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Abstract

We construct a social network model of criminal activity. Agents’ payoffs depend on
the number and the structure of their connections with each other and are determined in
a Nash equilibrium of a crime activity supply game. Unlike much of the literature which
takes the network structure as given, we study optimal networks, defined as the networks
that maximize the sum of agents’ payoffs. We characterize the Nash equilibrium in crime
activity and use our theoretical results to identify the optimal network for given cost
and benefit parameters using an algorithm that searches over all possible non-isomorphic
graphs of given size. We also analyze, via simulations, the effects of different anti-crime
policies (both expected and unexpected) on the optimal crime network structure and the
overall crime level – removing agents, removing links, and/or varying the probability of
apprehension.
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1 Introduction

Recently there has been considerable theoretical work as well as emerging empirical studies
integrating social networks, defined as graphs with nodes being economic agents and edges
being various links connecting them, into economic models (Jackson, 2003, 2004, 2006, 2007,
2008). Various economic applications have benefited from this approach, including studies
of delinquency, crime, prisons, job search, social norms, human capital investment and social
mobility, among many others. However, much of the research on networks in economic contexts
continues the tradition from sociology and psychology and takes networks as exogenously given.1

Clearly some social networks are and should be treated as exogenous to the actor’s decision
process. For example, one does not choose one’s relatives or kin relations and such fixed social
relationships have been important applications of network theory. In principle, however, there is
no reason why the network structure itself should not be part of the decisions made by economic
agents. Our approach here is to model the network structure as endogenously emerging from
solving an optimization problem.

Specifically, we develop a formal social network model of criminal activity. Social networks
are more relevant in situations in which markets fail, for example as a consequence of high
transaction costs caused by asymmetric information, limited enforcement, externalities and the
like. Crime is a prime example of an economic activity conducted in such environment – illegal
organizations cannot rely on formal means of enforcing contracts or sharing information, thus
costly alternative mechanisms for performing their activities must be used. Informal institutions
based on inter-personal interaction such as social networks naturally provide such a mechanism.

In our model, the agents’ payoffs (net incomes) depend on the number and structure of the
links connecting them. These links can be viewed as information channels, indicators of the
agents’ ability to meet or work together, and the like. Importantly, the agents’ payoffs also
depend on an individually chosen action – the level of “crime effort” supplied by each criminal
network member. We assume that these crime efforts are determined in a Nash equilibrium
of a simultaneous move game. We then analyze the optimal network structure – that is, the
patterns of links among agents that maximize the aggregate payoff of the networked agents, as
well as the associated total crime level.

On the theory side, our analysis sheds light on the following questions. What conditions
ensure the existence or uniqueness of Nash equilibrium in the crime effort choice game? Is the
equilibrium interior or features ‘corners’, that is, idle agents supplying zero effort? For given
cost and benefit parameter values for which a Nash equilibrium exists, what network structures
maximize total payoff and what is the associated criminal activity level?

We first derive theoretical results that guarantee the existence and uniqueness of Nash
equilibria for interior and corner solutions in effort choice. We obtain these results using a
potential function associated with individual payoffs.2 We show that, as long as the parameter
that controls the strength of congestion in the network is greater or equal to the parameter
that determines the positive effect of being connected to other agents, there exists a Nash

1There is a small literature that considers network choice, e.g., Hojman and Szeidl (2006) look at dyadic
decisions that lead to an equilibrium network.

2We borrow and adapt to our setting techniques from Bramoullé, Kranton and D’Amours (2011).
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equilibrium. We also show that equilibrium uniqueness depends on the relative strength of the
costs and benefits of being in the network and the minimum eigenvalue of a matrix derived
from the network adjacency matrix.

We then characterize the equilibrium total crime effort and total payoff. We prove that in our
setting the individual equilibrium payoff is quadratic in the optimal effort level and that agents
who exert zero effort in equilibrium are linked to agents who supply less effort in comparison to
the neighbors of an agent with positive effort in equilibrium. We also compare the individual
(Nash) effort choice problem with the corresponding planner’s problem and prove that the full
network (completely connected) maximizes both the total crime level and the overall payoff if
the planner maximizes the sum of payoffs. This is not the case in Nash equilibrium where the
total payoff may be maximized for a different network structure.

Analytically, we model an N -member network. Each of the N agents has a payoff function,
Ui representing the net benefit (“income” net of costs) that the agent obtains from interacting
with others. The network structure, G is a crucial determinant of an agent’s benefits and costs.
In our application to criminal networks we assume that an agent’s payoff depends on: (i) the
level of criminal activity (“effort”) an agent performs, ei and (ii) the number of connections
(links) he has with other agents. The number and pattern of links affects on the one hand the
income (benefit) of an agent (e.g., through cooperation) and, on the other hand, his costs (e.g.,
by raising the probability of apprehension). The total amount of crime activity is determined
in Nash equilibrium whereby each agent i = 1, ..., N simultaneously chooses his effort level, ei,
taking the efforts of all other network members, ej, j 6= i as given.

Unlike much of the literature which takes the network structure as given, to find the opti-
mal (joint-payoff maximizing) network we use a computational algorithm developed in applied
mathematics (see Appendix 1) to search over all possible non-isomorphic graphs of given size,
that is, all networks that cannot be obtained from each other by relabeling the nodes. It be-
comes computationally infeasible very quickly to search over all possible networks of given size
without focusing on non-isomorphic networks. Finding all such networks (also known as ‘simple
graphs’) is a complex combinatorial problem for which no algorithm to solve it for any N exists.3

The problem has been solved, however, for small network sizes (N = 2 to N = 11 players).4

We use the computed solution data – that is, the list of all non-isomorphic networks of a given
size, as an input to our search algorithm. For each non-isomorphic network and set of model
parameters for which a Nash equilibrium in crime efforts exists, we compute the individual and
aggregate crime and payoff levels. We then use this information to find the optimal network,
defined as the aggregate payoff maximizing network among all non-isomorphic networks of size
N) for a large representative set of model parameters. We analyze the structure of the optimal
network and associated crime levels as the cost and benefit structural parameters vary as well
as the frequency with which various structures emerge as optimal.

Finally, we use the numerical simulations data described above to assess the relative effec-
tiveness of various possible crime-reducing policies: removing players, removing links, and/or

3In fact, this problem belongs to its own class in complexity theory called ‘graph isomorphism complete’ and
is thought to be non-verifiable in non-deterministic polynomial time (NP-complete) – see Skiena (1981).

