWT are the least correlated. The spread of FWT data 

points in Figure 3 compared to that of the control 

demonstrate this. All other modes have similarly strong 

correlations (see Table 7 and Figure 3). 

The control case also has a very strong correlation for WER. 

The strongest correlation for WER, though, is in FST, the 

least accurate mode, and the weakest correlation is found in 

the most accurate mode (FSM). The WERs for the word-

level conditions are similarly correlated between algorithms, 

and are more correlated than the reading time correlations for 

 FSM FWT FWM 

rs 0.75 0.73 0.505 

p < 0.001 < 0.001 0.019 

Table 4: Correlation scores for reading times compared to 

the control case 

 FSM FST FWT 

W 200 241 207 

Z 2.39 3.72 2.61 

p 0.017 < 0.001 0.009 

r 0.51 0.79 0.56 

Table 5: Wilcoxon test results for trends in reading 

time and WER over time 

 FSM FST FWT 

rs -0.62 -0.70 -0.50 

p 0.002 < 0.001 0.019 

Table 6: Correlation scores for trends in reading 

times and WERs  
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the same modes. The more varied correlations across modes 

in reading time suggest that the changes to the algorithm had 

more of an effect on the time measures than the WERs. 

Human Scoring 

Unlike both algorithms, the human-scored WERs were 

significantly better in the control case than in any of the 

assistive modes (see Table 8). This is not unexpected since 

the assistive metaphors were new to the readers and the 

technical division of files caused some audio to be lost. Since 

the human scores showed so much improvement over classic 

FA and TFA, it is difficult to explore these differences 

meaningfully. 

WER Between Algorithms 

The human scoring confirms the general findings of both 

algorithms; FST was found to be least accurate, and FSM the 

most accurate (see Table 2). However, both algorithms were 

far more inaccurate than the human aligned data. This is 

expected as classic FA has been shown to have around a 19% 

WER in ideal settings [11]. For our study, the speech was 

recorded on commercially available tablets using the built-in 

microphone, so quality of audio is much lower than in 

professional recording settings. As this setting is conducive 

to even higher WERs for machine alignments as compared 

 FSM FST FWM FWT Control 

 rs p rs p rs p rs p rs p 

WER 0.66 < 0.001 0.95 < 0.001 0.85 < 0.001 0.90 < 0.001 0.90 < 0.001 

Reading time 0.74 < 0.001 0.76 < 0.001 0.72 < 0.001 0.53 < 0.001 0.99 < 0.001 

Table 7: WER and reading time correlations between algorithms 

 FSM FST FWM FWT 

W 221 249 252 220 

Z 3.07 3.98 4.07 3.04 

p 0.002 < 0.001 < 0.001 0.002 

r 0.65 0.85 0.87 0.65 

Table 8:  Wilcoxon test results for the human measured 

WER in each assistive mode compared to the control case 

○ WER × Reading Time 

Figure 3: Mappings of WER and reading time between algorithms. 

Blue circles are WER, orange X’s (diagonal crosshairs) are reading time. 
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to humans’ (gold standard), the pairwise differences between 

the versions of machine alignment tend to not be significant. 

DISCUSSION 

The significantly lower WER scores for the FSM mode show 

that using a human-in-the-loop approach can improve 

accuracy in both classic FA and TFA. The manual tracking 

of the current sentence by an active reader aligned the speech 

to text at the sentence level, which simplifies the work of 

forced alignment after the fact. However, while some 

assistive reading modes clearly improve accuracy (FSM), 

others (like FST) seem to decrease it. 

FST and FWT, metaphors that employed timers, caused 

users to speed up their reading over the course of a session 

and as reading time sped up, reading accuracy decreased. 

This suggests the auto-advancing function of the timed 

modes is going too fast for users and causing them to create 

more errors. Reading faster may also decrease the accuracy 

of alignment algorithms as readers will speak less clearly 

when rushed. 

Though FSM has the same correlation between reading time 

and reading accuracy, this condition’s higher rates of 

accuracy shows that this correlation can be interpreted in the 

other direction than the timed modes. That is, readers slowed 

their speed over the course of reading and increased 

accuracy. Readers were able to follow their own pace and 

minimize errors by not being rushed. As they were not 

rushed, their speech was likely clearer and therefore easier to 

align correctly. 

TFA showed many of the same findings as classic FA. This 

is encouraging as TFA was designed to build on classic FA 

and the human-in-the-loop interactions to compensate for the 

differences in casual read-alouds. There were no clear and 

significant improvements in alignment, but the more 

normalized data, demonstrated by the lower standard 

deviations in each mode and the control case, show that some 

aspects of TFA work as intended. By checking neighbouring 

files for missing words and excluding off-text speech or 

sounds, TFA avoids large numbers of deletions or insertions 

that were not errors by the readers but natural variations in 

casual reading. This process seems to allow the data to more 

closely reflect the realities of casually reading aloud, and 

demonstrates how TFA handles differences in casually read-

aloud speech better than classic FA. Overall, this suggests 

that leveraging touch interaction (where available) shows 

potential to improve on classic FA algorithms and better 

serve applications that are more natural and richer in an 

interaction context.  

