Part 3: Game Theory I Nash Equilibrium: Applications

Oligopoly, Cournot Competition, Bertrand Competition, Free Riding Behavior, Tragedy of the Commons

June 2016

Illustrating Nash Equilibrium

- many models use notion of Nash equilibrium to study economic, political or biological phenomena
- often, these games involve continuous actions
- examples:
 - firms choosing a business strategy in an imperfectly competitive market (price, output, investment in R&D)
 - candidates in an election choosing platforms (policies)
 - animals fighting over prey choosing time at which to retreat
 - bidders in auction choosing bid

Oligopoly

- a market or an industry is an oligopoly if it is dominated by a small number of sellers (oligopolists) who each have a non-negligible effect on prices
- oligopoly is a market form in between perfect competition and monopoly
- various economic models study oligopoly:
 - Cournot model (quantities, homogeneous good)
 - Bertrand model (prices, homogeneous good)
 - price competition with differentiated products
 - Hotelling model of product differentiation
 - and many more...

Cournot Competition

The Cournot Model

- two firms i = 1, 2 produce a **homogeneous product**
- firm *i*'s output $q_i \ge 0$, constant marginal costs c
- total industry output $Q = q_1 + q_2$ inverse demand function $p(Q) = a - b(q_1 + q_2)$
- firms simultaneously choose own output q_i , taking the rival firm's output q_j as given \rightarrow strategies are q_i 's
- firm *i* maximizes

$$\pi_i = (a - bQ)q_i - c_iq_i$$
 s.t. q_j is given

• FOC
$$\frac{\partial \pi_i}{\partial q_i} = 0 \rightarrow \text{best response functions } q_i = q_i^{br}(q_j)$$

•
$$(q_1^*, q_2^*)$$
 Nash equilibrium if $q_1^* = q_1^{br}(q_2^*)$ and $q_2^* = q_2^{br}(q_1^*)$

Analysis

• maximizing profit yields

$$\max_{q_1} \pi_1 = (a - b(q_1 + q_2))q_1 - cq_1 \implies q_1^{br}(q_2) = \frac{a - c}{2b} - \frac{1}{2}q_2$$
$$\max_{q_2} \pi^2 = (a - b(q_1 + q_2))q_2 - cq_2 \implies q_2^{br}(q_1) = \frac{a - c}{2b} - \frac{1}{2}q_1$$

 \bullet solving for the NE $q_1^*=q_1^{br}(q_2^*)$ and $q_2^*=q_2^{br}(q_1^*)$ gives

$$q_1^* = q_2^* = \frac{a-c}{3b}$$
 and $\pi_1^* = \pi_2^* = \frac{(a-c)^2}{9b}$

compare outcome to monopoly

$$q_1^* + q_2^* > q_m = \frac{a-c}{2b}, \ p^* < p_m \quad \text{and} \quad \pi_1^* + \pi_2^* < \pi_m = \frac{(a-c)^2}{4b}$$

• symmetric market with *n* firms:

$$q_i^* = rac{a-c}{b(n+1)}, \ p^* = rac{a+nc}{(n+1)}, \quad \text{and} \quad \pi_i^* = rac{(a-c)^2}{b(n+1)^2}$$

. 0

10

Quantity Setting Oligopoly: Best Response Functions

Quantity Setting Oligopoly: Best Response Functions

Quantity Setting Oligopoly: Cournot Equilibrium

Quantity Setting Oligopoly: Cournot Equilibrium

- Quantity Setting Oligopoly: Cournot Equilibrium
- firm 1's isoprofit curve $\pi_1(q_1,q_2) = \text{constant}$ is tangent to $q_2 = q_2^*$ line

Quantity Setting Oligopoly: Cournot Equilibrium

- firm 1's isoprofit curve $\pi_1(q_1, q_2) = \text{constant}$ is tangent to $q_2 = q_2^*$ line
- firm 2's isoprofit curve $\pi_2(q_1, q_2) = \text{constant}$ is tangent to $q_1 = q_1^*$ line
- there are (q₁, q₂) combinations (the shaded area) that would make both firms better off → the NE is not efficient (Pareto optimal) from the firm's point of view

Summary

In a Cournot oligopoly

- each firm's profit is decreasing in the other firm's quantity in producing output, firms impose negative externalities on rivals
- ⇒ in equilibrium, the firms produce too much output relative to joint profit maximization (monopoly); they fail to maximize their joint profit
 - firms have an incentive to collude/cooperate
 - firms also have an incentive to cheat on any collusive/cooperative agreement (any agreement other than a NE is not self-enforcing)

Bertrand Competition

The Bertrand Model

Named after Joseph Louis François Bertrand (1822-1900)

- $\bullet\,$ two firms $i=1,2\,\,{\rm produce}$ a homogeneous product
- firm *i*'s price $p_i \ge 0$, constant marginal cost c_i
- linear demand function

$$D_{i}(p_{i}) = \begin{cases} a - p_{i} & \text{if } p_{i} < p_{j} \\ (a - p_{i})/2 & \text{if } p_{i} = p_{j} \\ 0 & \text{if } p_{i} > p_{j} \end{cases}$$

- firms simultaneously choose prices p_i , taking the rival firm's price p_j as given \rightarrow strategies are p_i 's
- firm i maximizes $\pi_i = (p_i c) D_i(p_i)$ taking p_j as given
- (p_1^{\ast},p_2^{\ast}) Nash equilibrium if $p_1^{\ast}=p_1^{br}(p_2^{\ast})$ and $p_2^{\ast}=p_2^{br}(p_1^{\ast})$