4See McKay (1981) for an early algorithm description as well as B. McKay’s webpage:
http://cs.anu.edu.au/people/bdm/
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varying the probability of apprehension. We look at the effect of these policies on the optimal
network and answer the following questions. For a particular network structure, what consti-
tutes the optimal crime deterrence policy? How does the optimal network structure respond
to the crime prevention technique used? Conversely, given a particular deterrence policy, what
is the optimal network structure that arises to minimize the damage to the criminal network
inflicted by the policy? What structures and crime levels emerge as the joint outcome of trying
to find the most effective policy and the criminal network most robust to damage given that
policy? The results indicate that in many cases the optimal structures are special networks
identified in the theoretical literature: the “line”, the “wheel”, the “star” and the “complete”
network (Bala and Goyal, 2000). We also find evidence of the optimality of “cell” type struc-
tures. The policy analysis is able to take into account the optimal network structure emerging
as a result of an announced policy, both in the short run holding the network as fixed, and in
the long run when the network can be re-optimized.

Related literature
The role of networks in organized crime has begun to be studied by criminologists – e.g., see

Sarnecki (2001), Bruinsma and Bernasco (2004). Kenny (2007) reviews the recent literature.
Other areas of crime have also benefited from more explicit use of network theory, including
human trafficking, crime groups formed by youth, and drug distribution (Hughes, 2000; Coles,
2001; Frank, 2001 and Hoffer, 2002). The events of September 11 and the discovery of the “cell”-
type network structure of Al Qaeda have spawned policy work devoted to combating terrorist
networks (for example, Carley et al., 2001; Krebs, 2001; Raab and Milward, 2003). Kenny
(2007) reviews much of the criminology literature that uses some form of network analysis.
Easton and Karaivanov (2009) provide a non-technical version of the model studied here and
give some simple examples of policy applications.

In economics, Ballester, Calvo-Armengol and Zenou (2004) (hereafter, BCZ) provide one
of the first economic treatments of crime networks. They concentrate on identifying the ‘key
player’ in a given network – that is, the agent whose removal leads to the greatest decline in
criminal activity. While our approach borrows from BCZ (2004), we adopt different assumptions
about how the agents’ costs and benefits depend on the network structure and total effort
level. Additionally, in contrast to BCZ we do not take the network structure as exogenous but
optimize over all possible networks of a given size, as well as across different sizes. Furthermore,
we analyze and compare the effects of various alternative crime prevention policies in addition
to the “removal of key player” policy.

The paper is organized as follows. Section 2 describes the basic theoretical model. In Section
3, we introduce the potential function and derive necessary and sufficient conditions for existence
and uniqueness of Nash equilibria in crime effort. Section 4 discusses various properties of the
equilibrium and the associated crime networks, including results that we derive by comparing
the Nash equilibrium effort choice problem to a planner’s problem. In Section 5 we motivate
and discuss how our theoretical setting can be used to study optimal criminal networks and the
crime level under alternative crime-deterring policy environments. Section 6 concludes.
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2 The Model

2.1 Basics

There are N agents whose interaction we model as a social network (graph): a set of nodes
representing individual agents (players) and the links between them. We assume that all links
are bidirectional, so that if player i is connected to player j, then the reverse is also true. The
network structure can be fully summarized by its ‘adjacency matrix’, G – an N -by-N matrix
with zeros on the main diagonal (by convention) and elements, gij equal to 1 if players i and
j are connected and 0 otherwise. The assumed bidirectional links implies that the matrix G is
symmetric.

For a given network structure G, each agent, i = 1, ..., N decides on the level of criminal
activity (hereafter, “effort”), ei ≥ 0 to supply in order to maximize his payoff (benefits minus
costs). The crime efforts are chosen by all agents simultaneously and non-cooperatively, in
a Nash equilibrium (see Section ?? in which we study the cooperative game). We assume
a quadratic form for the benefit and cost functions, similarly to BCZ (2004). This results
in a linear system of equations to be solved for the equilibrium crime levels. An important
difference with BCZ is that we assume that benefits from criminal activity increase in the
number of connections an agent has to others, while the total amount of crime, that is the sum
of crime efforts, creates a congestion effect which raises one’s costs of being in the network(for
example, because of greater likelihood of being detected or harder to find opportunities for
crime).5 In addition, we also allow for costs of maintaining a link between agents and for a
‘standalone’ cost of effort, independent of other’s actions.

Specifically, let agent i’s payoff, Ui (which can be thought of as utility or net income) be
given by:

Ui(G, e) = yi(G, e)− ci(G, e)

where:

yi(G, e) = ei(1 + γ
N∑
j=1

gijej)

and

ci(G, e) = ei(π + λ

N∑
j=1

ej + δ

N∑
j=1

gij)

and where e denotes the vector of the agents’ efforts, e ≡ (e1, ..., eN).
The parameter γ ≥ 0 determines the strength of the benefit from having links (gij = 1)

with other agents, while the parameter λ ≥ 0 determines the strength of the ‘congestion’ effect
from aggregate crime activity. We allow for the possibility of costly link maintenance through
the parameter δ ≥ 0. The parameter π ∈ [0, 1) is the standalone cost of unit of effort.

The optimal effort choices e∗i for all i = 1, ...N are determined in a Nash equilibrium whereby
each agent maximizes his payoff Ui taking the other agents’ effort levels as given and subject

5In contrast, BCZ (2004) assume that individual benefits increase in the total amount of crime while indi-
vidual costs decrease in the number of connections to other criminals.
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to the non-negativity constraints ei ≥ 0. The resulting first order conditions (best response
equations), in matrix form, are:6

[β1I− φ2G]1−[(J + I)φ1 −G]e ≤ 0 with equality if ei > 0 (1)

where φ1 ≡ λ
γ
, φ2 ≡ δ

γ
, β1 ≡ 1−π

γ
and where 1 is a N -by-1 vector of ones, I is the N -by-N

identity matrix and J is an N -by-N matrix of ones. Since Ui are strictly concave in ei the
first-order conditions (1) are necessary and sufficient for optimum.

Definition 1.

A Nash equilibrium (NE) is a vector of crime efforts, e = (e1, ..., eN) such that (1)
hold for all i = 1, ..., N . We call a NE ‘interior’ if ei > 0 for all i. A NE is called
‘corner’ if ei = 0 for at least one i = 1, ..., N .

In the interior NE case, equations (1) form a linear system the solution of which (when it
exists) is the equilibrium vector of crime levels.7 Clearly, as long as det((J + I)φ1 − G) 6= 0
which happens on a set of Lebesgue measure zero, Z, the system

[β1I− φ2G]1−[(J + I)φ1 −G]e = 0 (2)

has a unique solution. Note that β1I − φ2G 6= 0 since β1 > 0 and since the diagonal elements
of G are zero. We assume φ1 /∈ Z. Using arguments similar to those in Proposition 1 in BCZ
(2004), it is easy to show that if φ1 /∈ Z is large enough and if φ2 is small enough, the system
(2) has a solution consisting of strictly positive ei for all i. BCZ (2004) restrict attention only
to parametrizations which satisfy these conditions.

