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Illustrating Nash Equilibrium

many models use notion of Nash equilibrium to study economic, political or
biological phenomena

often, these games involve continuous actions

examples:

firms choosing a business strategy in an imperfectly competitive market (price,
output, investment in R&D)

candidates in an election choosing platforms (policies)

animals fighting over prey choosing time at which to retreat

bidders in auction choosing bid
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Oligopoly

a market or an industry is an oligopoly if it is dominated by a small number
of sellers (oligopolists) who each have a non-negligible effect on prices

oligopoly is a market form in between perfect competition and monopoly

various economic models study oligopoly:

Cournot model (quantities, homogeneous good)

Bertrand model (prices, homogeneous good)

price competition with differentiated products

Hotelling model of product differentiation

and many more...
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Cournot Competition
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The Cournot Model

two firms i = 1, 2 produce a homogeneous product

firm i’s output qi ≥ 0, constant marginal costs c

total industry output Q = q1 + q2
inverse demand function p(Q) = a− b(q1 + q2)

firms simultaneously choose own output qi, taking the rival firm’s output qj
as given → strategies are qi’s

firm i maximizes

πi = (a− bQ)qi − ciqi s.t. qj is given

FOC ∂πi

∂qi
= 0 → best response functions qi = qbri (qj)

(q∗1 , q
∗
2) Nash equilibrium if q∗1 = qbr1 (q∗2) and q

∗
2 = qbr2 (q∗1)
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Analysis

maximizing profit yields

max
q1

π1 = (a− b(q1 + q2))q1 − cq1 ⇒ q
br
1 (q2) =

a− c
2b
−

1

2
q2

max
q2

π2 = (a− b(q1 + q2))q2 − cq2 ⇒ q
br
2 (q1) =

a− c
2b
−

1

2
q1

solving for the NE q∗1 = qbr1 (q∗2) and q
∗
2 = qbr2 (q∗1) gives

q∗1 = q∗2 =
a− c
3b

and π∗1 = π∗2 =
(a− c)2

9b

compare outcome to monopoly

q∗1 + q∗2 > qm =
a− c
2b

, p∗ < pm and π∗1 + π∗2 < πm =
(a− c)2

4b

symmetric market with n firms:

q∗i =
a− c

b(n+ 1)
, p∗ =

a+ nc

(n+ 1)
, and π∗i =

(a− c)2

b(n+ 1)2
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Graphic Illustration
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Graphic Illustration

Oligopoly, Cournot Competition, Bertrand Competition, Free Riding Behavior, Tragedy of the Commons ()Part 3: Game Theory I Nash Equilibrium: Applications June 2016 10 / 33



Graphic Illustration

firm 1’s isoprofit curve π1(q1, q2) = constant is tangent to q2 = q∗2 line
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Graphic Illustration

firm 1’s isoprofit curve π1(q1, q2) = constant is tangent to q2 = q∗2 line

firm 2’s isoprofit curve π2(q1, q2) = constant is tangent to q1 = q∗1 line

there are (q1, q2) combinations (the shaded area) that would make both firms better off → the NE
is not efficient (Pareto optimal) from the firm’s point of view
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Summary

In a Cournot oligopoly

each firm’s profit is decreasing in the other firm’s quantity
in producing output, firms impose negative externalities on rivals

⇒ in equilibrium, the firms produce too much output relative to joint profit
maximization (monopoly); they fail to maximize their joint profit

firms have an incentive to collude/cooperate

firms also have an incentive to cheat on any collusive/cooperative agreement
(any agreement other than a NE is not self-enforcing)
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Bertrand Competition
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The Bertrand Model
Named after Joseph Louis François Bertrand (1822-1900)

two firms i = 1, 2 produce a homogeneous product

firm i’s price pi ≥ 0, constant marginal cost ci

linear demand function

Di(pi) =


a− pi if pi < pj

(a− pi)/2 if pi = pj

0 if pi > pj

firms simultaneously choose prices pi, taking the rival firm’s price pj as
given → strategies are pi’s

firm i maximizes πi = (pi − c)Di(pi) taking pj as given

(p∗1, p
∗
2) Nash equilibrium if p∗1 = pbr1 (p∗2) and p

∗
2 = pbr2 (p∗1)
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Analysis

by pricing just below the rival firm, each firm can obtain the full market
demand D(p) → strong incentive to ‘undercut’ one’s rival

claim: in the unique NE, p∗1 = p∗2 = c (marginal cost pricing)
= same outcome as perfect competition!

