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Abstract. We develop a theoretical network-based model of the social network
Twitter, formulating individual interaction as a dynamic game in which heteroge-
nous agents choose a ‘niche’ (a subset of the type space) to tweet in, and whom to
follow. Agents consume tweets close to their own types, and seek to maximize the
number of their followers. Starting from any initial niche with an arbitrary length, we
show that the dynamic Markov process converges to a niche with a finite maximum
length, and this niche contains agent’s own type. We also show that information
does not diffuse as widely as one might expect: although many agents are directly
or indirectly connected to each other, the news does not travel too far since agents
strategically choose what news to tweet or retweet in accordance with their niche,
i.e., they strategically filter information. We also discuss the stable networks that the
dynamic process converges to in equilibrium and show that the star network is never
stable if agents are similar enough, and the only stable network is the bidirectional
full network. In contrast, when agents are further away in the type space, the star
network is the only stable network.

1. Introduction

In the last decade, social media has become a predominant part of our societies,
reshaping the way individuals communicate, interact, share information, coordinate
activities, etc. Both Facebook and Twitter have grown exponentially since they were
founded in 2004 and 2006 respectively. With more than 140 million active users and
over 340 million messages posted per day, Twitter has become one of the most influential
media for spreading and sharing breaking news, personal updates and spontaneous
ideas [Wang et al (2013)]. In Facebook and Twitter, individuals are not just consumers
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of information - as in traditional media - but they actively produce news and content
which could potentially reach a broad group of people very fast. On the other hand, if
they so choose, individuals could be exposed to a wide variety of opinions without too
much effort; in Twitter, all they need to do is follow people with different viewpoints.
By choosing who to follow, or who to be friend with, they choose what to be exposed
to. This creates large degrees of homophily as well as segregation in these networks1.

This paper presents a first attempt to formally model, and shed light on, what kinds
of network configurations arise and how far information diffuses in Twitter, and to study
whether or not the resulting networks are efficient. We develop a theoretical network-
based model of Twitter that is meant to capture the main elements of the interaction on
the network in a stylized way. Heterogenous users choose a ‘niche’ (a subset of the type
space) to tweet in as well as whom to follow in each period. Agents consume tweets
close to their own type and see to maximize the number of their followers. There might
be several reasons for why individuals care about the number of their followers. One
intuitive reason could be related to “status” and “conspicuous consumption”: agents
gain higher status or prestige as more agents follow them. Additionally, in Twitter,
there is no official verification mechanism, so having more followers may signal that
their tweets are more truthful, accurate or interesting. Another plausible reason might
be that Twitter, and networked media in general, is extending the ability of users to
create and receive personalized news streams [Hermida et al (2012)], hence, increasing
users’ influence on a large number of people. Therefore, one might summarize the
utility that users get from content production as an increasing function of the number
of people who get their messages.

We begin our analysis by characterizing the equilibria in the one-shot game, where
agents simultaneously choose their niche and whom to follow. There is no retweeting in
the one-shot game. We show even when the cost of following others is zero, there is an
upper bound on the niche size as well as the number of followers and followings of each
user, and depending on where their niches are, we find a range of equilibrium network
configurations, from a connected network with completely connected components that
exhibits high degrees of homophily, to a collection of bipartite networks with very little
to no homophily at all.

In contrast to the static case, in the dynamic game, retweeting plays an important
role. Retweeting can be seen as rebroadcasting a tweet, that a user received from his
1See, e.g. see Conover (2011) and Halberstam and Knight (2013)



A THEORY OF TWITTER 3

followings, to his followers. It brings new people into a particular thread, inviting them
to engage without directly addressing them [Boyd et al (2010)]. From network per-
spective however, retweets create the shortest path between agents in the network and
provides an avenue to receive indirect benefits from others without directly following
them. As we show, this leads to filtering of information by individuals: users do not
retweet every tweet that they receive, as it could result in losing followers. Therefore,
there is always some friction in diffusion of information through retweets.

Starting from any initial niche with an arbitrary length, we show that the dynamic
Markov process converges to a niche with a maximum length, and this niche contains
agent’s own type. This is specifically true because users find it optimal to retweet in
equilibrium. Retweets are a subset of tweets that users receive from their followings in
the previous periods, and in equilibrium, agents follow others who tweet close their own
type. Therefore, choosing niche further away from own type is equivalent to choosing
not to retweet.

Additionally, we show that information does not diffuse as widely as one might
expect: although many agents are directly or indirectly connected to each other, news
does not travel too far since agents strategically choose what news to tweet or retweet
in accordance with their niche. We also discuss the stable networks that the dynamic
process converges to in equilibrium and show that the star network is never stable if
agents are similar enough, and the only stable network is the bidirectional connected
network with fully connected components. In contrast, when agents are further away in
the type space, the star-like network is the only stable network. We conclude the paper
by characterizing the efficient networks and show that the optimal number of followers
from planners perspective is always greater than individuals’ optimal followers in the
one- shot game. However, in the dynamic game, depending on values of parameters in
the model, planner’s optimal number of followers maybe larger, equal or smaller than
individuals’ optimal choice.

Literature Review. There exists by now a fairly large literature on social networks in
economics, as well as sociology, computer science, physics, etc. Much of the economics
literature is reviewed in Jackson (2010) and Goyal (2009).

The paper in the network formation literature closest to our work is Bala and Goyal
(2000). They present a network formation model where agents choose who to link to
based on the trade off between the cost and benefits. They assume that the cost of
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link formation is only incurred by the individual who initiates the link (hence a nonco-
operative game) and study one-way and two-way flow of benefits. These assumptions
are similar to our model, since in Twitter users choose whom to follow without their
consent and enjoy the benefits of reading their tweets. However, in Twitter, agents
not only consume information, but they also actively produce content and news, and
therefore care about how many people follow them. Therefore, the link formation pro-
cess is not just based on the benefits that agents receive from following others and the
cost of maintaining the links, but also who agents follow, impacts who follows them.
The benchmark model in Bala and Goyal (2000) is frictionless, i.e. they assume that if
two agents are connected (even through several agents), the benefit that they receive
from each other does not depend on the number of intermediaries. They show that in
one-way flow model the only strict Nash networks are the wheel and the empty set.
Their result hold for the dynamic game where agents either show inertia or random-
ize across their optimal strategies. Also, the wheel structure is the efficient network.
However, when they introduce friction, it becomes much more difficult to characterize
Nash equilibria.