In general, however, there is no guarantee that a NE defined by (1) is interior. We thus
analyze a more general class of equilibria (or parameter configurations), only requiring that
agents’ efforts be non-negative instead of strictly positive (that is, we allow corner solutions of
the best response equations). In words, given the crime efforts chosen by everyone else, in a
NE agent i should have no incentive to vary his effort, unless he is constrained, in which case
he might like to reduce ei but this is infeasible. Because of the non-negativity constraints one
cannot find the equilibrium choices e∗i by simply solving the linear system (2). We therefore
adopt a different approach, based on quadratic programming, which allows us to obtain all
Nash equilibria for a wider range of parameter values for which a non-negative solution to (1)
exists.8 The full details are presented in Appendix 2.

2.2 Existence of equilibrium

To characterize the Nash equilibria (NE) in crime efforts, we initially focus on the case δ = 0,
that is, when there are no link maintenance costs. We relax this assumption for some results

6The inequality sign is interpreted element by element.
7Appendix 2 shows an example for N = 4.
8In the numerical simulations we first solve the system (2) ignoring the non-negativity constraints, and if we

have negative ei we switch to the (computationally slower) quadratic programming approach from Appendix 2.
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later on, as indicated. In the following analysis of existence and uniqueness of NE we draw
upon some results by Bramoullé, Kranton and D’Amours (2011) (hereafter, BKD).

Given δ = 0 we can write the individual payoff function as,

Ui(G, e) = ei(1− π)− λ
N∑
j=1

eiej + γ

N∑
j=1

gijeiej

From the first order conditions (1), the optimal effort level of agent i given the efforts of others,
ej satisfies:

ei = max{0, β − φ
N∑
j=1

aijej}.

where β ≡ 1−π
2λ

, φ ≡ γ
2λ

and where {aij}Ni,j=1 are the elements of the N -by-N matrix

A =
[λ
γ

(J− I)−G
]
.

Normalizing all efforts e by β 6= 0 by calling ê = e
β
, the following must hold in a NE:

êi = fi(e,A) ≡ max{0, 1− φ
N∑
j=1

aij êj} for all i = 1, ..., N (3)

Therefore, when δ = 0, a Nash equilibrium is a vector of efforts, ê which satisfies êi = fi(ê,A)
for all i = 1, ..., N .

To interpret the best response functions (3), look closer at the elements of the matrix A,
aij = λ

γ
− 1 if gij = 1

aij = λ
γ

if gij = 0

aij = 0 if i = j

Observe that A is obtained from the adjacency matrix G and can be thought of as representing
a network in which all agents are connected but the “weight” of the links between them differs
depending on whether or not the pair of agents are connected in the original network G.
Depending on the values of the cost and benefit parameters λ and γ, the elements aij for
i, j = 1, ..., N can be positive, zero or negative. If aij ≥ 0, we can think of the effort supply
game as a game of strategic substitutes while when aij ∈ [−1, 0] we have a game of strategic
complements.

The following Lemma states the condition for existence of Nash equilibria.

Lemma 1. Existence of equilibrium. The vector-valued best response function f(e,A) has
a fixed point and hence at least one Nash equilibrium (NE) exists for all networks G of given
size N , if and only if φ ≤ 1/2 (that is, γ ≤ λ).

Proof: By Brouwer’s Theorem, the best response function f(e,A) with elements fi(e,A) =

7



max{0, 1 − φ
∑N

j=1 aij êj} has a fixed point if and only if it is a continuous function mapping

the convex and compact set [0, 1]N into itself. Note that fi are continuous and non-negative
by construction, so we only need to verify that fi ≤ 1 for all i. Suppose φ ≤ 1/2 (or, λ ≥ γ)
holds. This implies aij ≥ 0 for all i, j, which, since φ > 0 and ej ≥ 0, is a sufficient condition
for fi ≤ 1 for all i. To show that φ ≤ 1/2 is necessary, note that, by the definition of fi, if
1−φ

∑N
j=1 aij êj ≤ 0, then êi = 0 = fi < 1. We also have êi = 1−φ

∑N
j=1 aij êj if êi > 0. In this

case, requiring fi = 1−φ
∑N

j=1 aij êj ≤ 1 implies φ
∑N

j=1 aij êj ≥ 0, or γ
2λ

∑
j 6=i(

λ
γ
−gij)êj ≥ 0, that

is, λ
∑

j 6=i êj ≥ γ
∑

j 6=i gij êi. Note that by the definition of G the inequality
∑

j 6=i êj ≥
∑

j 6=i gij êi
is true for all G and holds with equality for the full network (G = J − I, for which êi > 0).
Therefore, to have fi ≤ 1 for all G, it is necessary that λ ≥ γ (equivalently, φ ≤ 1/2). �

In the next sub-section, we derive necessary and sufficient conditions for uniqueness of Nash
equilibria and discuss the conditions for interior and corner equilibria.

2.3 The potential function and uniqueness of equilibrium

We next study the question of uniqueness of Nash equilibria. To proceed, it helps to express the
agent’s maximization problem in terms of a potential function associated to the payoff function
Ui. This sub-section draws on some techniques from BKD (2012) and applies them to our
different setting.

Definition 2. Potential function

The function Φ(ei, e−i) is a potential function of the game {Ui, Ei}Ni=1 with strategy
sets Ei which are real intervals and continuously differentiable payoffs Ui, if and
only if Φ is continuously differentiable and, for all i = 1, ..., N ,9

∂Ui(ei, e−i)

∂ei
=
∂Φ(ei, e−i)

∂ei
∀ei ∈ Ei, ∀e−i ∈ E−i

Proposition 1. The effort levels, e is a NE of the effort supply game with best response
functions fi = max{0, 1 − φ

∑N
j=1 aijej} if and only if e satisfies the Kuhn-Tucker first-order

conditions of the problem
max
ei

Φ(e, G) s.t. ei ≥ 0 for all i (4)

where Φ is the potential function of the effort supply game, defined as:

Φ(e, G) =
N∑
i=1

[ei(1− π)− λe2
i ]−

γ

2

N∑
i=1

N∑
j=1

aijeiej

All NE correspond to the set of maxima and saddle points of problem (4).

