Part 4: Market Failure II – Asymmetric Information, Moral Hazard

Hidden Action, Moral Hazard, Incentives, Agency, Principal-Agent

July 2016
Moral Hazard in the Insurance Market
Introduction

“moral hazard” = increased risk (‘hazard’) of bad (‘immoral’) behavior due to being insured against the negative consequences of such behavior.
Introduction

“moral hazard” = increased risk (‘hazard’) of bad (‘immoral’) behavior due to being insured against the negative consequences of such behavior

Examples:

- fire insurance results in more arson
- insurance against theft and accidents decreases precaution
- unemployment insurance decreases job search
Introduction

- “moral hazard” = increased risk (‘hazard’) of bad (‘immoral’) behavior due to being insured against the negative consequences of such behavior

- Examples:
 - fire insurance results in more arson
 - insurance against theft and accidents decreases precaution
 - unemployment insurance decreases job search

- actions are not observable; otherwise, coverage could be contingent on action and moral hazard could be avoided
Introduction

- “moral hazard” = increased risk (‘hazard’) of bad (‘immoral’) behavior due to being insured against the negative consequences of such behavior

- Examples:
 - fire insurance results in more arson
 - insurance against theft and accidents decreases precaution
 - unemployment insurance decreases job search

- actions are not observable; otherwise, coverage could be contingent on action and moral hazard could be avoided

- indirect way of punishing bad behavior by decreasing coverage → less than full insurance
Introduction

- “moral hazard” = increased risk (‘hazard’) of bad (‘immoral’) behavior due to being insured against the negative consequences of such behavior

- Examples:
 - fire insurance results in more arson
 - insurance against theft and accidents decreases precaution
 - unemployment insurance decreases job search

- actions are not observable; otherwise, coverage could be contingent on action and moral hazard could be avoided

- indirect way of punishing bad behavior by decreasing coverage → less than full insurance

→ better incentives but inefficient outcome
An Example

- two parties: car driver D and insurer I
An Example

- two parties: car driver D and insurer I
- car accidents cause loss L; occur with probability p

 - if driver is careful

 - if driver is careless

 \[p_L < p_H \]

 insurance offers actuarially fair rates; price per $ coverage is

 - careful driving (accident prevention) costs disutility c
 - careless driving costs nothing

 assume $c < L$ ($p_H - p_L$)

 \[c < L(p_H - p_L) \]

 \rightarrow careful driving is efficient
An Example

- Two parties: car driver D and insurer I
- Car accidents cause loss L; occur with probability $p = p_L$ if driver is careful

Insurance offers actuarially fair rates; price per $ coverage is p_c for careful driving (accident prevention) costs disutility c, careless driving costs nothing $c < L (p_H - p_L) \implies$ careful driving is efficient
An Example

- two parties: car driver D and insurer I
- car accidents cause loss L; occur with probability
 - $p = p_L$ if driver is careful
 - $p = p_H$ if driver is careless

with $p_L < p_H$
An Example

- two parties: car driver D and insurer I
- car accidents cause loss L; occur with probability
 - $p = p_L$ if driver is careful
 - $p = p_H$ if driver is careless
 - $p_L < p_H$

- insurance offers actuarially fair rates; price per $ coverage is p
- careful driving (accident prevention) costs disutility c
An Example

- two parties: car driver D and insurer I
- car accidents cause loss L; occur with probability
 - $p = p_L$ if driver is careful
 - $p = p_H$ if driver is careless
- with $p_L < p_H$

- insurance offers actuarially fair rates; price per $ coverage is p
- careful driving (accident prevention) costs disutility c
 careless driving costs nothing
An Example

- two parties: car driver D and insurer I
- car accidents cause loss L; occur with probability
 - $p = p_L$ if driver is careful
 - $p = p_H$ if driver is careless
 - with $p_L < p_H$
- insurance offers actuarially fair rates; price per $ coverage is p
- careful driving (accident prevention) costs disutility c
 careless driving costs nothing
- assume $c < L(p_H - p_L)$
An Example