In our model, in contrast, agents receive indirect benefit through retweets, which
depends (endogenously) on whom agents follow and what tweets they receive in the
previous periods. Therefore, there is always a degree of friction in Twitter, since indi-
viduals do not retweet everything that they receive from their followings. Additionally,
characterization of the equilibrium networks in the dynamic game with friction is pos-
sible because of the connection between an agent’s followings and followers through
retweets.

The other important papers who study endogenous network formation are Watts
(2003) and Jackson and Wolinsky (1996). Jackson and Wolinsky, study the relation-
ship between stability and efficiency of networks when agents strategically choose who
to form links with and show that the set of efficient and stable networks do not always
coincide. Watts expands Jackson and Wolinsky’s framework to dynamic setting and
shows that the links formation process is path dependent and often converges to inef-
ficient networks. In both of these models, both individuals’ consent is needed for link
formation, but any one of them could severe the link. Also, as in Bala and Goyal’s
model, individuals benefit directly and indirectly from being linked to others. In their
dynamic game, in each period, a link is randomly (with uniform probability) identified.
Agents are myopic and choose to form or severe a link based on that period’s benefits.
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In contrast, in our model, the direct and indirect benefit from others depends on the
endogenous choice of users’ niche.

More recently, there are a few papers studying the impact of social networks on
homophily and segregation. The most relevant paper to our study is an empirical
paper on measuring ideological homophily and segregation on Twitter. Using data
from Twitter, Halberstam and Knight (2013) measure the levels of homophily and
segregation among Twitter users. They find that their constructed network exhibits
significant degrees of homophily, with links more likely to develop between individuals
with similar ideological preferences, resulting in a much more segregated network than
traditional media. They argue that social media may be a force for increasing isolation
and ideological segregation in society.

Another paper that uses Twitter data to study political polarization is the study done
by Conover et al (2011). They investigate how social media impacts the communication
between different political communities and find that the network of political retweets
exhibits a highly segregated partisan structure, with extremely limited connectivity
between left- and right-leaning users. Surprisingly, though, they do not find the same
pattern when they study the network of ‘user-to-user mention’, they see that this
network has a single politically heterogeneous cluster of users in which ideologically-
opposed individuals interact at a much higher rate compared to the network of retweets.
These empirical results are in line with the predictions of our model which states that
users tweet and follow others close to their types. This is particularly the case when
individuals choose to retweet. On one hand, retweeting is profitable, since it creates
shortest path in an environment that either following others is costly or finding worthy
news and information is not easy, but on the other hand, by retweeting, users reveal
their types, as they follow others who tweet close to their type. Therefore, we observe
high degrees of homophily in equilibrium. Additionally, although we do not study
‘user-to-user mentions’ in our model, note that users can mention another individuals
without necessarily following each other. So it is not too surprising that the ‘user-
to-user mention’ network structure is not segregated at all: by mentioning another
individuals, users could actually broadcast their opinion to a very different politically
oriented community, who would not hear their message otherwise.

Tarbush and Teytelboym (2013) also develop a dynamic model of friending in the
online social networks in which agents interact in overlapping social groups. By us-
ing mean-field approximation, they drive closed form analytical expressions for the
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distribution degree and homophily indices. They test and calibrate their model us-
ing Facebook data from 2005 and find empirical support for their model. Golub and
Jackson (2012) also study how homophily affects communication and speed of learn-
ing in networks. An important distinction between these models and ours is that we
do not assume homophily, and even in the one-shot game, we have equilibria without
homophily. However, as discussed earlier, in the dynamic game homophily appears
naturally in all the equilibria.

Finally, there is an extensive literature on Twitter in marketing, computer science
and physics. Much of this literature, however, is concerned with patterns of diffusion
of information and opinion without taking individual incentives into account.2 For
example, Kawamoto (2013) introduces a stochastic model of information diffusion using
a random multiplicative process and justifies the model by observing the statistics
of the multiplicative factors in the Twitter data. Also, Ko et al. (2014) present a
mathematical model to extract the information sharing tendencies on Twitter in the
2012 presidential election in Korea.

The remainder of the paper is organized as following: in Section 2 we present the
model. Section 3 and 4 respectively, are devoted to characterizing the equilibria of the
one-shot as well as the dynamic game. The efficient networks from planner’s perspective
are presented in Section 5, followed by some concluding remarks.

2. The Model

There are n agents in the society N = {1, ..., n} and each has a type θi ∈ T 1,
where T 1 ≡ R1/Z1 is a circle of circumference 1, i.e. θi ∈ [0, 1] where 0 and 1 are the
same points on the circle. An individual’s type θi is a random draw from the uniform
i.i.d distribution of mass 1. This distribution function is known to all the agents. The
parameter θ will determine an individual’s preference for which information to consume
and has many possible interpretations. For example, θ could represent agents’ beliefs
about the state of the world, their political views, their cultural heritage, their physical
location, or simply, their ‘interests’ .

Each individual engaging in Twitter has two basic strategic decisions to make: (1)
whom to follow and (2) what to tweet. We assume agents choose a niche Ai = [xi, xi] ⊆
2See, e.g.,Yang et al (2010), Goel et al (2012), Morales et al (2012), Situngkir (2011), Rui et al (2013),
Hui et al (2010), Libel et al (2009), Bakshy et al (2012), Wu et al (2011).
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[0, 1] in the type space and the news that agents tweet arrive at random in this range:
xi ∈ Ai. Intuitively, this is because users usually tweet about a few topics rather than
only one particular issue. Also news and information may arrive at random times,
for example they may read an interesting article in a magazine or hear about another
related topic on TV. Users choose their niche optimally in equilibrium.