Where the classic FA results suggested that the timer 

negatively affected reading speed and WER over the course 

of a reading session, TFA only finds this to be true at the 

sentence level (FST). This shows that the word level 

conditions have little effect on reader behaviour and on the 

alignment of text to speech for forced alignment. 

TFA also finds stronger evidence for FSM as the best 

metaphor for supporting reading as that is the only mode 

showing positive correlations with the control case in both 

WER and reading time. So, a reader using this mode can 

interact with the text and read similarly to how they would in 

the control case. Classic FA had shown similar correlations 

in reading time for word level modes as well. The changes 

implemented in TFA better interpreted outlier data in reading 

speed. These outliers may have implied a correlation with the 

control in classic FA that was not there. 

The high correlations between reading time and WER in FST 

found for both algorithms demonstrate that readers using this 

condition made more errors and did not have as many 

acceptable variations in their reading, such as repeated 

insertions. Acceptable variations would have been 

recognized by TFA and weakened the WER and reading time 

correlation. The negative correlation between trends in WER 

and reading time for FST, also in both algorithms, showed 

that readers were rushed by the timer and accuracy decreased 

as they sped up. These findings together provide strong 

evidence that the poor accuracy in this mode is because of 

reader error and not because of the anticipated and acceptable 

reading differences that TFA accounts for. 

The same high correlations between trends in reading time 

and WER are also present in both algorithms for FSM. 

However, this correlation can be interpreted in the opposite 

direction as FST since FSM was the most accurate mode and 

the only mode to show significant improvement. That is, the 

lower WERs support that readers slowed their speed over the 

course of reading and improved accuracy. The manual 

interaction of this condition allowed readers to follow their 

own reading pace, easily adjust is as they preferred, and 

aided them in reading the text correctly and clearly. 

With the exception of FSM, TFA did not have a very strong 

effect on WER across the modes of interaction, as shown by 

the similarly high correlation between the algorithms. 

However, this same comparison for reading time had weaker 

correlations across modes than for the control, which had 

practically no change between algorithms. This suggests the 

changes in TFA successfully adjusted reading times to 

account for overlaps in the audio files before or after a given 

sentence. FWT has an even lower correlation than the other 

modes, implying that the overlaps in audio files were more 

extreme in this mode. Generally, these correlations between 

algorithms for all metaphors and their variation demonstrate 

how these interactions can affect alignment of speech data, 

positively or negatively. 

While there are some improvements, TFA did not 

significantly improve WER accuracy in any of the assistive 

modes as compared to the base algorithm. We suspect this is 

due to the limitations of speech recognition when audio 

quality is lower. Even with the changes made specifically for 

this kind of speech, low audio quality and clipped words may 

have prevented TFA from reaping the benefits of the 

changes. 
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The human alignment, unsurprisingly, showed far more 

accurate WER scores than either algorithm. It does support 

the main findings of the effect of the assistive touch 

metaphors: FST is the least accurate across all three methods 

of WER scoring, and FSM has higher accuracy. Beyond this 

general support, as these results were significantly different 

than either of the forced alignment algorithms, the pairwise 

differences between the two machine algorithms were much 

smaller compared to the human scores. This is another 

example of the need for improvements in forced alignment 

and how there is still much work to be done in these spaces. 

Limitations 

The technology of the ALLT tablet has limitations in how 

the audio files are divided into sentence segments on the fly. 

This resulted in some missing or clipped audio data and may 

have generally affected the accuracy of any alignment and 

scoring. While this is not ideal, it is not uncommon for non-

professionally recorded data to have inconsistencies. 

Future Work 

TFA is proposed as an initial exploration into the potential 

for adjusting existing tools to better suit amateur readers, and 

to raise awareness of the lack of alignment tools for this type 

of speech data. As such, it has not been designed with 

performance in mind. As TFA applies forced alignment 

multiple times for each file, there is clearly a performance 

cost. Future work should look to develop a stand-alone 

algorithm or variation on forced alignment building off the 

work done here, to create a better performing option. 

In the future, the considerations for amateur readers 

presented here should be explored in a broader context than 

with the results of one study. Of particular interest will be 

whether the general changes of ignoring repeated insertions 

and accepting speech slightly off the given alignment (in this 

case, found in adjacent audio files) can generalize to other 

sources of amateur read-aloud speech. 

CONCLUSION 

The analysis presented here, shows that touch interaction can 

support the alignment of text to speech, especially for 

amateur readers in casual settings. This resulting alignment 

supports assessment using tools like forced alignment. A 

human-in-the-loop approach, where a human can track their 

current sentence (FSM), provides the best improvement to 

forced alignment algorithms. This is done by providing some 

initial alignment of text to speech from the reader’s manual 

tracking interaction that also supported their reading 

accuracy. 

We show the changes in TFA, that were designed to improve 

classic FA, account for the variability of amateur read-

alouds, limit outlier data compared to classic FA, and build 

on assistive touch metaphors by demonstrating how these 

interactions affect reading in both quality and pace. As such, 

this work expands on the sources of speech that can be 

meaningfully assessed using existing methods of alignment, 

by incorporating the support of assistive touch metaphors to 

provide text and speech alignment. 
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