Part 2. Market Failure II Externalities and Public Goods

External Effects, Coase Theorem, Transaction Cost, Public Goods, Free Rider Problem

May 2016

Externalities

Introduction

Externalities = External effects

• Negative externality (external cost): A cost that falls on people other than those that pursue the activity/are part of the transaction, e.g.

- Smoking
- Pollution
- Overfishing (Tragedy of the Commons)

Introduction

- Positive externality (External Benefit)
 A benefit received by people other than those that pursue the activity/are part of the transaction, e.g.
 - Gardening
 - Education
 - Bee farming

Externalities and Markets

Externalities cause market failure.

- Individuals who consider only their own cost and benefit will tend to engage
 - Too much in activities that generate negative externalities
 - **Too little** in activities that generate positive externalities

With external effects, the equilibrium in competitive markets is no longer Pareto efficient

Market Failure: Negative Externality

triangle D = deadweight loss

Market Failure: Positive Externality

Positive Externality

triangle D = deadweight loss

Example

- Two roommates, Harry (H) and Sally (S); Sally smokes.
- If S consumes q cigarettes, utilities are

$$u_S = 4\sqrt{q} + \text{money}$$
 $u_H = -0.5q + \text{money}$

• Let p = 1 price per cigarette, then *money* = -pq = -q, and the first order condition for Sally is:

$$\frac{du_S}{dq} = \frac{2}{\sqrt{q}} - 1 = 0$$

 \Rightarrow utility maximizing consumption for Sally is $q^{priv} = 4 \text{ cigarettes}$

Example (Cont'd)

• Outcome is Pareto inefficient: Socially Optimal quantity is $q^* = 2$, since

$$U_T = u_S + u_H = 4\sqrt{q} - q - 0.5q + \text{money}$$

$$\Rightarrow \quad \frac{dU}{dq} = \frac{2}{\sqrt{q}} - 1 - 0.5 = 0$$

$$\Rightarrow \quad q^* \sim 2$$

• graphically:

Example (Cont'd)

- But: Gains from trade exist
- \Rightarrow H and S could negotiate agreement (contract) where:
 - H compensates S for not smoking

 \rightarrow outcome will be q=2 (efficient)

or

 $\bullet \ S$ compensates H for being allowed to smoke

 \rightarrow outcome will be q = 2 (efficient)

The Coase Theorem

People can arrive at an efficient solution to the problem of externalities by **negotiating** the purchase and sale of the (legal) right to engage in the activities that cause the externality

- The efficient solution may not depend on who has the property rights
- The distribution of benefits and costs always depends on who has the property rights

Failure of Coasian Bargaining

- Negotiations between private parties (Coasian bargaining) not always feasible or practical because of transaction cost
- Transaction cost:
 - Bargaining cost
 - Missing (legal) property rights
 - Asymmetric information

Public Regulation

- Remedies:
 - Pigouvian taxes and subsidies (see also example)

- Quotas
- Tradeable permits and auctions

Public Goods

Public Goods

• Public Goods are a special case of externality where everybody consumes the same amount

They are are characterized by

- Non-rivalry: good can be consumed by many people simultaneously
- Non-excludability: costly or impossible to deny people access to good
- Pure public goods are completely nonrivalrous and nonexcludable
- Examples: national defence, fireworks, nature and parks, rural highways, inventions

Efficient Public Good Provision

the Pareto optimal quantity of a pure public good is where the sum of the individual marginal benefits (MRS's) equals the marginal cost

Private vs Public Provision of Public Goods

- Public goods are often provided by some public authority
- Private provision of public goods through voluntary contributions usually leads to **underprovison** due to the free rider problem (see Part 3.)
- Public provision of public goods not always efficient either (e.g. voting)