The decision of whom to follow would result in forming directional links, since agents
usually do not need permission to follow others.3 If two agents follow each other, the
link between them would be bi-directional. Throughout the paper we use the following
notation to specify the direction of links:

gij = 1 if i follows j and zero otherwise, i 6= j

gij = gji = 1 if only if j follows i and i follows j, i 6= j

gii = 0 no link between an agent and himself (no loops)
(2.1)

We say there is path of length k + 1 from agent j to i, if there are agents j1, j2, ..., jk

such that gij1 = gj1j2 = ... = gjkj = 1.

There are two main assumptions governing individual behaviour that are maintained
throughout:

Assumption 1. Individual utility from consuming a tweet is higher, the closer the
content of the tweet is to their own type.

Assumption 2. Individual utility is increasing in the number of followers.

The first assumption states that agents would like to read tweets to maximize some
function of (|θi − xj|) where xj is the (content of the) tweet – or retweet – by agent j.
In other words, it posits that agents’ benefit from reading a tweet has a consumption
element, rather than stemming from pure informational content. This is a very natural
assumption in the context of Twitter. While people on Twitter often follow at least
one news media account to obtain current, and largely unfiltered, information about
world or local events, the vast majority of the followings are composed of individuals
whose tweets are limited to certain subjects. Following those individuals restricts
the content of ‘news’ to certain areas of interest, for which assuming a consumption
component seems plausible. Moreover, even in the case of pure informational content,
individuals frequently exhibit a tendency to search for evidence which could confirm
3As exception are locked Twitter accounts, but those are relatively rare and we therefore ignore this
possibility.
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their own beliefs, rather than for evidence which could disconfirm it. This so-called
positive confirmation bias has been well-documented in the psychology and behavioral
economics literature.4

Formally, the utility that i receives from receiving a tweet from j, xj, can be written
as

Vi(θi, xj) =

 −β|θi − xj|+ α if gij = 1,
0 otherwise

(2.2)

where β is a “tolerance parameter” representing an individuals’ tolerance level: as β
increases, agents get more disutility from hearing tweets that are further away from
their own type. The parameter α is the maximum benefit that an individual would
receive from a tweet. Assumption 1 implies that individuals will choose to follow
people who tweet close to their own types, ceteris paribus. To rule out arbitrarily large
followings and capture the congestion effect of “too much” information in one’s news
feed, however, followings come at a cost. Specifically, each person that an individual
choses to follow imposes a (possibly very small) additional cost on that individual,
which we take to be constant and equal to c > 0 for simplicity. The cost of following
others is thus equal to C(∑N

j=1 gij) = c
∑N
j=1 gij.

The second main behavioural assumption we make is that agents obtain utility from
having more followers. As discussed in the Introduction, there is a multitude of reasons
for why individuals would care about the number of their followers. One obvious argu-
ment, for example, would be be that by having more followers, users’ tweets reach more
people, increasing the utility they get from producing content as well as status or pres-
tige. To fix ideas, we posit that this benefit is proportional to the number of followers,
implying that we can write the utility from followers as V (∑N

j=1 gji) = v
∑N
j=1 gji, v > 0.

A direct consequence of Assumption 2 is that an individual chooses his niche Ai, that
is, the range of which to tweet in, in order to maximize the number of followers. For
simplicity, we ignore any potential cost of tweeting (or retweeting) and instead assume
that, once information randomly has arrived in one’s niche, the individual can costlessly
send a tweet (or retweet) containing the content of this information

4See, e.g., Jones and Snudgen (2001) and the references therein. As will become clear below, we
could easily allow for pure informational interests without affecting the qualitative flavour of our
results. What is important is that at least some followings are chosen on the basis of consumption of
information and the benefit of this information being close to one’s own type.
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In what follows, we will first restrict ourselves to a one-shot game where agents
simultaneously choose whom to follow, and what to tweet, in a single period. This
will allow us to understand the basic workings of the model and build intuition. We
subsequently introduce multiple periods, formalizing a dynamic game. In each case, a
pure strategy for an agent (in each period) is to choose a niche and whom to follow:
si = {Ai, ~gi = {gij|gij = 1(if i follows j), gij = 0(otherwise)}} and si ∈ Si ⊂ S where
S = G × T 1 and G is the space of all networks with n agents.

3. Equilibria of Stage game: What if Twitter was only one period?!

In the one-shot game, agents simultaneously choose their niche and whom to follow.
Each agent sends one tweet, which arrives at random (i.i.d.) in his niche Ai. Notice
that in the one period game, there are no retweets. We also assume perfect information.
The utility function of the stage game is:

Ui(θi, Ai, A−i, ~gi) =
N∑
j=1

gij
(
E[−β|θi − xj|+ α]

)

+ v
N∑
j=1

gji − c
N∑
j=1

gij(3.1)

Where ~gi = {j|gij = 1}, Ai = [xi, xi], ωi = |Ai| and xi ∼ Uiid [xi, xi].

The equilibrium concept in this simultaneous move game is Nash equilibrium: agents
play best response to their opponent’s strategies. A strategy si is said to be best
response to s−i if

ui(si, s−i) ≥ ui(s′i, s−i) ∀s′i ∈ Si, s−i ∈ S−i(3.2)

Lemma 1. In any symmetric equilibrium, we have

a) the optimal width of individuals’ niches is ωi = 2(α−c)
β
≤ 2α

β
, where ωi = |Ai|,

b) the maximum number of agents that any individual followings and followers
equals 2(α−c)

β
.
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Proof. First note that the expected benefit that i receives from following j, if θi ≤ xj
or θi ≥ xj, is:

Exj∈[xj ,xj ]
[
− β|θi − xj|+ α

]
= − β

ωj

ˆ xj

xj

|θi − xj|dxj + α

= − β

ωj

∣∣∣θi(xj − xj)− 1
2(x2

j − x2
j)
∣∣∣+ α

= −β
∣∣∣θi − 1

2(xj + xj)
∣∣∣+ α(3.3)

Where ωj = (xj − xj), also note that xj,center = 1
2(xj + xj) is the point in the middle of

Aj. Therefore, we have

Exj∈[xj ,xj ]
[
− β|θi − xj|+ α

]
= −β

∣∣∣θi − xj,center

∣∣∣+ α

⇒ E[Bj] ≥ 0 ⇔
∣∣∣θi − xj,center

∣∣∣ ≤ α

β

In other words, the last individual that would give i nonnegative expected benefit is
an agent whose niche’s middle point is at most α

β
away from θi.