Proof: We first show that Φ defined above is a potential function of our effort supply game.
Clearly Φ is continuously differentiable. By definition, Φ is a potential function for our game

9See Monderer and Shapley (1996) for details.
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with payoffs Ui if and only if ∂Ui
∂ei

= ∂Φ
∂ei

for all i = 1, ..., N . This can be verified directly by
taking the partial derivatives of Φ with respect to ei:

∂Φ

∂ei
= (1− π)− 2λei − γ

N∑
j=1

aijej =
∂Ui
∂ei

We also have,

∂Φ

∂ei
= 0 ⇒ e∗i =

1− π
2λ

− γ

2λ

N∑
j=1

aije
∗
j = β − φ

N∑
j=1

aije
∗
j

Therefore the N individual maximization problems of finding the optimal crime efforts, ei can
be re-written as the single constrained optimization problem:

max
ei

Φ(e, G) s.t. ei ≥ 0 for all i

Among the Kuhn-Tucker conditions associated with this problem are:

∂Φ

∂ei
= 0 if ei > 0

∂Φ

∂ei
≤ 0 if ei = 0

It is easy to see that these conditions correspond to the individual best response functions
fi exhibited earlier. Hence, the set of NE for any given network G coincides with the set of
extrema and saddle points of the potential function Φ(e, G) on Rn

+.�
Re-write the potential function Φ using matrix notation:

Φ(e, G) =
N∑
i=1

[ei(1− π)− λe2
i ]−

γ

2

N∑
i=1

N∑
j=1

aijeiej

= λ
{ N∑

i=1

[(
1− π
λ

)ei − e2
i ]−

γ

2λ

N∑
i=1

N∑
j=1

aijeiej

}
= λ

{
(
1− π
λ

)eT1− eT(I + φA)e
}

This implies that the Hessian matrix of Φ is,

∇2Φ = −λ(I + φA)

The next result provides conditions for the uniqueness of Nash equilibrium in our setting.

Proposition 2. Suppose φ ≤ 1/2. A NE is unique if and only if φ < − 1
αmin(A)

where αmin(A)
is the smallest eigenvalue of the matrix A.
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Proof: The quadratic potential function Φ has a unique maximum if and only if the matrix
I + φA (the negative of Φ′s Hessian) is positive definite. BKD (2011) show that the matrix
I+φA is positive definite if and only if φ < − 1

αmin(A)
, where αmin(A) is the minimum eigenvalue

of the matrix A = [λ
γ
(J− I)−G].�

2.4 Types of equilibria

In Proposition 3 we showed that if φ < − 1
αmin(A)

the potential function is strictly concave and

there exists a unique NE in the effort supply game. This equilibrium can be either interior (all
ei > 0) or corner (there is some ei = 0). When φ > − 1

αmin(A)
, the function Φ is not strictly

concave and there may exist multiple equilibria.10 It is easy to see that for such parameters,
there always exists a corner equilibrium – because Φ is a non-concave function, there is a
direction along which it increases without bound, therefore there exists at least one maximum
that is not interior. In addition, we know from Proposition 3 that any vector e(φ,A) which
globally maximizes Φ is a Nash equilibrium. Therefore, in this range of parameters there is
always a Nash equilibrium which features a corner solution.

Lemma 2. If φ > − 1
αmin(A)

and φ ≤ 1/2, then there exists a corner NE (some i for which

êi = 0).

However, we can show that it is never optimal for all agents to choose zero effort level in a
Nash equilibrium.

Proposition 3. There does not exist a NE in which ei = 0, ∀i = 1, ..., N .

Proof: By the first order conditions of the individual maximization problems,

e∗i =
1− π

2λ
− γ

2λ

∑
j 6=i

(
λ

γ
− gij)ej if ei > 0

e∗i = 0 if
1− π

2λ
<

γ

2λ

∑
j 6=i

(
λ

γ
− gij)ej (5)

If ej = 0, ∀j 6= i, then agent i’s optimal effort level is 1−π
2λ

> 0. Conversly, the only way that
agent i would choose zero effort is when there are some agent(s) whose effort level is larger than
zero so that the right hand side of inequality (5) is larger than the left hand side. Therefore it
is never optimal for all agents to choose zero effort in equilibrium. �

3 Crime networks – properties

In the previous section we showed conditions for existence and uniqueness of Nash equilibria
in agents’ efforts. We now characterize the properties of the Nash equilibria. Re-arrange agent

10If φ = − 1
αmin(A) multiple equilibria are possible and all equilibria form a convex set yielding the same

aggregate effort (see BKD).
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i’s best response equation at an interior solution as

ei =
1− π

2λ
− δ

2λ

N∑
j=1

gij +
γ

2λ

N∑
j=1

gijej −
1

2

N∑
j 6=i

ej

The first term, 1−π
2λ

, can be thought of as a “standalone” or autarky level of effort. The sum

in the second term δ
2λ

∑N
j=1 gij can be broken into two parts: agents who are directly linked to

i (gij = 1) and agents who are not directly linked to i (gij = 0). Consequently, it equals δ
2λ
li

where li is the number of direct links that player i has with other agents. Denoting with L(i)
the set of agents with whom agent i has direct links, we can express agent i’s equilibrium effort
at an interior solution as:

ei = eautarky +
γ

2λ

∑
L(i)

gijej −
δli
2λ
− 1

2

N∑
j 6=i

ej (6)

In the above expression the autarkic effort level, eautarky ≡ 1−π
2λ

is augmented by the benefit

associated with links to others γ
2λ

∑
L(i) gijej and reduced by the costs of links with others δli

2λ

and the congestion term (e.g., due to the increased likelihood of being caught), 1
2

∑N
j 6=i ej.

Proposition 4. Individual equilibrium payoffs are quadratic in own equilibrium effort, e∗i , that
is, U∗i = λ(e∗i )

2 for all i.

Proof: From the earlier expression for the agent’s payoff, Ui, we have:

U∗i = e∗i

[
(1− π) + γ

N∑
j=1

gije
∗
j − λ

N∑
j=1

e∗j − δ
N∑
j=1

gij)

]
=

= e∗i

[
(1− π) +

N∑
j=1

(γgij − λ) e∗j − δli

]
=

= e∗i

(1− π)− δli + (γ − λ)
∑
j∈L(i)

e∗j − λ
∑
j /∈L(i)

e∗j − λe∗i


On the other hand we know that at an interior solution (from the FOCs):

e∗i =
1− π

2λ
− δli

2λ
− 1

2

∑
j 6=i

e∗j +
γ

2λ

∑
j∈L(i)

e∗j

=
1

2λ

1− π − δli + (γ − λ)
∑
j∈L(i)

e∗j − λ
∑
j /∈L(i)

e∗j

 . (7)
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Combine the last expression for the payoff and the last expression for e∗i , we have that:

U∗i = λ(e∗i )
2 ∀i = 1, ..N

Thus, for an interior e∗i interior, the agent’s payoff is always positive and proportional to the
square of the agent’s own effort in equilibrium. If the agent chooses a corner solution (e∗i = 0)
we trivially have U∗i = 0 = λ(e∗i )

2 as well.�
We go on to characterize some properties of the aggregate crime level in equilibrium.