Analysis

- by pricing just below the rival firm, each firm can obtain the full market demand $D(p) \to {\rm strong}$ incentive to 'undercut' one's rival
- claim: in the unique NE, $p_1^* = p_2^* = c$ (marginal cost pricing) = same outcome as perfect competition!
- \bullet to see this, look at firm 1's best response to p_2
 - if $p_2 \leq c$, firm 1 can set $p_1 = c$ (makes no profit anyway)
 - if $c < p_2 \le p_m$, firm 1 should set $p_1 = p_2 \epsilon$
 - if $p_2 > p_m$, firm 1 should set $p_1 = p_m$
- analogous for firm 2
- \Rightarrow best responses intersect only at $p_1 = p_2 = c$

Price Setting Oligopoly: Reaction Functions

Price Setting Oligopoly: Reaction Functions

Price Setting Oligopoly: Bertrand Equilibrium

Summary

In a Bertrand oligopoly:

- each firm's profit is increasing in the other firm's price in raising their price, firms impose positive externalities on rivals
- $\Rightarrow\,$ in equilibrium, the firms set the price $too\,$ low relative to joint profit maximization

Similarities to Cournot:

- price below monopoly price
- $\bullet\,$ firms fail to maximize their joint profit $\rightarrow\,$ incentive to collude/cooperate
- still: incentive to cheat on any collusive/cooperative agreement (any agreement other than a NE is not self-enforcing)

Summary

Differences to Cournot:

- Bertrand predicts two firms is enough to generate marginal cost pricing
- \bullet in practice: differentiated products $\rightarrow p > MC$
- if capacity and output can be easily changed, Bertrand fits situation better; otherwise Cournot

The Free Rider Problem

Games of Collective Action

- games of collective action = situations where the benefit to group depends on the actions (efforts) of all members
- in collective action games, individuals have a tendency to free ride on the contribution of others; they contribute nothing/too little themselves but still reap the benefit
- primary example: contributing to a public good
- in general, the free-rider problem means that
 - there are too few 'volunteers'
 - there is too little group effort
- $\Rightarrow\,$ benefit from collective action too low \rightarrow Pareto inefficient outcomes (market failure)
 - the problem gets worse as the group becomes larger

Ex: Private Provision of a Public Good

- two roomates, Harry (H) and Sally (S)
- public good = cleanness of apartment G, utilities are

$$u_S = 40\sqrt{G} + \text{money}$$
 $u_H = 20\sqrt{G} + \text{money}$

- a cleaning lady will take G hours to produce G and costs \$ $10/{\rm hour} \to C(G) = 10G$ and MC(G) = 10
- Pareto optimal amount is at $MB_S + MB_B = MC$,

$$20\frac{1}{\sqrt{G}} + 10\frac{1}{\sqrt{G}} = 10 \quad \Rightarrow \quad G^{eff} = 9$$

• if i = H, S contributes x_i , total cleaning budget is $x_H + x_S$ and cleanness is $G = \frac{1}{10}(x_H + x_L)$

Contributing to a Public Good (contd.)

- how much will each person contribute?
- answer depends on how much each expects the roommate to contribute
 - \rightarrow strategic game
 - \rightarrow solve using NE concept
- if S expects H to contribute x_H , her optimal contribution solves

$$\max_{x_S} \ u_S = 40 \sqrt{\frac{1}{10}(x_S + x_H)} - x_S \quad \text{s.t.} \ x_H \ \text{given}, \ x_S \ge 0$$

FOC gives

$$x_S^{br}(x_H) = 40 - x_H$$
 for $x_H \le 40$ (otherwise $x_S^{br}(x_H) = 0$)

Contributing to a Public Good (contd.)

• if H expects S to contribute x_S , his optimal contribution solves

$$\max_{x_H} u_H = 20\sqrt{\frac{1}{10}(x_S + x_H)} - x_H \quad \text{s.t. } x_H \text{ given, } x_H \ge 0$$

FOC gives

$$x_H^{br}(x_S) = 10 - x_S$$
 for $x_S \le 10$ (otherwise $x_H^{br}(x_S) = 0$)

• (x_S^*, x_H^*) Nash equilibrium if $x_S^* = x_S^{br}(x_H^*)$ and $x_H^* = x_H^{br}(x_S^*)$

• NE is at
$$x_S^* = 40$$
 and $x_H^* = 0 \Rightarrow G^* = 4 < 9 = G^{eff}$

Private Provision of Public Goods: Best-Response Functions

Private Provision of Public Goods: Best Response Functions

Private Provision of Public Goods: Nash Equilibrium

Private Provision of Public Goods: Nash Equilibrium

- Sally's indifference curve $u_S(x_S, x_H) = \text{constant}$ is tangent to $x_H = x_H^*$ line
- Harry's indifference curve $u_H(x_S, x_H) = \text{constant}$ is not tangent to $x_S = x_S^*$ line
- there are (x_S, x_H) combinations that would make both better off \rightarrow the NE is not efficient (Pareto optimal) from collective point of view

Contributing to a Public Good (contd.)

In private provision of public goods:

- each person's utility is increasing in the other person's contribution \rightarrow positive externality (not internalized)
- each person's optimal contribution is decreasing in the other person's contribution
 - \rightarrow free riding behavior
- \Rightarrow in equilibrium, people contribute too little relative to joint surplus (welfare) maximization

Contributing to a Public Good (contd.)

Other instances where similar problem occur:

- tragedy of the commons = overuse of common resource
- public infrastructure (roads, parks)
- natural resources (oceans, air, water)

other games of collective action need not share same problems (e.g. adopting a common standard)

Solving Collective Action Problems

Free riding and other problems in collective action games can often be mitigated or solved by:

- detection and punishment/rewards
- sanctions, customs, and social norms (in repeated interaction)
- government provision
- government regulation (taxes, subsidies)
- Coasian bargaining