On the other hand, when xj ≤ θi ≤ xj, then the above expectation is

Exj∈[xj ,xj ]
[
− β|θi − xj|+ α

]
= − β

ωj

{ ˆ θi

xj

(θi − xj)dxj +
ˆ xj

θi

(xj − θi)dxj
}

+ α

= − β

ωj

[
(θi − xj,center)2 + 1

4ω
2
j

]
+ α(3.4)

Note that when xj,center = θi, E[Bj] ≥ 0 ⇔ ωj ≤ 4α
β

. In other words, the maximum
niche size for any agent is 4α

β
and if their niche is greater than this threshold, the

expected benefit to any agent from following j is always negative.

Now take agent i, if he follows all the agents j whose niches are such that their
middle points are at most x̄

2 away from θi, his expected utility would be (when c 6= 0):

E[Ui] =
∑
j

gijExj∈[xj ,xj ]
[
− β|θi − xj|+ α

]
+ V (xi(ωi))− cx̄

where xi(ωi) is the number of agents who follow i. Let |θi − xj,center| = xij, be the
distance between agent i and the middle point of niche Aj. Note that in order to get
non-negative expected benefit, xij ≤ α

β
and ωj ≤ 4α

β
, therefore
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E[Ui] = 2
ˆ x̄

2

0

{
− β

ωj

[
(θi − xj,center)2 + 1

4ω
2
j

]
+ α

}
dxij + V (xi(ωi))− cx̄

= 2
ˆ x̄

2

0

{
− β

ωj

[
x2
ij + 1

4ω
2
j

]
+ α

}
dxij + V (xi(ωi))− cx̄

= − βx̄3

12ωj
− βωjx̄

4 + αx̄+ V (xi(ωi))− cx̄(3.5)

Therefore, the first order condition with respect to x̄ is:
∂EUi
∂x̄

= −βx̄
2

4ωj
− βωj

4 + α− c

⇒ ∂EUi
∂x̄

= 0 ⇔ x̄ =
√

4(α− c)ωj
β

− ω2
j

Note that x̄ is the total number of agents that i would follow to maximize his expected
utility. These agents are such that the centre of their niches from θi is less than or
equal to x̄

2 . Since the problem is symmetric, agent i knows that given ωi ≤ 4α
β

, only
agents whose types are ± x̄

2 away from the centre of his niche (xi,center) would follow
him, i.e.

xi(ωi) =
√

4(α− c)ωi
β

− ω2
i(3.6)

After taking the first order derivative of xi(ωi) with respect to ωi, we see that the value
of ωi would maximize the number of i’s followers is:

ωi = 2(α− c)
β

⇒ xi = 2(α− c)
β

(3.7)

which completes the proof.

The results in Lemma 1 states that both the niche size and the number of followings
for each agent is a decreasing function of cost. When c = 0, niche size is 2α

β
. Intuitively

this makes sense, since when |Aj| ≤ 2α
β

, all the agents who are α
β

away from the centre
of the niche will get nonnegative expected benefit from j, i.e. the set of j’s potential
followers with this niche size, if c = 0, is Fj = [xj,center− α

β
, xj,center + α

β
] = [xj, xj] = Aj.

However, when |Aj| = 2α
β

+ ε, agent i who is α
β

away from the centre of Aj, will
get strictly negative expected utility from following j. Therefore, the set of followers
decreases as ωj > 2α

β
, in particular, when |Aj| = 4α

β
, the only individual that would

follow Aj is θi = xj,center. And if |Aj| > 4α
β

, no one would follow j.
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In summary, the set of followings, Fi, and followers, H(i)i, for each agent i is:

Fi = [θi −
α− c
β

, θi + α− c
β

]

Hi = [xi,center −
α− c
β

, xi,center + α− c
β

] = Ai

If c = 0, then the maximum number of followings and followers is 2α
β

, i.e. Fi =
[θi− α

β
, θi + α

β
]. We will refer to this range, [θi− α

β
, θi + α

β
] as the tolerance range, Ti,

of agent i.

Proposition 1. The symmetric static equilibrium is characterized by:

(1) Individuals optimally choose niches of width ωi = 2(α−c)
β
≤ 2α

β
,

(2) Individuals follow others, whose centre of the niche falls within ±α−c
β

of their
own type.

(3) Own niches do not necessarily coincide with the niches of their followings, i.e.
θi may not be in i’s own niche, Ai.

(4) The set of any agents’ followers is the same as agents’ own niche Ai, i.e. indi-
viduals are followed by 2(α−c)

β
other agents,

(5) The range of information that agent i receives from his followings, Ii, is greater
or equal to his tolerance range, Ti, of agents. If c = 0, the range of information
received is twice the tolerance range.

Proof. (1), (2) and (4) directly follow from the previous lemma. (3) is an immediate
consequence of the fact that consuming other tweets and choosing one’s own niche are
two independent actions, that are neither related in the individual utility function, nor
strategically related through equilibrium interactions. To see (5), note that the last
two agents that i follows are those whose niche centre points are θi + α−c

β
and θi− α−c

β
.

Therefore, the range of tweets that i would hear is Ii = [θi − 2(α−c)
β

, θi + 2(α−c)
β

] which
is twice the optimal niche size. When c = 0, Ii = [θi − 2α

β
, θi + 2α

β
] which is twice his

tolerance range. If c = α, then the only person that i would follow is an agent with
centre point of his niche exactly equal to θi, which means that he would only hear
tweets in [θi − α

β
, θi + α

β
], this is equal to i’s tolerance range.