to see this, look at firm 1’s best response to p2

if p2 ≤ c, firm 1 can set p1 = c (makes no profit anyway)

if c < p2 ≤ pm, firm 1 should set p1 = p2 − ε

if p2 > pm, firm 1 should set p1 = pm

analogous for firm 2

⇒ best responses intersect only at p1 = p2 = c
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Graphic Illustration
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Graphic Illustration
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Graphic Illustration
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Summary

In a Bertrand oligopoly:

each firm’s profit is increasing in the other firm’s price
in raising their price, firms impose positive externalities on rivals

⇒ in equilibrium, the firms set the price too low relative to joint profit
maximization

Similarities to Cournot:

price below monopoly price

firms fail to maximize their joint profit → incentive to collude/cooperate

still: incentive to cheat on any collusive/cooperative agreement
(any agreement other than a NE is not self-enforcing)
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Summary

Differences to Cournot:

Bertrand predicts two firms is enough to generate marginal cost pricing

in practice: differentiated products → p > MC

if capacity and output can be easily changed, Bertrand fits situation better;
otherwise Cournot
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The Free Rider Problem
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Games of Collective Action

games of collective action = situations where the benefit to group depends
on the actions (efforts) of all members

in collective action games, individuals have a tendency to free ride on the
contribution of others; they contribute nothing/too little themselves but still
reap the benefit

primary example: contributing to a public good

in general, the free-rider problem means that

there are too few ‘volunteers’

there is too little group effort

⇒ benefit from collective action too low → Pareto inefficient outcomes (market
failure)

the problem gets worse as the group becomes larger
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Ex: Private Provision of a Public Good

two roomates, Harry (H) and Sally (S)

public good = cleanness of apartment G, utilities are

uS = 40
√
G+money uH = 20

√
G+money

a cleaning lady will take G hours to produce G and costs $ 10/hour →
C(G) = 10G and MC(G) = 10

Pareto optimal amount is at MBS +MBB =MC,

20
1√
G

+ 10
1√
G

= 10 ⇒ Geff = 9

if i = H,S contributes $xi, total cleaning budget is xH + xS and cleanness is
G = 1

10 (xH + xL)
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Contributing to a Public Good (contd.)

how much will each person contribute?

answer depends on how much each expects the roommate to contribute

→ strategic game

→ solve using NE concept

if S expects H to contribute xH , her optimal contribution solves

max
xS

uS = 40

√
1

10
(xS + xH)− xS s.t. xH given, xS ≥ 0

FOC gives

xbrS (xH) = 40− xH for xH ≤ 40 (otherwise xbrS (xH) = 0)
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Contributing to a Public Good (contd.)

if H expects S to contribute xS , his optimal contribution solves

max
xH

uH = 20

√
1

10
(xS + xH)− xH s.t. xH given, xH ≥ 0

FOC gives

xbrH (xS) = 10− xS for xS ≤ 10 (otherwise xbrH (xS) = 0)

(x∗S , x
∗
H) Nash equilibrium if x∗S = xbrS (x∗H) and x∗H = xbrH (x∗S)

NE is at x∗S = 40 and x∗H = 0 ⇒ G∗ = 4 < 9 = Geff
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Graphic Illustration
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Graphic Illustration
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Graphic Illustration
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Graphic Illustration

Sally’s indifference curve uS(xS , xH) = constant is tangent to xH = x∗
H line

Harry’s indifference curve uH(xS , xH) = constant is not tangent to xS = x∗
S line

there are (xS , xH) combinations that would make both better off
→ the NE is not efficient (Pareto optimal) from collective point of view
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Contributing to a Public Good (contd.)

In private provision of public goods:

each person’s utility is increasing in the other person’s contribution
→ positive externality (not internalized)

each person’s optimal contribution is decreasing in the other person’s
contribution
→ free riding behavior

⇒ in equilibrium, people contribute too little relative to joint surplus (welfare)
maximization
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Contributing to a Public Good (contd.)

Other instances where similar problem occur:

tragedy of the commons = overuse of common resource

public infrastructure (roads, parks)

natural resources (oceans, air, water)

other games of collective action need not share same problems
(e.g. adopting a common standard)

Oligopoly, Cournot Competition, Bertrand Competition, Free Riding Behavior, Tragedy of the Commons ()Part 3: Game Theory I Nash Equilibrium: Applications June 2016 32 / 33



Solving Collective Action Problems

Free riding and other problems in collective action games can often be mitigated
or solved by:

detection and punishment/rewards

sanctions, customs, and social norms
(in repeated interaction)

government provision

government regulation (taxes, subsidies)

Coasian bargaining
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