Proposition 5. Suppose δ = 0. Then:
(a) The network maximizing aggregate crime, E ≡

∑N
i=1 e

∗
i is the “full network” – the network

in which all agents are connected to all other agents.
(b) If, for given N , the network G′ is obtained from G by adding more links, that is, gij ≤ g

′
ij

∀i, j, then total crime acticity is higher in network G′ compared to in network G, that is,∑N
i=1 e

∗
i (G) ≤

∑N
i=1 e

∗
i (G

′).
(c) The maximum value of total crime in equilibrium is increasing in the size of the network,
N .

Proof: (a) From Proposition 3 we know that as long as π < 1, there does not exist a NE
with ei = 0,∀i. Therefore, there is always at least one agent who chooses positive effort level.
When δ = 0, this agent’s effort is:

ei =
1− π

2λ
+

γ

2λ

N∑
j=1

gijej −
1

2

N∑
j 6=i

ej

⇒
N∑
i=1

ei ≤
N(1− π)

2λ
+

γ

2λ

N∑
i=1

N∑
j=1

gijej −
1

2

N∑
i=1

N∑
j 6=i

ej

Note
N∑
j=1

gijej ≤
N∑
j=1

ej − ei ⇒
N∑
i=1

N∑
j=1

gijej ≤ (N − 1)E

Also
N∑
j 6=i

ej =
N∑
j=1

ej − ei ⇒
N∑
i=1

N∑
j 6=i

ej = (N − 1)E

⇒ E ≤ N(1− π)

2λ
+
γ(N − 1)

2λ
E − N − 1

2
E

⇒ E ≤ 1− π
λ+γ
N

+ λ− γ

for all networks G, with equality only if G is the full network. Thus total crime, E is maximized
when G is the full network since φ1, β1 and N do not depend on G.

(b) This result follows similarly to as in BCZ, Proposition 2.
(c) From (a) we know that for the full network, E = 1−π

λ+γ
N

+λ−γ
which is increasing in N since

λ, γ > 0.�
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The result in part (c) together with that in (a) imply that if δ = 0 and N is bounded
from above, then maximum crime is achieved for the full network of maximum possible size.
Of course, this may be too costly and so the optimal (profit maximizing, rather than crime
maximizing) network can be of smaller size or be different than the full network (see the next
section). Also, the individual equilibrium effort for the full network with N players if δ = 0 is
efull(N) = β1

φ1+1+N(φ1−1)
which is weakly decreasing in N since φ1 ≥ 1 (equivalent to λ ≥ γ –

our condition for existence of equilibrium).
The next question we study is the relationship between the equilibrium effort levels and the

position of agents in the network when corner NE are possible. A close look at the expessions
for the equilibrium levels of effort in (6) yields:

Proposition 6. In a Nash equilibrium,
(a) if δ = 0, the directly connected agents to any inactive agent (with e∗i = 0) supply lower total
effort than the directly connected agents to any active agent (with e∗j > 0).
(b) if δ = 0 and if the sets of direct connections of two active agents are nested, then the agent
with larger number of direct connections supplies higher effort level.
(c) if δ 6= 0 and two active agents share the same set of active agents to which they are directly
connected, the agent with a larger number of inactive direct conections supplies lower effort in
equilibrium.

Proof: a) Suppose e∗i = 0 for some i = 1, ..N and e∗j > 0 for some other agent. Then the
FOCs imply:

1− π
λ
− δli

2λ
−

n∑
k=1

e∗k +
γ

λ

∑
k∈L(i)

e∗k < 0 for agent i and,

e∗j =
1− π
λ
− δli

2λ
−

n∑
k=1

e∗k +
γ

λ

∑
k∈L(j)

e∗k for any agent j with e∗j > 0.

Thus, at δ = 0, it must be that
∑

k∈L(i) e
∗
k <

∑
k∈L(j) e

∗
k. This suggests that if there are no costs

to maintain links, then for an individual who supplies no effort, his links are to agents who
supply lower effort in total compared to someone who exerts positive effort. Of course if δ 6= 0,
it still may be the case that those linked with agents who provide no effort provide less effort
so long as they have sufficiently many costly connections, or if the productive colleague has
sufficiently few connections. These observations are summarized by the necessary condition:

δ (lj − li)
γ

+
∑
k∈L(i)

e∗k <
∑
k∈L(j)

e∗k

b) Compare two active agents (with e∗i > 0 and e∗k > 0) whose sets of direct neighbors L(i)
and L(k) are nested, L(k) ⊆ L(i). The latter implies that

∑
j∈L(i) e

∗
j ≥

∑
j∈L(k) e

∗
j with strict

13



inequality if at least one agent in the set L(i)\L(k) is active. From the FOCs,

e∗l =
1− π
λ

+
γ

λ

∑
j∈L(l)

e∗j −
N∑
m=1

e∗m for l = i, k

which implies e∗i ≥ e∗k.
c) Suppose there is a cost of link maintenance, δ 6= 0. The FOC at an interior solution

implies:

e∗i =
1− π
λ

+
γ

λ

∑
j∈L(i)

e∗j −
N∑
j=1

e∗j −
δ

λ
li

Suppose agents i, j have the exact same set of active direct neighbors, but agent i has more
inactive direct connections. It is easy to see that li > lk implies e∗i < e∗k. This result suggests
that when an active agent is connected to inactive agents he puts less effort into the criminal
activity. Being linked with an active agent may have positive or negative effects. As long as
φe∗j − δ/λ is positive, befriending that active agent will increase agent’s i’s effort level holding
all else constant. But a less active (inactive) agent (with φe∗j − δ/λ < 0) can decrease agent i’s
effort level. �

3.1 The Planner’s Problem

So far we have studied the strategic decisions making by each individual. In our setting in-
dividuals in the network impose both positive and negative externalities to each other. To
characterize the latter more clearly, in this sub-section we contrast these results by the so-
lutions to a planner’s problem. Specifically, we now set up the effort choice problem from a
planner’s (criminal boss) perspective and characterize the optimal solution assuming this plan-
ner chooses efforts, e to maximize the overall payoff/profit generated by the criminal network.
Unless stated otherwise, in this sub-section we focus on the interior solution case.

The total payoff in the criminal network G is:

Ũ(e, G) =
N∑
i=1

Ui(e, G) =

=
N∑
i=1

ei(1− π)− γ
N∑
i=1

N∑
j=1

(
λ

γ
− gij)eiej

=
N∑
i=1

[ei(1− π)− λe2
i ]− γ

N∑
i=1

N∑
j=1

aijeiej

where aij are elements of matrix A = [λ
γ
(J − I)−G]. Note that this equation is very similar to

the potential function that we derived in the previous section, the only difference is that here
the coefficient of the second term is γ instead of γ

2
. As before, we could rewrite this equation

14



using matrix notation:

Ũ(e, G) = λ
{

(
1− π
λ

)eT1− eT(I + 2φA)e
}

where φ = γ
2λ

, for simplicity let us call η = 2φ = γ
λ
. Therefore the hessian of this matrix is:

∇2Ũ = −λ(I + ηA)

Using the same results as before, we know that there exists a unique solution if η < − 1
αmin(A)

.

