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Econ 302: Microeconomics II - Strategic Behavior

Problem Set #8 – July 5, 2016

1. True/False/Uncertain? Repeated interaction allows players to condition their ac-

tions on past behaviour, which facilitates reward-like or punishment-like strategies.

True. Whether or not strategies that include rewards/punishments are being success-

fully played in equilibrium, however, is another matter. Take a prisoners’ dilemma

that is repeated for 2 periods for example: One possible strategy of the players could be

“Tit-for-Tat”, i.e., a player always cooperates in period 1, and continues to cooperate

in period 2 if the other player also cooperated in period 1, if the other player defected

in period 1, however, the strategy calls for the player to defect in period 2. However,

these strategies are not subgame perfect as long as the repetition is finite: cooperation

cannot be sustained. Using backward induction, the unique SPE is (Defect,Defect) in

both periods. If the PD is repeated an infinite (or uncertain) number of times, how-

ever, Tit-for-Tat can be part of a SPE, inducing cooperation, if players are sufficiently

patient.

2. The following is an interpretation of the rivalry between the United States and the

Soviet Union for geopolitical influence in the 1970’s and 1980’s. Each side can either

be Aggressive or Restrained. The Soviet Union wants to achieve world domination,

so being Aggressive is its dominant strategy. The United States wants to prevent the

Soviet Union from achieving world domination; it will match Soviet aggressiveness with

aggressiveness, and restraint with restraint.

U.S.

S.U.
Restrained Aggressive

Restrained 4, 3 1, 4
Aggressive 3, 1 2, 2

a) Suppose the two countries move simultaneously. Find the Nash equilibrium. The

game is dominance solvable. Aggressive is the Soviet Union’s dominant strategy,

and then Aggressive is the U.S.’s best response. The unique Nash equilibrium is

(Aggressive, Aggressive).

b) Now, consider three different alternatives ways in which the game could be played:

(i) the U.S. moves first, (ii) the S.U. moves first, and (iii) the S.U. moves first

and the U.S. moves second, but then the S.U. has a further move in which it

can change its first move. For each case, draw the game tree and find the sub-

game perfect equilibrium. I omit the game trees, which are easy to draw. The
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SPE’s are (i) (Aggressive, Always Aggressive) (ii) (Restrained, Restrained if Re-

strained/Aggressive if Aggressive), (iii) the SPE strategies are: U.S. always ag-

gressive at its only move in the game, S.U.: Aggressive or Restrained at its first

move, and Always Aggressive at last move, regardless of history of game.

c) What are the key strategic matters (commitment, credibility, etc.) for the two

countries?Both the US and the SU are better off in the situation in which the US

moves last. This is the situation where the US retains its flexibility and respond

to the actions of the Soviets (second mover advantage). With this order of timing,

the SU’s awareness of the US’s ability to respond to its action discourages it from

acting aggressively. The Soviets’ now that if they did so, the US would match

their aggression, and they would suffer as a result. In turn, the SU knows that

restraint will be met by restraint.

3. (Cournot– Stackelberg Competition). Carl and Simon are two rival pumpkin growers

who sell their pumpkins at the local Farmer’s market. The demand function is given

by p = 2−(qC +qS)/1600 where qC (respectively, qS) is the number of pumpkins grown

by Carl (respectively, Simon). The marginal cost of producing a pumpkin for both

farmers is $ 0.5.

a) Assume first that every spring, both farmers simultaneously decide how many

pumpkins to grow. Each pumpkin grown will be sold in the fall. Calculate

the best response functions and the Cournot Nash equilibrium (quantities, price,

profit). To find each farmer’s response function, we have to maximize profit,

taking rival output as given. The first-order conditions equate marginal revenue

with marginal cost:

Carl : 2− (2qC − qS)/1600 =
1

2
⇒ qC = 1200− 1

2
qS.

Simon : 2− (2qS − qC)/1600 =
1

2
⇒ qS = 1200− 1

2
qC .

