Part 2. Market Failure I Monopoly and Price Discrimination

Monopoly, Deadweight Loss, Two-Part Tariffs, Direct Price Discrimination, Indirect Price Discrimination

May 2016

Monopoly

Introduction

A firm is a monopoly if it is the only firm in the market no other firm produces the same good or a close substitute for it.

The degree to which goods are substitutes is measured by the cross price elasticity of demand.

- Few pure monopolies
- A monopoly faces downward sloping demand (choice what price to charge)
\rightarrow It does not lose all its demand when it raises price above marginal cost: it has market power
\rightarrow A monopoly picks a point on the market demand curve to maximize profits

Sources of Monopoly

- Government policy
- State owned or regulated monopoly (utilities)
- Patents (drugs), copyrights (movies, music), trademarks (brand names), licences (nightclubs, cable), etc.
- Large efficient scale
- Economies of scale (gas, electricity) decreasing average cost $=$ natural monopoly
- Network externality on demand side (MS Office, Pokemon Trading Cards)
- Firm's actions
- Control of essential input (DeBeers)
- Being more (cost-)efficient than other firms and/or preventing entry (Walmart, Microsoft)

Basic Model (Uniform Pricing)

- Let $q=$ quantity sold/output, $p=$ price per unit
- (Inverse) Demand Function $p=P(q)$ downward sloping: $\frac{\partial P}{\partial q}=P^{\prime}(q)<0$
- Total Revenue $=P(q) q$;
\Rightarrow Average Revenue $=P(q)$
\Rightarrow Marginal Revenue $=\frac{\partial P(q) q}{\partial q}=P(q)+P^{\prime}(q) q$
- Cost Function $=C(q)$
\Rightarrow Marginal Cost $=\frac{\partial C}{\partial q}=C^{\prime}(q)>0$
- Profit Function $\Pi(q)=P(q) q-C(q)$

Uniform Pricing (Cont'd)

- Firm chooses q to $\max _{q} \Pi(q)=P(q) q-C(q)$
- First-order condition

$$
\frac{\partial \Pi}{\partial q}=0 \quad \Leftrightarrow \quad P(q)+P^{\prime}(q) q-C^{\prime}(q)=0
$$

- optimal quantity q_{m} satisfies:

$$
\begin{gathered}
P\left(q_{m}\right)+P^{\prime}\left(q_{m}\right) q_{m}=C^{\prime}\left(q_{m}\right) \\
\text { Marginal Revenue }=\text { Marginal Cost } \\
\text { Optimal price satisfies } p_{m}=P\left(q_{m}\right)
\end{gathered}
$$

the monopolist chooses quantity where marginal revenue equals marginal cost and charges the maximum price that bears that quantity

The Inverse Elasticity Rule

- Recall price elasticity of demand: $\epsilon=-\frac{\partial q}{\partial p} \frac{p}{q}=-\frac{1}{P^{\prime}(q)} \frac{p}{q}$
- Then $P\left(q_{m}\right)+P^{\prime}\left(q_{m}\right) q_{m}=C^{\prime}\left(q_{m}\right)$ becomes

$$
\begin{aligned}
P\left(q_{m}\right)\left[1-\frac{1}{\epsilon}\right] & =C^{\prime}\left(q_{m}\right) \\
\frac{P\left(q_{m}\right)-C^{\prime}\left(q_{m}\right)}{P\left(q_{m}\right)} & =\frac{1}{\epsilon}
\end{aligned}
$$

Inverse Elasticity Rule:

price-cost margin (Lerner Index) $=$ Inverse elasticity

- Markup higher (resp. lower) the more inelastic (resp. elastic) demand
- Since $C^{\prime}(q)>0$, a monopolist always produces in the elastic portion of the demand $(\epsilon>1)$

Example: Linear Demand

$$
\begin{aligned}
& P(q)=a-b q \\
& \epsilon=-\frac{\partial q}{\partial p} \frac{p}{q}=-\frac{1}{b} \frac{a-b q}{q}=\frac{a}{b q}-1
\end{aligned}
$$