Note that (1) characterizes how wide an optimal niche should be, however, it does
not specify where this niche should be: Ai could be centred around θi or could be
somewhere else on the circle; in particular, (3) implies that multiple (symmetric) equi-
libria can emerge, i.e., there are many possibilities for ‘where’ agents could tweet that
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are consistent with equilibrium. As we will see shortly, this arbitrariness of niche loca-
tions and multiplicity of equilibria is an artefact of the one-shot game, and disappears
once the dynamic nature of interactions, in particularly the fact that individuals can
retweet the tweets of others, is taken into account. We conclude this section with some
straightforward comparative static results:

Corollary 1. The equilibrium niche size and the number of users’ followings and
followers are decreasing in the tolerance parameter β and the cost of following c, and
is increasing in the maximal utility from a tweet, α.

From the discussion above, it is clear that depending on the position of the niche,
different network configurations such as connected network with fully connected com-
ponents as well as a collection of bi-partite networks, etc could be observed in equi-
librium. For instance, assume there are only two types of users: 1, 2 (such that
|θi − θj| > α

β
∀i ∈ 1, j ∈ 2). Assuming symmetric equilibria, all i ∈ 1 could choose

their niche to be centred around their own type and all j ∈ 2 also tweet around their
own type. Therefore, agents of type 1 would follow each other and agents of type 2
would do the same and the network structure would be comprised of two highly con-
nected and isolated islands. However, it is also possible that all the agents of type 1
tweet centred around type 2 and all the type 2 agents tweet around type 1. Then the
resulting network is a directed bi-partite network that type 1’s are connected to type 2
agents and vice versa, but there is no link from type 1’s ( or 2’s) to themselves. The
first network exhibits high degrees of homophily and segregation whereas there is no
segregation in the second network.

4. Dynamic Game

In the dynamic game, there are infinite number of possibly very short periods, t =
1, 2, ..., and agents have discount factor δ. In each period, the one-shot simultaneous
move game is repeated, where individuals can tweet from their niche (one randomly
drawn tweet, as before) or retweet what they heard from their followings in the previous
period. Given that the strategies in every period depends on the previous period, we
define a Markov chain and study the Markov perfect equilibria (MPE).

In MPE, the history of the game is summarized in a state variable that is known
to all the agents at the beginning of every period before they make their decisions. In
this game:
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- the state variable is the set of all tweets from the last period and the identity
of the tweeter, Xt = {xi,t−1 ∀i : set of all tweets in period t− 1},

- the choice (control) variables are (1) what to tweet/retweet, (2) whom to follow:
sit = {Ait, ~git}, with st = st(Xt)

- the state variable evolves according to Xt+1 = Xt+1(st).

Note that Markov strategies defined by the above state variable rule out grim trigger
and other punishment strategies. Since the decisions in each period depends only on
the state variable (all the tweets only from the last period) there are no punishment
strategies such as “i would only follow j in period T , if j follows i for all t < T ,
otherwise, i would unfollow j”, etc.

The Value function for the dynamic problem is:

Vi(X) = max
{Ai,~gi}

{
EUi(Ai, ~gi, Xi) + δV (X ′)

}
(4.1)

s.t. X ′ = X(Ai, ~gi)

EUi =
N∑
j=1

gijE[−β|θi − xj|+ α](1 +
N∑
k=1

pjk +
N∑
k=1

N∑
l=1

pjkpkl + ...)

+ V (
N∑
j=1

gji)− C(
N∑
j=1

gij)(4.2)

pij =

 gij
|Ai

⋂
Aj |

|Ai| if i RT j

0 otherwise
(4.3)

The stage utility function is the same as in the static case with the difference that
we have to account for the benefit from retweets. First, note that, in Twitter, users
could retweet others whom they follow and it is not too difficult to see that they would
do so as long as these tweets are in agent’s own niche. This is because retweeting news
outside of one’s niche is equivalent to having a wider niche, and as argued in the on-
shot game, when the niche width is greater than 2α

β
, the set of user’s potential followers

decreases. This is also consistent with the assumptions that agents choose their niche
and the tweets arrive in their niche. In other words, if i decides to retweet j, the
probability that he receives a retweet-able tweet from j is increasing in the intersection
between his own niche and j’s niche. More explicitly, let Aj = [xj, xj], Ak = [xk, xk]:
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(1) If xj ≤ xk ≤ xj ≤ xk, then

pjk = gjk
|Aj

⋂
Ak|

|Aj|
= xj − xk

= gjk

( 1
ωj

[ (ωj + ωk)
2 − xjk]

)
(4.4)

where ωj,k = |Aj,k| and xjk = |xj,center − xk,center|,
(2) If Aj ⊆ Ak, then pjk = 1,
(3) If xk > xj or xj > xk (i.e. Aj

⋂
Ak = ∅), then pjk = 0.

Therefore, after imposing the symmetric equilibrium condition that ωi = ω ∀i, we
have:

pjk = gjk(1−
x

ω
)

ai = 1 +
N∑
k=1

pjk +
N∑
k=1

N∑
l=1

pjkpkl + ...

Assuming that in equilibrium j follows xj other agents, the above sum in the continuous
space is:

N∑
j=1

pij → 2
ˆ xi

2

0
(1− x

ω
)dx = xi −

x2
i

4ω(4.5)

Similarly

N∑
j=1

N∑
l=1

pijpjl → 2
ˆ xi

2

0
(1− x

ω
)dx× 2

ˆ xj
2

0
(1− x

ω
)dx

= (xi −
x2
i

4ω )(xj −
x2
j

4ω )(4.6)

In the symmetric equilibria xi = xj = x (i.e. each agent would follow N other agents),
the infinite sum becomes:

a = 1 + (x− x2

4ω ) + (x− x2

4ω )2 + ...

= 4ω
x2 + 4ω(1− x) > 1(4.7)

This is true when x < 4ω (note that both x and ω are less than one by assumption).
Note that conditional on ω,

da

dx
≥ 0 ⇔ x ≤ 2ω(4.8)
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Using this intuition, the following lemma argues where in an environment that fol-
lowing others is costly, retweeting is always beneficial for all agents:

Lemma 2. When c > 0, retweeting is optimal for all agents.