Note that φ ≤ η, therefore, φ ≤ η < − 1
αmin(A)

. In other words, if planner’s problem has a
unique solution, then individual optimization problem has a unique solution for sure. However,
it might be the case that: φ < − 1

αmin(A)
≤ η. In which case, the planner’s problem exhibits

multiple equilibria (including corners), where as the individual solution is unique.

Proposition 7. The “Planner’s Problem”:
(a) The planner’s problem has a unique solution if and only if η = γ

λ
< − 1

αmin(A)
.

(b) The total payoff in the planner’s problem, Ũ(e, G) is smaller or equal to a fraction of the
total equilibrium crime level, Ẽ(G) – we have Ũ(e, G) ≤ (1−π

2
)Ẽ(G).

(c) Suppose δ = 0. The full network maximizes both total effort and total payoff in the planner’s
problem. The optimal values of total effort and total payoff are both increasing in the number
of agents in the network.

Proof: (b) Note that the first order conditions of equation (8) is:

ẽi =

{ 1−π
2λ
− γ

λ

∑
j 6=i(

λ
γ
− gij)ẽj if ẽi > 0

0 if 1−π
2λ
≤ γ

λ

∑
j 6=i(

λ
γ
− gij)ẽj

Rewriting ẽi = 1−π
2λ
− γ

λ

∑
j 6=i(

λ
γ
− gij)ẽj, we get γ

∑N
j=1(λ

γ
− gij)ẽj = 1−π

2
for the interior

solution. Also note that when ẽi = 0, we have 1−π
2λ
≤ γ

λ

∑
j 6=i(

λ
γ
− gij)ẽj, which is equivalent to

1−π
2
≤ γ

∑N
j=1(λ

γ
− gij)ẽj. Therefore:

γ

N∑
j=1

(
λ

γ
− gij)ẽj ≥

1− π
2
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Substituting into the total payoff function, we obtain:

Ũ(e, G) =
N∑
i=1

ẽi(1− π)− γ
N∑
i=1

N∑
j=1

(
λ

γ
− gij)ẽiẽj

≤
N∑
i=1

ẽi(1− π)−
N∑
i=1

(
1− π

2
)ẽi

≤
N∑
i=1

(
1− π

2
)ẽi

Let Ẽ(G) =
∑N

i=1 ẽi, then we have Ũ(e, G) ≤ (1−π
2

)Ẽ(G), with equality for the interior solutions.

(c) Similar to proposition (5), it is easy to see that there is no solution to the planner’s
problem where all agents choose zero effort, i.e. ẽi = 0 ∀i. Therefore, starting from an agent
with positive effort:

ei =
1− π

2λ
+
γ

λ

N∑
j=1

gijej −
N∑
j 6=i

ej

⇒
N∑
i=1

ei ≤
N(1− π)

2λ
+
γ

λ

N∑
i=1

N∑
j=1

gijej −
N∑
i=1

N∑
j 6=i

ej

Note
N∑
j=1

gijej ≤
N∑
j=1

ej − ei ⇒
N∑
i=1

N∑
j=1

gijej ≤ (N − 1)Ẽ(G)

Also
N∑
j 6=i

ej =
N∑
j=1

ej − ei ⇒
N∑
i=1

N∑
j 6=i

ej = (N − 1)Ẽ(G)

⇒ Ẽ(G) ≤ N(1− π)

2λ
+
γ(N − 1)

λ
Ẽ(G)− (N − 1)Ẽ(G)

⇒ Ẽ(G) ≤ N(1− π)

2(γ +N(λ− γ))
,

with equality if G is the full network. Therefore, from part (b),

Ũ(e, G) ≤ N(1− π)2

4(γ +N(λ− γ))

with equality if G is the full network. It is clear from these results that both total effort Ẽ
and total payoff Ũ in the planner’s problem are maximized when G is the full network. Also
note that, for the full network, the values of Ẽ and Ũ are increasing in the number of agents N .�
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In Appendix 3 we further contrast the results from the Nash equilibrium and the planner’s
(cooperative) optimum by studying the total payoffs and crime levels in two extreme cases: the
empty network and the full network.

4 Optimal networks and crime-deterrent policies (incom-

plete)

Given the equilibrium individual crime levels derived above we can compute the overall equi-
librium crime level, E =

∑N
i=1 ei, as well as the overall equilibrium profit (surplus) level,

Π =
∑N

i=1(yi − ci) for each possible network structure G. These two aggregates play an impor-
tant role in the subsequent analysis. On the one hand they are informative about the type of
networks we would expect to observe if agents are optimizing according to our model. A stan-
dard competition or group selection argument suggests that the network that maximizes total
surplus, Π, is likely to be the optimal network in the long run. The same result can be obtained
if we assume that a “planner” (boss or Godfather) designs the network to extract maximum
surplus. Figure(1) presents the optimal networks that arises for a 100 different combinations
of the parameters of the model for networks with 4, 5, 6 agents.

On the other hand, the level of total crime that is likely to emerge optimally may be
guiding the design and implementation of most effective crime-reducing policies that an outside
authority (e.g. the police) would like to implement. We study the interaction between the
optimal network structure in the following four different policy environments.

1. removing a “key player” (RKP) – as in BCZ (2004), the key player is defined as the (an)
agent whose removal from the network (apprehension) results in the largest drop in the
overall crime level

2. removing an agent at random (RRP) – each agent in G has equal probability, 1/N to be
removed/apprehended

3. removing an agent with probability proportional to his number of links (PRL) – the prob-
ability of removing agent i equals li∑N

i=1 li
where li denotes the number of direct links of

agent i

4. removing a player with probability proportional to her effort level (RPE) – the probability
of removing agent i equals ei∑N

i=1 ei

The optimal network structure will in general reflect the policy environment in which the
network operates. This is important and arises as an application of the standard Lucas critique
(Lucas, 1976). Policy design must recognize that the actor’s response may be a function of the
policies that are employed. Moreover, the optimal network structure may change (potentially at
a cost) as a given policy is implemented. Although it applies to any policy, consider the policy
of “removing the key player” . BCZ take a given network G0 and identify the “key player”:
the agent whose removal from the network results in the largest drop in the overall crime level.
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Figure 1: Optimal network with 4, 5, 6 agents for combination of parameters φ ∈ [0.01, 0.5], π ∈
[0.01, 0.99]. When the cost of link formation is zero, the optimal networks are either complete
networks or different kinds of kite networks. 18



There are two potential weaknesses of this approach as a guide to policy effectiveness. First,
when determining who the “key player” is, we assume that after this player is removed, the
remaining network does not re-optimize.11 Second, and more importantly, the initial network
is not necessarily the optimal network that would result were the criminals to recognize that a
particular policy is in place.12 An example of this case is presented in figure (2).