- two parties: car driver D and insurer I
- car accidents cause loss L; occur with probability
 - $p = p_L$ if driver is careful
 - $p = p_H$ if driver is careless
 with $p_L < p_H$
- insurance offers actuarially fair rates; price per $ coverage is p
- careful driving (accident prevention) costs disutility c
careless driving costs nothing
 - assume $c < L(p_H - p_L)$
 → careful driving is efficient
Full Insurance Leads to Moral Hazard

- Suppose insurance company offers full insurance.
Full Insurance Leads to Moral Hazard

- suppose insurance company offers full insurance

\[\text{total premium at actuarially fair rates is } \]
Full Insurance Leads to Moral Hazard

- Suppose insurance company offers full insurance
 - Total premium at \textbf{actuarially fair} rates is
 - $\pi = p_L L$ if I thinks D will be careful
Full Insurance Leads to Moral Hazard

- Suppose insurance company offers full insurance
 → Total premium at **actuarially fair** rates is
 - $\pi = p_L L$ if I thinks D will be careful
 - $\pi = p_H L$ if I thinks D will be careless
 → but after signing contract driver’s income is $y - \pi$

Moral hazard increases the insurance premium; if the driver could credibly promise to be careful, he would be better off.
Full Insurance Leads to Moral Hazard

- suppose insurance company offers full insurance

 → total premium at **actuarially fair** rates is

 - $\pi = p_L L$ if I thinks D will be careful
 - $\pi = p_H L$ if I thinks D will be careless

 → but after signing contract driver’s income is $y - \pi$

 regardless whether gets into accident or not
Full Insurance Leads to Moral Hazard

- suppose insurance company offers full insurance
 - total premium at **actuarially fair** rates is
 - \(\pi = p_L L \) if \(I \) thinks \(D \) will be careful
 - \(\pi = p_H L \) if \(I \) thinks \(D \) will be careless
 - but after signing contract driver’s income is \(y - \pi \) regardless whether gets into accident or not
 - \(D \) does not take care since
 \[
 u^{takecare} = y - \pi - c < y - \pi = u^{careless}
 \]
Full Insurance Leads to Moral Hazard

- Suppose insurance company offers full insurance
 \[\pi = p_L L \text{ if } I \text{ thinks } D \text{ will be careful} \]
 \[\pi = p_H L \text{ if } I \text{ thinks } D \text{ will be careless} \]

- But after signing contract driver’s income is \(y - \pi \) regardless whether gets into accident or not

\[D \text{ does not take care since } u^{take\text{care}} = y - \pi - c < y - \pi = u^{careless} \]

- Insurer will anticipate this moral hazard behavior
Full Insurance Leads to Moral Hazard

- Suppose insurance company offers full insurance

 → Total premium at actuarially fair rates is

 - \(\pi = p_L L \) if \(I \) thinks \(D \) will be careful
 - \(\pi = p_H L \) if \(I \) thinks \(D \) will be careless

 → But after signing contract driver’s income is \(y - \pi \)

 regardless whether gets into accident or not

 ⇒ \(D \) does not take care since

 \[
 u^{take\,care} = y - \pi - c < y - \pi = u^{careless}
 \]

- Insurer will anticipate this moral hazard behavior

 → Sets \(\pi = p_H L \) and \(D \) is worse off!
Full Insurance Leads to Moral Hazard

- Suppose insurance company offers full insurance
 - Total premium at **actuarially fair** rates is
 - $\pi = p_L L$ if I thinks D will be careful
 - $\pi = p_H L$ if I thinks D will be careless
 - But after signing contract, driver’s income is $y - \pi$ regardless whether gets into accident or not
 - D does not take care since
 $$u^{\text{take care}} = y - \pi - c < y - \pi = u^{\text{careless}}$$
- Insurer will anticipate this **moral hazard** behavior
 - Sets $\pi = p_H L$ and D is worse off!