Proof. In an environment where following individuals is costly, retweets creates shortest
path between agents, i.e. they could potentially hear tweets from agents who they
don’t follow directly. In other words, agents who retweet provide extra information
and benefit to their followers. This increases their chance of being followed. More
specifically, given that we have assume each agent only tweet once every period (but
retweets as many as he can), the benefit from following i who retweets for any agent k
is:

Brt
ki = E[−β|θk − xi|+ α](1 +

N∑
j=1

pij +
N∑
j=1

N∑
l=1

pijpjl + ...)(4.9)

The first term in the parenthesis is the direct benefit from i’s own tweet and the other
terms are the indirect benefit from retweet received from i’s followings through i. It is
easy to see that Brt

ki is greater or equal to the benefit received from i when he does not
retweet:

Brt
ki ≥ Bno rt

ki = E[−β|θk − xi|+ α](4.10)

More formally, assume that we are in an equilibrium such that each agent is following
m = 2(α−c)

β
agents (who tweet close to their own types). Starting from an equilibrium

that no one retweets, assume that with some positive probability i deviates and retweets
tweets that he received in the previous period from his following in period t (as long as
these retweets are in his niche). Therefore, the benefit that he provides for his followers
is greater than other agents. Now, if k was following j such that θj = θi ± ε, then k

would unfollow j and follow i in this period, since k would hear both i’s tweet as well
as j’s tweet from i as retweets with a very high probability (in fact, i retweets all of
his followings with a probability proportional to the intersection between their niches),
while he is only incurring the cost of following one agent. In other words, all agents
who are close to i would lose all their followers to i in the next period. Therefore, by
this deviation, i increases his probability of being followed. Hence, this is a profitable
deviation for i and by symmetry all agents finds it beneficial to deviate and retweet as
well.
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Intuitively, in a costly environment, retweeting provides a costless way of transmit-
ting information through creating a shortest path. Retweeting provides several benefits
to agents: by retweeting one of his followings, i not only spreads that particular tweet
to his followers, but he also introduces his followings to his followers, increasing the
probability that the agent who created the original tweet is followed by i’s followers
(who may not know him before). However, the important point is that, by retweeting,
each agent creates a shortest path from and to other agents, this increases his own
probability of being followed in the first place.

Lemma 3. The optimal niche width and the number of agents’ followings in the dy-
namic game is greater than the one-shot game.

Proof. Recall that the optimal niche width and number of followings in the one-shot
game were 2(α−c)

β
. Now starting from this equilibrium, assume that j is the last agent

that i follows to his left. If i deviates and follows the marginal agent j̄ such that
θj̄ = θj− ε, then he has more tweets to retweet in the next period than other users and
therefore, as before, all individuals who were following k such that θk = θi − ε, would
unfollow k and follow i. This change in i’s utility is strictly positive due to envelope
theorem. Since as ε→ 0, the marginal cost of following the marginal agent is equal to
the marginal benefit at xi = 2(α−c)

β
, but there is positive increase in the number of i’s

followers.

Formally, starting from a MPE, where agents niche is such that Ai ⊂ Ii, and they
follow θj ∈ Fi = [θi, θi] ⊆ [θi − α

β
, θi + α

β
] ∀i. Now assume i deviates and follows j

such that θj = θi − ε. Note that by following j, i does not loose any followers, since
he always filters which tweets to retweet in the following periods. However now, since
he is following a marginal agent (even at a marginal cost), he could retweet j’s tweets
with probability:

pij = |Ai
⋂
Aj|

|Ai|

= 1− xij
ω
≥ 0 ⇔ xij ≤ ω(4.11)

Put differently, as long as the distance between i and j is less than the niche width,
i could retweet j with positive probability. Therefore, the expected utility of i from
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following all the agents in [θi, θi] (before deviation) is:

Ui = 1
1− δ

{ ˆ θi

θi

(aE[−β|θi − xj|+ α])dθj + V (
∑
j

gji)− C(N̄)
}

(4.12)

where N̄ = ∑
j gij = (θi− θi) is number of agents that i follows, and a is the additional

benefit from retweets (equation 4.7):

a = 4ω
x2 + 4ω(1− x) > 1

where conditional on ω,
da

dx
≥ 0 ⇔ x ≤ 2ω

This means that starting from a symmetric equilibrium where agents follow x agents
with niche size ω, where x ≤ 2ω, if i deviates and increase the number of his followings
from x → x + ε, then there is strictly positive increase in the number of his followers
because of the extra benefit (more retweets) he is providing that no one else is (all
agents close to i (i.e. θi + ε) are going to lose their followers to agent i):

(1− δ)dUi|x̄ = E[−β|θi − xj|+ α]dθj + vε− cdθj(4.13)

Using the envelope theorem, dUi|x̄ = vε > 0. Hence, it is a profitable deviation to
follow more agents than the one-shot game, regardless of the cost of following others.

The same argument is true when i deviates from the one-shot equilibrium niche and
increases it by ε. This is because by doing so, he increases the probability of retweets
(since he increases the intersection of his niche with his followings’ niche) and hence,
in expectation, increases his number of followers.

Proposition 2. Assuming uniform iid distribution of types, if v > c, then in every
symmetric MPE:

a) The optimal width of agent’s niche is ωi ≤ 2α
β

,
b) Individuals niche includes their own type: θi ∈ Ai,
c) The optimal (maximum) number of followers and followings of any individual

is equal to 2ω (which exceeds the static case) and these two sets coincide.

Proof. Let us start from a MPE where agents do not tweet around their own type.
However, all agents always follow others who tweet close to their type: Fi ⊆ [θi −
α
β
, θi + α

β
] ∀i, therefore, all the tweets that i receives from his followings are maximum



A THEORY OF TWITTER 19

(when c = 0) 2α
β

away from θi:

xj ∈ [θi −
2α
β
, θi + 2α

β
] = Ii

Where Ii is the information set of agent i. If, in this MPE, Ai is such that xj /∈ Ai ∀xj,
then no one retweets (since by assumption agents only retweets tweets that are in Ai).
However, if i deviates and chooses his niche to be around his own type (Ai ⊂ Ii), he
maximizes the probability of having retweet-able tweets in the following periods. And
from lemma 2, we know that retweeting is optimal, i.e. there is a profitable deviation
from the original MPE for all agents. Note that this is regardless of cost of following
other users.