Substituting Simon’s best response into Carl’s best response (or vice versa) gives

the NE quantities q∗1 = q∗2 = 800. The price is p∗ = 1 and each farmer makes a

profit of π∗
C = π∗

S = 400.

b) Now assume the snow thaws off Carl’s pumpkin field a week before it thaws off

Simon’s pumpkin field. Therefore, Carl can plant his pumpkins a week earlier

than Simon can. Since Simon lives just down the road, he can tell by looking

at Carl’s field how many pumpkins Carl will produce (and sell) in the fall before

making his own decision on how many pumpkins to grow.
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i) If Simon sees that Carl has planted qC pumpkins, how many should he plant?

(Hint: remember the reactions functions from part a)) If Carl planted qC
pumpkins, Simon maximizes profit by planting qS = 1200 − 1

2
qC pumpkins.

Of course, this is nothing but his best response function from part a).

ii)∗ When Carl plants his pumpkins, he understands how Simon will make his

decision. Therefore, Carl realizes that the amount that Simon produces will

be determined by what Carl himself produces. If Carl plants qC pumpkins,

what will be the total output, taking into account how many pumpkins

Simon produces as a function of qC? Write down a function of Carl’s revenue

as a function of his own output, taking Simon’s best response into account.

If Carl plants qC, Simon will plant qS = 1200 − 1
2
qC . The total amount of

pumpkins planted is thus qC + qS = 1200 + 1
2
qC . Therefore, Carl knows that

if his own output is qC, the price on the market will be p = 5
4
− 1

3200
qC and

his revenue is (5
4
− 1

3200
qC)qC.

iii)∗ Find the profit maximizing output for Carl, the equilibrium output of Si-

mon, and the equilibrium price of pumpkins. How much profit does either

producer make? Given the calculation in ii), Carl’s profit as a function of

qC (taking into account how Simon reacts) is given by

πC = (
5

4
− 1

3200
qC)qC −

1

2
qC

The first order conditions give q∗C = 1200. Simon would then produce q∗S =

1200 − 1
2
qC = 600. The price is p∗ = 7

8
. Carl’s profit is πC = 450 and

Simon’s profit is πS = 225.

iv)∗ If he wanted to, Carl could delay his planting until the same time that Simon

planted, so that neither of them would know each other’s plans at a time

when he planted. Would it be in Carl’s interest to do this? Explain your

finding intuitively! No, Carl’s profit in the equilibrium where he moves first

is higher than in the equilibrium where they move simultaneously (Carl has a

first-mover advantage). Why? Because Carl realizes that Simon’s response

function is downward sloping (the more he produces, the less will Simon

produce), he can by producing more than his Cournot quantity cause Simon

to cut back production, which is beneficial for him (recall that output is a

negative externality).

This type of sequential competition is called Stackelberg competition. The leader

moves first, the follower moves second. The follower’s output depends on what

he expects the leader to produce. His reaction function is constructed the same

way as for Cournot competition. The leader knows the reaction function of the
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follower, and gets to choose his output first. The leader thus knows that total

output is the sum of his output plus the reaction function of the follower. The

price and the revenue and profit function can be expressed as functions of the

leader’s output only, and are derived by substituting in for the reaction function

of the follower. Using the first order conditions for the leader’s profit max, we

can solve for the leader’s equilibrium output. Plug this in the response function

of the follower to get the follower’s output.

4. Enforcing a cartel. There are two firms in a market with demand function p(Q) =

24−Q, where Q = q1 + q2. The marginal cost of both firms are zero.

a) Solve for the Cournot-Nash equilibrium quantities, price, and profits. Maximizing

profits taking the other firms output as given yields reaction functions qi = 12−
1
2
qj. Solving for the NE gives q∗1 = q∗2 = 8, p∗ = 8 and π∗

1 = π∗
2 = 64.

b) Solve for the cartel (=joint profit maximizing) quantities, price, and profits, as-

suming that the firms agree to share the market equally. The joint profit max-

imizing aggregate quantity is the monopoly quantity Qm = 12. Since they share

the market equally by assumption, each firm produces q∗i = 6. The price is the

monopoly price pm = 12 and profits are πm
1 = πm

2 = 72 > 64.

c) Suppose one firm produces its cartel quantity, but the other firm deviates and

produces the profit maximizing output, given the cartel output of the other firm.