Moral hazard increases the insurance premium; if the driver could credibly promise to be careful, he would be better off
Moral Hazard in Agency
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but...
Moral Hazard

- in general: **moral hazard problem arises in agency relationships** where parties sign an agreement/contract but
 - interest diverge

Examples: performance-based pay in employment (commissions, piece rates), deductibles in insurance, warranties in business, stock-option plans in corporate governance, bonus pay for professional athletes and lawyers.
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable
→ opportunistic behavior after contract is signed
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable

 → opportunistic behavior after contract is signed

 ⇒ need for (monetary) incentives based on observable indicators
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable
→ opportunistic behavior after contract is signed
⇒ need for (monetary) incentives based on observable indicators
- Examples
Moral Hazard

- in general: **moral hazard problem arises in agency relationships** where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable

→ opportunistic behavior **after** contract is signed

⇒ need for (monetary) incentives based on observable indicators

- Examples
 - performance-based pay in employment (commissions, piece rates)
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable
→ opportunistic behavior after contract is signed
⇒ need for (monetary) incentives based on observable indicators
- Examples
 - performance-based pay in employment (commissions, piece rates)
 - deductibles in insurance
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable

→ opportunistic behavior after contract is signed

⇒ need for (monetary) incentives based on observable indicators

- Examples
 - performance-based pay in employment (commissions, piece rates)
 - deductibles in insurance
 - warranties in business
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable
→ opportunistic behavior after contract is signed
⇒ need for (monetary) incentives based on observable indicators

Examples
- performance-based pay in employment (commissions, piece rates)
- deductibles in insurance
- warranties in business
- stock-option plans in corporate governance
Moral Hazard

- in general: moral hazard problem arises in agency relationships where parties sign an agreement/contract but
 - interest diverge
 - some actions are not observable

→ opportunistic behavior after contract is signed

⇒ need for (monetary) incentives based on observable indicators

- Examples
 - performance-based pay in employment (commissions, piece rates)
 - deductibles in insurance
 - warranties in business
 - stock-option plans in corporate governance
 - bonus pay for professional athletes and lawyers
A Model of Hidden Action

- a principal P (shareholder) hires an agent (manager) to work on project on her behalf
A Model of Hidden Action

- a principal P (shareholder) hires an agent (manager) to work on project on her behalf
- return from project is uncertain, can be success (S) or failure (F)
A Model of Hidden Action

- A principal P (shareholder) hires an agent (manager) to work on project on her behalf.
- Return from project is uncertain, can be success (S) or failure (F).
- A can exert unobservable effort $e \in \{0, 1\}$ at cost $c(e)$.
 - $c(1) = c_1 > c_0 = c(0)$, with $c(1) = c_1$ and $c(0)$.

Hidden Action, Moral Hazard, Incentives, Agency
A Model of Hidden Action

- a principal P (shareholder) hires an agent (manager) to work on project on her behalf
- return from project is uncertain, can be success (S) or failure (F)
- A can exert unobservable effort $e \in \{0, 1\}$ at cost $c(e)$

 with $c(1) = c_1 > c_0 = c(0)$
- if A works hard ($e = 1$), project is successful with probability $1/2$
A Model of Hidden Action

- a principal P (shareholder) hires an agent (manager) to work on project on her behalf

- return from project is uncertain, can be success (S) or failure (F)

- A can exert unobservable effort $e \in \{0, 1\}$ at cost $c(e)$

 $$c(1) = c_1 > c_0 = c(0)$$

- if A works hard ($e = 1$), project is successful with probability $1/2$
 is lazy ($e = 0$), project always fails
A Model of Hidden Action

- A principal P (shareholder) hires an agent (manager) to work on a project on her behalf.
- Return from the project is uncertain, can be success (S) or failure (F).
- A can exert unobservable effort $e \in \{0, 1\}$ at cost $c(e)$

\[c(1) = c_1 > c_0 = c(0) \]