Additionally, from Lemma 3, we know that users find it profitable to follow more
individuals than in the one-shot game. In fact, when v > c, the benefit of following
the marginal agent is always greater than the marginal cost, therefore, users have
incentive to follow all the agents up to θj = θi ± ω whose niche intersection with i is
just a point. The intersection between i’s niche with any agent who is θj + ε is the
empty set (following agents beyond this point only decreases his own benefit without
providing any retweet-able tweets for i). Therefore, the maximum number of agents
that i would follow is x = 2ω which maximizes a (equation 4.8). Although following
others is costly, at the margin, there is always a strictly positive increase in the number
of followers as a result of following the marginal agents.

Therefore, in symmetric equilibria, all the agents find it profitable to deviate from
the static equilibrium and follow more agents. So each agent would follow all the
agents that are ±ω away from his type and also is followed by the very same group
of individuals. In other words, the set of followings and followers of any agent is the
same and is more than the number in the static equilibrium.

Similarly, in Lemma 3 we argued that agents have incentive to increase their niche
because as their niche increase, the intersection of niches also increases, which in turn
increases the probability of retweeting. However, if i increases his niche to ωi >

2α
β

,
even the agent whose type is at the centre of this niche will get lower expected utility
from following i, which means that all the other agents who are following i also get
lower expected benefit if ωi > 2α

β
. As before, because of symmetry, the optimal niche

size is ω ≤ 2α
β

(with equality when c = 0) for all agents.
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Note that earlier, we argued that agents choose their niche Ai ⊂ Ii = [θi− 2α
β
, θi+ 2α

β
]

to maximize the probability of having retweet-able tweets, and also since agents follows
other to receive tweets closest to his type, therefore, his retweets would also be closest
to his type and combined with |Ai| ≤ 2α

β
, θi ∈ Ai would maximize the probability of

retweeting. When c = 0, agents’ niche is 2α
β

and they follow ±2α
β

other agents around
their own type, i.e. total number of everyone’s followings is 4α

β
.

In summary, although individuals follow more agents than in the static case, each
agent filters the informations for their followers. Because of the niche size, agents who
are close in the type space (i.e. maximum ±α

β
away from each other) receive positive

utility from hearing each others’ tweets and they give and receive additional beneficial
information through retweets. However, when v > c, agents follow others further away
and hear tweets farther away from their type, but they the only retweet ones that are
in their niche. This results in a Rat Race, where agents follow others whose tweets
they dislike, only for the small chance that they may say something once in a while
that is retweet-able. In other words, individuals follow others not for the benefit from
the tweets, but because of the fear of under providing information and losing followers
when everyone else is following more agents.

Corollary 2. Since the set of followers and followings of any agent coincide, the
links between individuals are bi-directional.

Proposition 3. The stable equilibrium networks are either full, star or line networks,
depending on the distance between agents in the type space.

• ∀θi, θj such that |θi − θj| ≤ 2α
β

, the stable network is the full network regardless
of the cost of link formation.
• However, if i, j are such that 2α

β
< |θi − θj| ≤ 4α

β
, then there is no direct link

between i, j and the only stable structure between such agents is a bi-directional
star with the centre agent k such that max{|θi − θk|, |θj − θk|} ≤ 2α

β
.

• Finally, if i, j are such that |θi − θj| > 4α
β

, then there is a bi-directional path
from i to j, such that the distance between any two adjacent individuals on this
path is less than 2α

β
.

Proof. We already argued that the links between agents are bidirectional. And since
the set of followers and followings for any individual coincide, the stable network is
a completely connected network with individuals whose distances in the type space is
less than or equal to 2α

β
. Note that this is regardless of the cost of link formation.
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If individuals are father away in the type space, i.e. 2α
β
< |θi − θj| ≤ 4α

β
, they would

not follow each other directly, however, in the type space there is at least an agent k
between i and j that both i, j follow k and k follows them. In fact every agent follows
(and is being followed) by agents that do not follow each other directly, and therefore,
are centres of a star network.

Finally, if the distance between agents is greater than 4α
β

, there are l1, l2, ..., lk agents
such that max{|θi − θl1 |, |θl1 − θl2|, ..., |θlk−1 − θlk |, |θlk − θj|} = 2α

β
, i.e. there is a

bidirectional path of length k + 1 between i, j that defines the line network.

Note that this result is different from the standard network equilibria where the
structure of the network depends on the cost and benefit parameters [Bloch and Jackson
(2007)]. Here, we see full networks not because of the high benefit from following other
agents or because of low costs of link formation. But rather because of the fear of under
providing information and being unfollowed by others. For example, in this scenario,
star or circle are never stable when the agents’ types are close enough.

In summary, we find that by moving from static setup to the dynamic environment,
the set of Nash equilibria shrinks considerably, i.e. we do not see equilibria that agents
tweet far from their own type. This findings sheds light on why individuals on Twitter
develop an ‘expertise’, that is, a range of subjects on which they tweet which not
only is limited to a generally relatively number of subjects, but also contains their
own are of interest. Of course, another straightforward reason for why one’s area of
interest coincides with the content of one’s tweets is that when information acquisition
is costly (contrary to what we have assumed), the relative cost of obtaining information
to pass on in a tweet is lower for information that one would have gathered anyway
out of a consumption motive. Our analysis highlights, however, that this argument
can be applied to one’s followings, and the corresponding retweets, as well. If following
someone is costly, then the benefits of gathering information from that individual’s
tweets are amplified by being able to retweet them. The latter requires that one’s tweet
niche overlaps with one’s preferences and will, as a result, generally counterbalance any
inceptive to tweet in ‘popular’ niches as opposed to an idiosyncratic niche close to one’s
own interests.

Furthermore, the set of followers and followings coincide and we see only bidirectional
links between connected agents. In this environment, the only stable structures are
full, star or line networks, depending on the distance between agents in the type space.
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We do not observe bipartite or circle networks, also star is never stable when agents
are close in the type space. These results hold irrespective of the cost of following other
individuals.