Figure 2: Left: optimal network with 6 agents for φ = 0.2767, π = 0.3367 when there is no
policy implemented. The total crime level is 0.7944. Top Right: The ex-ante optimal network
if agents recognize that the policy is removing the key player. The total effort level after
implementing the policy in this case is the same as before, i.e. there is no reduction in crime as
a results of this policy. Bottom Right: The ex-ante optimal network if agents recognize that
the policy is removing players with probability proportional to the number of their links. Total
effort level after implementing the policy is 0.7981 which is even higher than the total effort in
no-policy environment.

Practically, since analytical results cannot be derived easily, to find the optimal network for
a given policy environment we need to search over all possible networks, compute the expected
profits for each and choose the one with the highest value. In principle, for a given N and

11In principle, of course, links can be re-arranged to maximize profits so that the residual network is not
simply the original network set of links less one player. The key player approach in BCZ assumes that no such
re-arrangement of the network occurs. However, when it is possible to re-arrange links, the optimal network
may be a different one.

12In BCZ (2004) of course the analysis is conducted with respect to a given network and is in no sense an
optimal network.
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our bidirectional link structure, all possible networks are 2N(N−1)/2 - a number that becomes
huge even for very low N. However many of these networks are equivalent, or in graph-theory
language, isomorphic. They can be obtained from each other by simply re-labeling the nodes.
Obviously, in our setting all isomorphic networks will yield the same crime and profit levels so
we only search over non-isomorphic networks when finding the optimal one. We achieve this by
using computed data made publicly available by Brendan McKay from the Australian National
University. This data set provides a list of the adjacency matrices (in a special compressed
format, see Appendix 1) of all non-isomorphic graphs for N = 2, 3, ..9. The outcomes of the
optimization for profit, effort and network structure depend on the parameter values for the set
of λ, π, and γ. In the simulations we set δ = 0. We use our theoretical results as a guideline to
choose appropriate values for these values that guarantee the existence of solutions.

In practice, when we are examining several crime-combatting policies such as removing the
key player, removing a random player, etc., we allow this policy to be successful with certain
probability, parameterized by p ∈ [0, 1] and look at (i) the case in which after the removal
the network re-optimizes by re-organizes its structure optimally (long-run), and (ii) the case in
which the network does not re-optimize (short-run). The case p = 0 can be thought of as lack
of policing.

We also distinguish between surprise policies and expected policies. Fix some parameter
vector θ = (λ, γ, π). Call G∗(N |θ) the optimal network of size N for these parameters. and
U(G∗|θ) be the corresponding total payoff. Let G(N) be a network of size N and U(G|θ) be
the total equilibrium payoff for network G at parameters θ. Let also ξ(G) denote the network
obtained after the policy is applied to network G (e.g., the network G with its key player
removed, etc). If the policy is expected, the crime organization chooses the optimal structure
G that maximizes ex-ante expected total payoff. If the policy is unexpected, the total payoff is
fixed. The baseline case is the case of no policy, in which case the crime organization receives
total payoff

U(G∗(N |θ)|θ)

In the presence of policy with effectiveness (probability of success) p we study the following
four scenarios:

1. Surprise policy, no reoptimization (SNR) – the crime organization receives payoff:

(1− p)U(G∗(N |θ)|θ) + pU(ξ(G∗(N |θ))|θ)

2. Expected policy, no reoptimization (ENR) – the crime organization solves:

max
G(N)

(1− p)U(G(N)) + pU(ξ(G(N))|θ)

3. Surprise policy, with reoptimization (SR) – the crime organization receives payoff:

(1− p)U(G∗(N |θ)|θ) + pU(G∗(N − 1|θ)|θ)

Note that the optimal network with N−1 members will be chosen if the policy is effective
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(the second term).

4. Expected policy, with reoptimization (ER) – the crime organization solves:

max
G(N)

(1− p)U(G(N)|θ) + pU(G∗(N − 1|θ)|θ)

As in case 3, the optimal network with N−1 members will be chosen if the policy is effective
(the network will re-optimize). This implies that the value of the second term is fixed and hence
the solution to the above problem is network G∗(N |θ) – the optimal network with N members.
Hence the expected total payoff is exactly the same as in case 3 (SR) above. The ability to
re-optimize ex-post makes the distincttion between surprise and expected policy irrelevant.

Note that cases 1–3 above could yield different predictions for the optimal crime network
structure before and after the policy. Correspondingly, they can yield different predictions for
the total crime level, both in the case in which the anti-crime policy is unsuccessful and in the
case the policy is successful. Knowing the optimal network structures that arise for a given
policy means that we can study the relative effectiveness of various policies that are defined as
the reduction n the aggregate crime effort.

5 Discussion and conclusions

We develop a model that optimizes overall profits in a criminal network by varying both individ-
ual crime effort levels and the network configuration. We characterized conditions for existence
and uniqueness of corner and interior Nash equilibria in efforts and gave a characterization
of some properties of the solution, including individual and aggregate crime effort and total
profits.

Finally, there are a variety of challenges to this methodology and a number of interesting
questions to be posed. Many networks are larger than ten or eleven players. Can we deal with
larger numbers in a systematic way that still preserve the spirit of optimization? If we know
the observed structure of a crime network, how is that information to be integrated? Can it be
used to reduce the number of networks over which we need to search? Can it help us identify
the relevant parameters and their magnitudes? There are reasonable questions about what
procedure is relevant when a network is stressed. Should the removal of a player simply mean
that the network continues with one fewer members but leave links intact? Or should new links
be forged without adding an additional player? Does the network learn? Among the questions
that we can address are those related to knowledge about the network based on incomplete
information about observed nodes. Can we say something about the size or structure of the
network by observing one node? How much can we learn about the network knowing the
links of one player to another? Is it the case that certain structures are favored in real world
environments? And many more.
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Appendix 1 – Enumerating all non-isomorphic networks

of given size

One of the main contributions of this paper is that we study “optimal networks”, i.e. networks
that maximize some economically relevant criterion among all possible networks of a given size.
In principle, there are 2N(N−1)/2 networks of size N. Even at N = 7 these are already 221 i.e.
more than 2 million networks, thus if we were to compute an equilibrium for each of them the
computational time required will grow exponentially with network size. On the other hand, it is
clear that many of the possible networks are effectively the same modulo some permutation of
the numbering of vertices. For example, for N = 7 there are only 1044 unique networks. Thus,
for our purposes and to avoid costly duplication of time and effort we only need to compute
the equilibria for the different, or as they are known in graph theory, non-isomorphic networks.
As mentioned in the introduction, it turns out that generating all non-isomorphic graphs of
a given size is a hard problem in graph theory and computer science, one that has not been
solved for any N .