* elastic demand: $q<\frac{a}{2 b}, e>1$
$\Rightarrow M R>0$
$\Rightarrow T R$ positively sloped
* inelastic demand: $q>\frac{a}{2 b}, e<1$

$$
\Rightarrow M R<0
$$

$\Rightarrow T R$ negatively sloped

Price Elasticities of Demand - Estimates

Salt	0.1	Movies	0.9
Matches	0.1	Housing, owner occupied, long-run	1.2
Toothpicks	0.1	Shellfish, consumed at home	0.9
Airline travel, short-run	0.1	Oysters, consumed at home	1.1
Gasoline, short-run	0.2	Private education	1.1
Gasoline, long-run	0.7	Tires, short-run	0.9
Residential natural gas, short-run	0.1	Tires, long-run	1.2
Residential natural gas, long-run	0.5	Radio and television receivers	1.2
Coffee	0.25	Restaurant meals	2.3
Fish (cod) consumed at home	0.5	Foreign travel, long-run	4.0
Tobacco products, short-run	0.45	Airline travel, long-run	2.4
Legal services, short-run	0.4	Fresh green peas	2.8
Physician services	0.6	Automobiles, short-run	$1.2-1.5$
Taxi, short-run	0.6	Chevrolet automobiles	4.0
Automobiles, long-run	0.2	Fresh tomatoes	4.6
${ }^{\text {a }}$ Note: Source http://scholar.harvard.eduffiles/aladafiles/price-elasticity-of_demand-handout.pdf			

Graphic Analysis

Graphic Analysis

- The monopolist restricts output/charges higher price than under competition
- Monopolist outcome is inefficient (not Pareto optimal), the blue triangle is the "burden of monopoly"
\rightarrow Possible gov't interventions: price regulation, taxation, ...

Two-Part Tariffs

Two-part tariff $=$ Fixed 'entry' fee plus per unit price

- Examples: communication services (cable, phone), utilities (gas, electricity), amusement parks, night clubs

> firm can do better than Π^{m} with additional fixed fee \rightarrow extracts S but if $p=p^{m}, \max$ fixed fee is S \rightarrow lost profit $=D$
> optimal:
> $p=p^{\text {comp }}=M C$ and
> fixed fee $=S+\Pi+D$

- Outcome Pareto efficient, monopolist extracts all surplus
- But: only works with homogeneous consumers

Government Policy

Monopolies create a loss to consumers and the economy as a whole....
What can/should the government do?

- Divesture of crucial inputs (ATT\&T had to sell of local operations, National airlines required to divest slots and gates etc.)
- Encouraging competition (e.g. favourable treatment in wireless spectrum auctions for new competitors)
- Price/quantity regulation (service requirements, price ceilings), taxation

Other considerations

- Revenue through selling the right to form a monopoly (e.g. wireless spectrum, toll highways).
- Encourage innovation through patents and copyright

Price Discrimination

Introduction

Price Discrimination $=$ Selling the same product to different buyers at different prices (market segmentation)

- Ordinary Price Discrimination \rightarrow direct and indirect price discrimination
- Perfect Price Discrimination

Perfect Price Discrimination $=$ Firm charges every consumer his or her reservation price

- final output
$q^{m}=q^{*}=q^{c o m p}$
- outcome is Pareto efficient, monopolist extracts all surplus

Direct Price Discrimination

- Price based on identity of demand group
- Observable consumer characteristic (students, seniors)
- Location (Canada-US)
- Need:
- Identify consumer types
- Prevent arbitrage (buy low and resell)
- If monopolist can price discriminate, what prices should it charge?

Example

- Two observable buyer groups (markets) with demands

$$
q_{1}=100-p_{1} \quad \text { and } \quad q_{2}=100-2 p_{2}
$$

- Monopolist with marginal cost $M C=20$ per unit
- Profit function $\Pi=\left(100-q_{1}\right) q_{1}+\left(50-\frac{1}{2} q_{2}\right) q_{2}-20\left(q_{1}+q_{2}\right)$
- Profit max gives

$$
\begin{aligned}
\frac{\partial \Pi}{\partial q_{1}}=100-2 q_{1}-20=0 & \Rightarrow q_{1}=40, p_{1}=60 \\
\frac{\partial \Pi}{\partial q_{2}}=50-q_{2}-20=0 & \Rightarrow q_{2}=30, p_{2}=35
\end{aligned}
$$