5. Efficient Network from Planner’s Perspective

In the one period game, there are two sources of inefficiencies. When individuals
are choosing whom to follow, they only consider their own benefit from others’ tweets,
and not the positive utility gain from having followers for the other agents. At the
same time, when agents are choosing their niche, they only care about maximizing the
number of their followers and do not take into account the benefit that their followers
receive from their tweets. To see this more formally, let Bij denote the benefit that i
receives from the tweets of individual j and consider a small increase in the width of
j’s niche. From equations (3.3) and (3.4) we have for types θi /∈ Aj,

θi /∈ Aj ⇒ Bij = Exj∈[xj ,xj ]
[
− β|θi − xj|+ α

]
= −β

∣∣∣θi − xj,center

∣∣∣+ α

⇒ dBij

dωj
= 0,

whereas for θi ∈ Aj, we have

θi ∈ Aj ⇒ Bij = Exj∈[xj ,xj ]
[
− β|θi − xj|+ α

]
= − β

ωj

[
(θi − xj,center)2 + 1

4ω
2
j

]
+ α

⇒ dBij

dωj
= β

ω2
j

(x2
ij −

ω2
i

4 )

It is easy to see that when 2xij ≤ ωj (xij = |θi − xj,center|), which is the case in
equilibrium, then dBij

dωj
≤ 0. In other words, increasing the width of one’s niche has a

negative effect on the followers, while decreasing the niche has a positive effect as long
as θi ∈ Ai. When θi /∈ Aj, the change in the niche has no effect on the agent. Note
that no agent would follow another individual if the distance between his type and the
centre of their niche is greater than α

β
.

To characterize the extent of these inefficiencies, in this sub-section we contrast
these results by the solutions to a planner’s problem. Specifically, we now set up the
problem from a planner’s perspective and characterize the optimal solution assuming
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this planner chooses both the niche size as well as number of followings and followers
to maximize the overall expected utility. We also focus on the symmetric equilibria.
The overall expected utility in this network is:

max
{x,ω}

N∑
i=1

EUi = max
{x,ω}

N∑
i=1

(
− βx3

12ω −
βωx

4 + αx+ vx− cx
)

=
N∑
i=1

max
{x,ω}

(
− βx3

12ω −
βωx

4 + αx+ vx− cx
)

(5.1)

Where x is the number of followings and followers of any agents in the symmetric
equilibria. By taking the first order condition with respect to x, we have:

∂EUi
∂x

= 0 ⇔ xe =
√

4(α + v − c)ωi
β

− ω2
i(5.2)

In other word, conditional on ω, planner always chooses xe > xi, this is because of
considering the added benefit from having followers. On the other hand, the first order
condition with respect to ω at the equilibrium xe is:

∂EUi
∂ω

= 0 ⇔ βxe3

3ω2 − βx
e = 0

⇔ xe =
√

3ωe(5.3)

After substituting equation (5.3) in (5.2), we have:

xe =
√

3(α + v − c)
β

ωe = α + v − c
β

(5.4)

Now it is easy to see, when for example c = 0, if v > α, then ωe > ωi and xe > xi, i.e.
planner chooses wider niches for agents, but also chooses more followers for each agent
as well.

In the dynamic game, the planner faces the following maximization:

max
{x,ω}

N∑
i=1

EUi =
N∑
i=1

max
{x,ω}

( 4ω
x2 + 4ω(1− x)

[
− βx3

12ω −
βωx

4 + αx
]

+ (v − c)x
)

(5.5)

The first order conditions of the above equation are of order 4, so we use mathematica
to plot dEUi

dx
when dU

dω
= 0, to draw some conclusions. Comparing figure 1 and 2, we

see that holding all other parameters constant, the optimal number of followers from
planner’s perspective in both static and dynamic game is a decreasing functions of c
and an increasing function of v in both dynamic and one-shot game. (To Be completed)
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Figure 1. Top: β = 5, α = 1, c = 0.5, v = 1
Bottom: β = 5, α = 1, c = 0.5, v = 1.13
Red line is 2α

β
point, Green: Decentralized one-shot game solution,

Brown: Planner’s one-shot game solution, Blue: crosses zero at plan-
ner’s dynamic game solution, Black line is 4α

β
point.

For middle ranges of c, number of followers in the one shot game is
less than 2α

β
, whereas planners chooses a number larger than 2α

β
. Both

planner’s dynamic and static solutions are increasing with v.
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Figure 2. Top: β = 5, α = 1, c = 0.02, v = 0.85
Bottom: β = 5, α = 1, c = 0.02, v = 0.62
Red line is 2α

β
point, Green: Decentralized one-shot game solution,

Brown: Planner’s one-shot game solution, Blue: crosses zero at plan-
ner’s dynamic game solution, Black line is 4α

β
point.

When c = 0, the number of agents followers is equal to 2α
β

, but number
of followers in the planners problem both in the one-shot game and the
dynamic game depends on v: number of followers in both static and
dynamic problem increases as v increase.
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6. conclusion

We formulated a theoretical framework to study the network configurations that
arise in Twitter. We showed that when following other users is costly, retweets play an
important role in creating shortest path in the network and as a result agents choose
their niche to include their own type. We also showed that even when the cost of
following is zero, there is an upper bound on the niche width as well as the number
of agents that each user follows. Additionally, when v > c, agents follow others whose
tweets they dislike, only for the small chance that they may say something once in
a while that is retweet-able. In other words, individuals follow others not for the
benefit from the tweets, but because of the fear of under providing information and
losing followers when everyone else is following more agents. We also characterized the
network configurations that would form in the Markov perfect equilibria: When users
are close enough in the type space, the only stable network is a connected network
with fully connected components, however, when agents are further away in the type
space, star-like networks become stable. Circle network is never stable.

Finally, we contrasted our results with the planner’s problem, and discussed two
sources of inefficiency in the network. We show that the optimal number of followers
from planners perspective is always greater than individuals’ optimal followers in the
one-shot game. However, in the dynamic game, depending on values of parameters in
the model, planner’s optimal number of followers maybe larger, equal or smaller than
individuals’ optimal choice.
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