Fortunately for us, Brendan McKay from the Department of Computer Science at the Aus-
tralian National University, has developed an algorithm to compute all non-isomorphic networks
for up to N = 12 and has made the data, that is, the adjacency matrices of those networks
publicly available on his website. These adjacency matrices data come in a special format de-
signed by Prof. McKay (the “g6 format”) which minimizes the amount of storage necessary.
The algorithm stores the upper diagonal part of the adjacency matrices as a string of ASCII
symbols. Below we explain how one can convert a .g6 file into the set of its corresponding
adjacency matrices. A Matlab file performing the conversion is available upon request by the
authors.

Matab algorithm for converting the McKay data into an adjacency matrix
1. Open a .g6 file provided by B. McKay at http://cs.anu.edu.au/people/bdm/data/graphs.html.

A string of ASCII codes is returned, separated by “linefeed”, ASCII=10 (use fopen to open
the file and fread to read its contents).

2. Find the number of lines (number of linefeed symbols) – this corresponds to the number
of networks in the file, M .
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3. Eliminate the linefeed symbols and reshape the remaining ASCII symbols from Step 1
into a matrix with M rows each corresponding to a non-isomorphic network.

4. Subtract 63 from the ASCII codes of the elements of the matrix in Step 3.
5. For each row in the resulting matrix from Step 4 (that is, for each non-isomorphic

network) perform the following:
(a) find the number of vertices, element 1 of each row
(b) convert the rest of the row elements from a decimal number into groups of 6-digit

binary numbers (the g6 format uses only 6 bits).
(c) the result from (b) which is a sequence of zeros and ones forms the upper diagonal

part of the adjacency matrix of the current network, going column by column, i.e. starting at
element (1,2), then (1,3), ..(1,N), (2,3), etc.

Appendix 2 – Solving for Nash equilibria

Because of the non-negativity constraints, ei ≥ 0 we cannot find the Nash equilibrium efforts
ei by simply solving the linear system of FOCs taken as equalities, (2). Instead, we adopt a
general approach which allows us to obtain all Nash equilibria, both interior and corner.

Proposition 8. For any given network G, the set of Nash equilibria coincides with the set of
solutions to the quadratic programming problem13

min
e

eT{[(J + I)φ1 −G]e−(β1I−φ2G)1} (8)

s.t. [φ1(I + J)−G]e− (β1I−φ2G)1 ≥ 0 and e ≥ 0

Proof: Suppose e solves (QP). The objective function is equivalent to minimizing
∑N

i=1 ei{[(J+
I)φ1 − G]e−(β1I−φ2G)1}i where {.}i denotes the i-th vector element. Notice first that if
ei > 0 at the solution to (QP), then having {[(J + I)φ1 − G]e−(β1I−φ2G)1}i > 0 can-
not minimize the objective function since we can reduce ei and reduce its value. That is
{[(J + I)φ1 −G]e−(β1I−φ2G)1}i must equal zero at the optimum – the FOC of agent i is sat-
isfied with equality and so ei is his best response. On the other hand, if ei = 0 at the solution
(agent i is constrained), then we have, by the inequality constraint (which is the negative of the
agent i’s FOC) that {(β1I−φ2G)1−[(J + I)φ1−G]e}i ≤ 0, i.e., agent i does not find it optimal
to increase her effort from 0. Thus, any solution to (QP) is a NE.

Now suppose e is a NE. Because of the constraits, it is clear that the minimum value
the objective of (QP) can take is zero and thus any vector e which achieves its value and
satisfies the constraints is a solution to (QP). By the definition of NE, we have ei{[(J + I)φ1 −
G]e−(β1I−φ2G)1}i = 0 for all i thus e achieves the minimum value of the objective (zero).
Also, by (1), the constraints in (QP) are satisfied at a NE. Q.E.D.�

13The inequality signs apply to each vector element separately. The set of NE and solutions to (QP) could
be empty.
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Appendix 3 – Comparing the NE and planner’s solutions

for the empty and full networks

Suppose δ = 0. Both the empty network and full network are symmetric and it is easy to verify
that as long as a solution exists it is interior (in both the Nash and the planner’s problems).
From above, the payoff and optimal effort choice of an individual in a criminal network G are:

Ui(e, G) = ei(1− π)− γ
N∑
j=1

(
λ

γ
− gij)eiej

and e∗i =
1− π

2λ
− γ

2λ

∑
j 6=i

(
λ

γ
− gij)e∗j

On the other hand, the total payoff and the optimal effort choices in the planner’s problem are:

Ũ(e, G) =
N∑
i=1

ei(1− π)− γ
N∑
i=1

N∑
j=1

(
λ

γ
− gij)eiej

and ẽi =
1− π

2λ
− γ

λ

∑
j 6=i

(
λ

γ
− gij)ẽj

• The empty network (gij = 0 for all i, j = 1, ..., N)

1. Nash solution:

e∗i,empty =
1− π

2λ
− 1

2

∑
j 6=i

e∗j,empty =
1− π

(N + 1)λ

U∗i (e, Gempty) =
(1− π)2

(N + 1)λ
− λN (1− π)2

(N + 1)2λ2
=

(1− π)2

(N + 1)2λ
=

1

N
U∗empty

2. Planner’s solution:

ẽi =
1− π

2λ
−
∑
j 6=i

ẽj and ẽi = ẽj = ẽ

thus, ẽ =
1− π
2Nλ

and Ũempty =
(1− π)2

4λ

Comparing the above results it is easy to see that e∗i,empty > ẽi,empty and U∗empty < Ũempty for
any N > 1 – individual agents over-supply crime effort in Nash equilibrium which makes them
collectively worse off. Intuitively, in the empty network there are no positive externalities from
effort provision, only the congestion costs which leads to over-supply of the action ei similarly
to as in the “tragedy of the commons” problem.

• Full network (gij = 1 for all i 6= j)
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1. Nash solution – it is easy to show that

e∗full =
1− π

λ+ γ +N(λ− γ)

U∗i (e,G) =
λ(1− π)2

(λ+ γ +N(λ− γ))2

⇒ U∗full =
Nλ(1− π)2

(λ+ γ +N(λ− γ))2

2. Planner’s solution:

ẽfull =
1− π

2(γ +N(λ− γ))

⇒ Ũfull =
N(1− π)2

4(γ +N(λ− γ))

It is easy to show that e∗full > ẽfull if and only if λ ≥ γ, which from Lemma 1 is the
necessary and sufficient condition for existence of Nash equilibrium. Also it is easy to see that
U∗full < Ũfull. In the full network there are both positive and negative externalities from the
effort of others. Lemma 1 suggests that to have an equilibrium the negative externalities must
outweigh the positive externalities. Thus, the intuition from the empty network case carries
over – effort in NE is over-supplied relative to the first-best.
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