- if A works hard ($e = 1$), the project is successful with probability $1/2$.
- if A is lazy ($e = 0$), the project always fails.
- P prefers success to failure, wants A to work hard.
A Model of Hidden Action

- a principal P (shareholder) hires an agent (manager) to work on project on her behalf

- return from project is uncertain, can be success (S) or failure (F)

- A can exert unobservable effort $e \in \{0, 1\}$ at cost $c(e)$
 \[c(1) = c_1 > c_0 = c(0)\]

- if A works hard ($e = 1$), project is successful with probability $1/2$
 is lazy ($e = 0$), project always fails

- P prefers success to failure, wants A to work hard
A Model of Hidden Action

- but if effort is unobservable, wage cannot depend on \(e \)

\[\Rightarrow \text{for a fixed wage } w, \text{ agent chooses } e = 0 \text{ since} \]

\[w - c_1 > w - c_0 \text{ regardless of } w \]

a fixed salary gives no incentives; the agent will not work hard but be lazy (moral hazard problem)
Solving the Moral Hazard Problem with Incentives

- solution: use output-based performance schemes

\[p \text{ pays } \begin{cases} w_S & \text{if project is success} \\ w_F & \text{if project fails} \end{cases} \]

\[w_S > w_F \]

The agent chooses \(e = 1 \) if

\[\frac{1}{2} w_S + \frac{1}{2} w_F - c_0 > w_F - c_0 \]

⇒ The agent will work hard if \(w_S - w_F > 2(c_1 - c_0) \)

Variable pay (bonuses, piece rates, profit shares, deductions) solves the moral hazard problem.

But: Variable pay means agent exposed to risk → inefficient risk bearing
Solving the Moral Hazard Problem with Incentives

- solution: use output-based performance schemes
- suppose P pays w_S if project is success

 w_F if project fails \quad with \quad $w_S > w_F$

$w_S > w_F$
Solving the Moral Hazard Problem with Incentives

- solution: use output-based performance schemes
- suppose P pays w_S if project is success

 \[w_F \text{ if project fails} \quad \text{with} \quad w_S > w_F \]
- agent chooses
Solving the Moral Hazard Problem with Incentives

- solution: use output-based performance schemes
- suppose P pays w_S if project is success
 w_F if project fails with $w_S > w_F$
- agent chooses $e = 1$ if
 $$\frac{1}{2} w_S + \frac{1}{2} w_F - c_1 > w_F - c_0$$
Solving the Moral Hazard Problem with Incentives

- solution: use output-based performance schemes
- suppose P pays w_S if project is success w_F if project fails with $w_S > w_F$
- agent chooses $e = 1$ if
 \[
 \frac{1}{2}w_S + \frac{1}{2}w_F - c_1 > w_F - c_0
 \]
- \Rightarrow agent will work hard if $w_S - w_F > 2[c_1 - c_0]$
Solving the Moral Hazard Problem with Incentives

solution: use output-based performance schemes

suppose P pays w_S if project is success

\[w_F \text{ if project fails} \quad \text{with} \quad w_S > w_F \]

agent chooses $e = 1$ if

\[\frac{1}{2}w_S + \frac{1}{2}w_F - c_1 > w_F - c_0 \]

\Rightarrow agent will work hard if

\[w_S - w_F > 2[c_1 - c_0] \]

variable pay (bonuses, piece rates, profit shares, deductibles) solves the moral hazard problem
Solving the Moral Hazard Problem with Incentives

- solution: use output-based performance schemes

- suppose P pays w_S if project is success

 w_F if project fails with $w_S > w_F$

- agent chooses $e = 1$ if

 $$\frac{1}{2} w_S + \frac{1}{2} w_F - c_1 > w_F - c_0$$

 \Rightarrow agent will work hard if

 $$w_S - w_F > 2[c_1 - c_0]$$

 variable pay (bonuses, piece rates, profit shares, deductibles) solves the moral hazard problem