Solve for quantities, price, and profits. Using the reaction function derived in

a), the profit-maximizing quantity for firm i if firm j produces qj = 6 is qi = 9.

The price is p = 9 and the profits are πi = 81 > 72 for the cheating firm and

πj = 54 < 64 for the firm that honors the agreement.

d) The firms interact repeatedly, but they know that their interaction will end after

a certain finite number of rounds. What is the SPE of this finitely repeated

game? The unique NE of the stage game is the Cournot outcome. If the game is

repeated finitely many times, we can use backward induction: in the last period T ,

both firms will set their Cournot quantities, regardless of the history of the game.

But then, in the period before that, T − 1, what they do does not influence their

behavior in T . So the best thing they can do is to set their Cournot quantities in

T − 1, regardless of what happened in prior periods. But then their strategy in

T − 2 does not influence what happens in T − 1 and T , i.e., this argument works

for every period. We can conclude that they play Cournot in each period.

e) Suppose now that the firms do not know how long they will be in the market. Let

δ be the probability that they interact again tomorrow (firms do not discount the
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future otherwise). In order to sustain collusion, the firms adopt ‘grim’ strategies

of the following kind: each firm produces the cartel quantity if the opponent has

produced the cartel quantity last period; otherwise (i.e., if there was cheating in

the cartel), it produces the Nash equilibrium quantity of the stage game from

then on. Under what condition on δ can the cartel be sustained as an SPE? Give

an intuition for your finding. Given the strategies of the opponent, the present

value of firm i’s profit from honoring the cartel is (which will be rewarded by the

opponent honoring the cartel as well)

Vi(set cartel quantity) = 72(1 + δ + δ2 + . . .) =
1

1− δ
72.

If it instead cheats, it will make a one-period profit of 81, which however is fol-

lowed by reverting to the NE from then on. The present value from cheating is

thus:

Vi(cheat) = 81 + 64(δ + δ2 + . . .) = 81 +
δ

1− δ
64.

Sticking to the agreement is better than cheating if Vi(set cartel quantity) >

Vi(cheat) or
1

1− δ
72 > 81 +

δ

1− δ
64 ⇔ δ ≥ 9

17
.

f)∗ Now assumed a firm only observes that its opponent cheated with a one period

lag, i.e, if a firm cheated in period t, cheating will be discovered in period t+ 1.

How does your analysis in f) change? Explain. If cheating is observed with a one-

period lag, the cheating firm can cheat twice before play reverts to the Cournot

quantities. The present value from cheating becomes:

Vi(cheat) = 81 + δ81 + 64(δ2 + δ3 + . . .) = 81(1 + δ) +
δ2

1− δ
64.

Sticking to the agreement is better than cheating if Vi(set cartel quantity) >

Vi(cheat) or

1

1− δ
72 > 81(1 + δ) +

δ2

1− δ
64 ⇔ δ ≥

√
9

17
>

9

17
.

The discount factor now has to be higher than in case f) for the cartel to be

sustainable. The intuition is that cheating has become more profitable due to the

lag in detection. So the future must matter more for the ‘reward’ of cartel profits

and the ‘punishment’ of Cournot profits to work.

g)∗∗ Going back to the game in f), is the punishment to convert to the Nash equilib-

rium of the stage game indeed the worst punishment that they can inflict on each
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other for a deviation in a SPE of the infinitely repeated game? In other words, is

there a (credible!) punishment that is more severe than the Cournot equilibrium?

Perhaps surprisingly, there is. First, it is easy to see that a firm can punish the

opponent for cheating harder by producing more than the Cournot quantity. This

will drive prices down even further and will hurt the opponent - its profits will

drop below those of the Cournot equilibrium. More severe punishments are ob-

viously desirable in the sense that the cartel will become more stable; formally,

the cooperative outcome could be sustained even for discount factors δ < 9/17.

What is more difficult to see is that such punishments can be credible. The basic

idea is as follows: we punish each other not only for deviating from the collusive

outcome, but also for deviating from the punishment strategy.