- Total profit from price discrimination is $\Pi=2050$

Example (cont'd)

- What if monopolist cannot price discriminate?
- Aggregate demand function:

$$
q_{1}(p)+q_{2}(p)=200-3 p \Rightarrow P(q)=\frac{200}{3}-\frac{1}{3} q
$$

- Profit function $\Pi=\left(\frac{200}{3}-\frac{1}{3} q\right) q-20 q$
- Profit max gives

$$
\frac{\partial \Pi}{\partial q}=\frac{200}{3}-\frac{2}{3} q-20=0 \quad \Rightarrow q=70, p=43.33
$$

- Total profit is $\Pi=1633.33$

The monopolist's total profit is higher when he can price discriminate than when he cannot.

General Analysis

Maximizing $\Pi=P\left(q_{1}\right) q_{1}+P\left(q_{2}\right) q_{2}-C\left(q_{1}+q_{2}\right)$ gives

$$
\begin{aligned}
& \operatorname{MR}\left(q_{1}\right)=P\left(q_{1}\right)\left[1-\frac{1}{\epsilon_{1}\left(q_{1}\right)}\right]=M C\left(q_{1}+q_{2}\right) \\
& M R\left(q_{2}\right)=P\left(q_{2}\right)\left[1-\frac{1}{\epsilon_{2}\left(q_{2}\right)}\right]=M C\left(q_{1}+q_{2}\right) \quad \Rightarrow \operatorname{MR}\left(q_{1}\right)=\operatorname{MR}\left(q_{2}\right)
\end{aligned}
$$

and $\epsilon_{1}\left(q_{1}\right)>\epsilon_{2}\left(q_{2}\right) \Rightarrow p_{1}<p_{2}$

Indirect Price Discrimination

- Price based on choices made by consumers
- Works through self selection
- General idea:

Firms offer different "packages" (price/quantity or price/quality) and consumers "pick" the package they prefer most
\rightarrow Self select into different demand groups from which monopolist is able to extract additional consumer surplus through price discrimination

- No need for directly identifying demand groups
- Arbitrage may still be problem

Example: Buy One get Second One for Half Price

- Tim Hortons, makes sandwiches at MC $=\$ 2$ offers: if you buy one for full price second sandwich is 50% off....WHY?
- Explanation: indirect PD
sandwich value for hungry customer (Henry) = \$ 8 for first sandwich \$ 4 for second sandwich
sandwich value for less hungry customer (Larry) $=\$ 6$ for first sandwich $\$ 2$ for second sandwich
- linear pricing: charge $\$ 6$ per sandwich
\rightarrow each buys on sandwich, profit is $\$ 8=12-4$
- direct (perfect) PD: charge \$ 8 to Henry, \$ 6 to Larry
\rightarrow each buys one sandwich, profit is $\$ 10=8+6-4$
but: not feasible if types of customers cannot be identified!
- indirect PD: charge $\$ 6$ for first sandwich, $\$ 3$ for second sandwich
\rightarrow Henry buys two sandwiches, Larry buys one sandwich
- total profit under indirect PD $12+3-6=\$ 9$ which is more than $\$ 8$ under linear pricing

Examples of indirect PD

- Quantity discounts and coupons

Those who buy more/collect coupons get cheaper per unit price (families/consumers with low value for time are more price-sensitive than individuals)

- Rate plans in communications

Those who demand more pay higher fixed fee and lower marginal price (cable, internet, phone, mobile)

- Price drops through time/"sales"

Those who wait with purchase get cheaper price (patient consumers have lower value of good and are more price-sensitive)

- Tie-in sales

Those who buy more of tie-in product pay more for original product (Polaroid, iTunes)

- Bundling

Those who want one product have to purchase another one at a price higher than their reservation price (Cable bundles, "all you can eat")

Welfare Effects of Price Discrimination

Is price discrimination good or bad?

- If firm produces less than under uniform pricing, welfare is lower
- If firm produces more than under uniform pricing, welfare may be higher Example: perfect price discrimination
- Price discrimination tends to benefit the poor and hurt the rich