- **but**: variable pay means agent exposed to risk \rightarrow inefficient risk bearing
Summary

- moral hazard problems emerge if the parties to an agreement
Summary

- moral hazard problems emerge if the parties to an agreement
 - have diverging interests
Summary

- Moral hazard problems emerge if the parties to an agreement
 - have diverging interests
 - can take hidden actions that change the value of the agreement
Summary

- moral hazard problems emerge if the parties to an agreement
 - have diverging interests
 - can take hidden actions that change the value of the agreement
- solutions to the moral hazard problem
Summary

- moral hazard problems emerge if the parties to an agreement
 - have diverging interests
 - can take hidden actions that change the value of the agreement

- solutions to the moral hazard problem
 - indirect monetary incentives (performance-based pay, bonus pay, promotions, deductibles)

but: outcome may still be inefficient
e.g. because of inefficient exposure to risk
Summary

- moral hazard problems emerge if the parties to an agreement have diverging interests can take hidden actions that change the value of the agreement

- solutions to the moral hazard problem
 - indirect monetary incentives (performance-based pay, bonus pay, promotions, deductibles)
 - direct monitoring of actions (input-based pay, penalties and fines in law enforcement)
moral hazard problems emerge if the parties to an agreement have diverging interests can take hidden actions that change the value of the agreement

solutions to the moral hazard problem

indirect monetary incentives (performance-based pay, bonus pay, promotions, deductibles)
direct monitoring of actions (input-based pay, penalties and fines in law enforcement)
transfer of ownership
Summary

- moral hazard problems emerge if the parties to an agreement have diverging interests can take hidden actions that change the value of the agreement

- solutions to the moral hazard problem
 - indirect monetary incentives (performance-based pay, bonus pay, promotions, deductibles)
 - direct monitoring of actions (input-based pay, penalties and fines in law enforcement)
 - transfer of ownership
 - repeated interaction (implicit contracts)
Summary

- moral hazard problems emerge if the parties to an agreement
 - have diverging interests
 - can take hidden actions that change the value of the agreement

- solutions to the moral hazard problem
 - indirect monetary incentives (performance-based pay, bonus pay, promotions, deductibles)
 - direct monitoring of actions (input-based pay, penalties and fines in law enforcement)
 - transfer of ownership
 - repeated interaction (implicit contracts)

- but: outcome may still be inefficient
 - e.g. because of inefficient exposure to risk
Moral Hazard vs Adverse Selection

- adverse selection = hidden information
Moral Hazard vs Adverse Selection

- adverse selection = hidden information

arises from costs of distinguishing among individuals with different characteristics
Moral Hazard vs Adverse Selection

- adverse selection = **hidden information**

 arises from costs of distinguishing among individuals with different characteristics

- moral hazard = **hidden action**
Moral Hazard vs Adverse Selection

- adverse selection = **hidden information**
 arises from costs of distinguishing among individuals with different characteristics

- moral hazard = **hidden action**
 arises from costs of measuring and controlling different behavior of individuals
Moral Hazard vs Adverse Selection

- adverse selection = **hidden information**
 arises from costs of distinguishing among individuals with different characteristics

- moral hazard = **hidden action**
 arises from costs of measuring and controlling different behavior of individuals

- both problems can cause **market failure**
Moral Hazard vs Adverse Selection

- adverse selection = hidden information

arises from costs of distinguishing among individuals with different characteristics

- moral hazard = hidden action

arises from costs of measuring and controlling different behavior of individuals

- both problems can cause market failure

- in practice: both problems relevant
Moral Hazard vs Adverse Selection

- adverse selection = hidden information
 - arises from costs of distinguishing among individuals with different characteristics
- moral hazard = hidden action
 - arises from costs of measuring and controlling different behavior of individuals
- both problems can cause market failure
- in practice: both problems relevant
- which dominates depends on circumstances (compare health insurance with fire insurance)