Further questions for review:

1. Reconsider the fundraising event game played between Harry and Sally in Problem

Set 6, Question 4 but modify utility functions as follows. Sally values the prize at 72$

and Harry values the price at 144$, so uS = 72 xS

xS+xH
− xS and uH = 144 xH

xS+xH
− xH .

Calculate first the Nash equilibrium if Harry and Sally simultaneously choose how many

tickets xi, i = H,S to purchase. Next, assume Sally moves first: Harry can observe

Sally’s choice of tickets xS, before choosing how many tickets to buy himself, xx. Derive

the SPE of the sequential game. Compare the outcome with the simultaneous move

game, and explain the difference(s)! Does Harry have a second-mover advantage?

Analogous to Question 4 in PS 6, we can solve for the NE in the simultaneous move

game to obtain xS = 16 and xH = 32. Harry purchases twice as many tickets, and

is twice as likely to win the prize, as does Sally. In the sequential game, Harry will

continue to behave in accordance with his best response function xH(xS) = 12
√
xS−xS

for any given observed choice of xS. Sally, however, will recognize that Harry’s choice

of xH depends on her own choice of xS via the best-response function xH(xS), that is,

instead of taking xH as given, Sally will recognize that xH varies with her own choice xS
according to ∂xH/∂xS = 6/

√
xS − 1. At her optimal choice in the simultaneous move

game, namely xS = 16, this derivative is positive. In other words, if Sally reduced

her choice of xS by 1 ticket, Harry would reduce his number of tickets as well. This

means Sally’s perceived cost of reducing the number of tickets she purchases is lower

than it was previously – she realized that Harry will respond by also reducing his tickets,

thereby not reducing the odds of her winning by as much as if he kept the number of

ticket constant. We would thus expect her to further lower her ticket purchases in the

sequential game. This is indeed what happens. Plugging Harry’s best response into uS,

taking derivatives with respect to xS and simplifying gives xS = 9 < 16. Accordingly,

xH = 27 < 32. The odds of winning have now shifted in Harry’s favour (he is 3 times
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more likely to win) but if you calculate equilibrium utilities, you will notice that Sally

gains more from the sequential nature of the game than does Harry (Why?)

2.∗ A ship of 15 pirates has just claimed a treasure of 100 indivisible gold coins. Their

traditional procedure for dividing the treasure is as follows. The pirates are ordered

by age and then the oldest pirate has the honor of making the first proposal. After

any proposal, all the pirates vote ”Yes” or ”No”. The proposer is allowed to vote as

well. If at least 50% of the votes are in favor, the proposal is adopted and the game

ends. If the proposal is voted down, then the pirate who made the proposal is thrown

overboard to the sharks and then the next oldest pirate is asked to make a proposal.

Ties are broken in favor of the proposal. Coins cannot be divided in fractional units.

Assume throughout that a pirate will never vote for a proposal that gives him 0 coins.

c) No. This is not a repeated game, as the game that is played in t + 1 differs

depending on the choice of the players in t. For example, if the proposal is

adopted in t, the game ends so there is no game in t+ 1.

b) Suppose we reach the point where only two pirates remain and thirteen have

been thrown overboard. At that point, only one pirate needs to vote for the

next proposal in order for it to be adopted. What will be the outcome in this

contingency? Throughout the problem, I denote the pirates by descending age. So

P1 is the oldest, and P15 is the youngest. For simplicity, let’s assume the pirate

making the offer votes in favor of his own proposal (this is weakly dominant, and

does not change the analysis in any meaningful way). A pirate’s strategy includes

whether he votes “yes” or “no” for each possible offer by older pirates, plus the

offer he makes if it gets to be his turn. The backward induction solution is: P14

offers (100,0) and keeps all the money. Pirate 15 votes “no” but ties are decided

in favor of the proposal so the outcome is (100, 0) [Note: P15 can vote “yes” or

“no” (or any mixture of the two) since he is indifferent but remember we assume

a pirate never votes yes for a proposal that gives him nothing.]

c) Now suppose only three pirates remain. Use the answer to (a) to identify the

backward induction outcome in this case. If P13 is thrown overboard, P14 ends

up with 100, and P15 gets 0 from the analysis in part a. P14 weakly prefers

voting“no” regardless of the offer P13 makes (this is only a weak preference,

because if both P13 and P15 vote yes, P14’s vote makes no difference; from here

on out I will assume pirates vote according to their weak preference for simplicity’s

sake. Meanwhile, P15 will vote yes to any offer which gives him at least 1 coin,

since if P13 is thrown overboard, he will get 0. Based on this logic, the backward

induction solution is for P13 to offer (99, 0, 1), and P13 and P15 to vote in

favor of that division.
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d) What will be the backward induction outcome in the game with all 15 pirates

on board? Iterating the logic from above, the backward induction outcome in a

four-pirate game will be (99, 0, 1, 0), with P12 and P14 voting in favor, and

P13 and P15 voting against (all of these are again weak preferences). With 5

pirates: (98, 0, 1, 0, 1). This continues such that the oldest remaining pirate

gives 0 to the second-oldest, 1 to the third-oldest, 0 to the fourth-oldest, 1 to the

fifth-oldest, etc., taking the rest for himself. All pirates who get a positive number

of coins vote in favor, and those getting 0 vote against. This leads to the following

outcome with 15 pirates: (93,0,1,0,1,0,1,0,1,0,1,0,1,0,1).

e) How would the answers to parts (a) through (c) be different if the voting rule is

adjusted slightly so that the proposal requires a majority of the votes (more than

50%) to be adopted? Now the two-player game produces the opposite result: P15

will vote “no” to any proposal, since then he gets to throw P14 overboard and

keep all the coins. Three-player game: P13 now needs P14’s support, and can

get it by offering (99, 1, 0). Four-player game: P12 now needs support of two

other pirates to get more than 50% of the vote. So P12 needs to offer (97,0,2,1).

15 players: (92,0,1,2,0,1,0,1,0,1,0,1,0,0,1) Finally, note that if we instead had

started with with 7 players, there is an arbitrary choice of which pirate to give 2

coins to, resulting in slightly different possible answers. As for part d, we would

still get a range of Nash equilibria, but the division would be (x, 100− x, 0). The

logic is the same in part d above, except we switch P14 and P15.

3.∗ The following problem shows that repeated interaction cannot only solve the prob-

lem of cooperation in prisoner’s dilemma type of situation, but also opens up the

possibility to build a reputation for being ‘tough’.

Reconsider the entry game from class,

and recall that if this game is played only once, the unique SPE (by backward induction)

is (Enter, Share if Enter).
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a) What is the SPE of the repeated game with finitely many periods? Explain!

Solving the game backwards, the Incumbent will always “Share” in the last period

t = T and the Entrant will therefore “Enter”. By the same argument as in the

lecture, the same is then true for t = T − 1, since play tomorrow is independent

of today, and so forth - the unique SPE is (always enter, always share) so entry

occurs in period t = 1.

b)∗∗ Now assume that the game is repeated an infinite number of times. Propose

strategies for both players that could result in Entry being deterred, and show

that — if adopted – these strategies form a SPE in which the Entrant indeed

never enters if both players’ common discount factor satisfies δ ≥ 4
9

(Note: in

order to do this you will have to show that these strategies are optimal for each

history of the game). Give an intuition for this result.

The easiest way to think of this game is a situation in which the Incumbent

is facing an infinite number of potential entrants, one each period. Now, we

already know that if the Incumbent can credibly threaten to fight if the Entrant

enters, the Entrant will stay out. But how can fighting, albeit being costly, still be

credible? The answer must lie in the fact that not fighting (sharing the market) is

“punished” by having the Entrant enter in all subsequent periods. In constructing

the corresponding strategies, though, we have to take good care of the strategies

being sequentially rational at each node of the tree, i.e., for each history of the

game. Let’s see how this works. Consider the following pair of strategies:

Incumbent: Fight entry in the first period and in all subsequent periods, unless

there was market entry in the past and you shared the market. In all other

circumstances, fight.

Entrants: Stay out in the first period and in all subsequent periods unless you

have seen an entry occurring and the Incumbent sharing the market in the past;

in particular, if an entry ever occurred in the past and the incumbent fought,

stay out.

Let’s check when these strategies are optimal for each history of the game. In

period t, there are three broad possibilities for what happened previously. First,

entry never occurred. In this case, if the Incumbent fights entry in t (assuming

entry happens), this will keep entrants out in all subsequent periods given their

strategy. We have:

Vi(fight) = 1 + (δ + δ2 + . . .)10 = 1 +
δ

1− δ
10.

If the Incumbent instead shares the market, entry will occur in all periods t + 1
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onwards. The present value from sharing is thus:

Vi(share) = 5(1 + δ + δ2 + . . .) =
1

1− δ
5.

Fighting is thus better than sharing in t if Vi(fight) > Vi(share) or

1

1− δ
5 < 1 +

δ

1− δ
10 ⇔ δ ≥ 4

9
.

We still have to check whether the strategies are sequentially optimal for the other

possible histories, though! The second possibility is that entry has occurred in the

past and the monopolist fought. In this case, the strategies call for the Incumbent

to fight and for the entrant to stay out. The Incumbent will fight if δ ≥ 4/9 by the

same argument as above, and thus it is rational for the entrants to keep staying

out. Third, entry occurred and the monopolist shared the market. In this case,

the entrants will enter according to their strategy, and the monopolist will share.

This is clearly sequentially rational, if only because it is a SPE of the one-shot

game (and thus continues to be a SPE of the repeated game). The intuition for

the result that entry is now deterred is that there is no last period in this model.

Each period, the Incumbent faces an infinite number of times entry (today and

into the future), which makes fighting optimal given that subsequently, the entrant

won’t enter if the Incumbent fought entry in the past.

c) A different of the game with the same incumbent but a series of entrants in

distinct geographic markets is called Chain Store Game: a monopolist has n

branches in n towns, and plays the Entry Game in each town, with entrants ob-

serving the incumbent’s behaviour in other towns. Assume n is large but finite

– would your answer in a) change? In experiments designed to study actual be-

havior, people rarely play according to the theoretical predictions: incumbents

tend to fight early on and entry is deterred. Can you think of ways to modify

the original game so as to generate equilibria with this property? We can use

backward induction (rollback). Suppose we reach the last town (final round of the

game); the Incumbent will do better to “Share” than to “Fight”. Correctly antic-

ipating the Incumbent’s best response, the nth Entrant will always “Enter”. Note

that this will happen irrespective of the history of the game, i.e., irrespective of

whether the Incumbent has fought entry before or not. Now consider

the second to last town. The Incumbent knows that even if he fights the n − 1th

entrant, he will not be able to deter entry by the nth entrant (as we just argued,

this entrant will always enter) Thus, fighting in the n − 1th city cannot deter

entry in the nth city – the outcome in the nth city is independent of what the

incumbent did previously. As a result, the best response to entry by the n − 1th
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entrant is to share, not to fight. Anticipating this best response, the entrant in

the n − 1th city will “Enter”. Again this is independent of the history up

to that point. Applying this argument to all previous cities (rounds) we arrive

at the unique SPE which has the entrant “Enter” and the Incumbent “Share” in

all n cities. This result is called the Chain Store Paradox, since it is seemingly

counter intuitive: the monopolist should fight in a market (even if that is costly)

given that early aggression could deter entry later. But the problem with the chain

store paradox in the finitely repeated game is that there is a last period in which

the incumbent firm will share the market because its reputation plays no longer a

role. But this essentially makes the second-to-last period the last period, and so

the game unravels. If there is no last period, however, as in the infinite game,

reputation is always important: If the incumbent faces a never-ending stream of

potential entrants, fighting an entrant can be part of the SPE. Another – and

entirely different – possibility is imperfect information on the part of the entrant.

Suppose that from the entrants’ point of view, there is a (possibly very small)

probability that the Incumbent is of a crazy type. Crazy types are not rational

and always fight, even if that’s not a best response. In such a situation, it could

pay a rational Incumbent to fight the first entrant to make all subsequent entrants

believe he is the crazy type. This would give rise to an equilibrium in which entry

is fought with positive probability even if the Incumbent is perfectly rational.
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