A Economic Model of Friendship : homophily, minorities and segregation

Presented by Chengxin Liang (Vanessa) 301167072

Content

- Importance of network structure
- Introductions of this research paper
- 3 empirical observations of friendship formation made by other researchers
- How the authors use new model to understand these observations

Experiments

- How these observations generated by
 - Biases in preferences
 - Biases in meeting

Importance of network structure

 The network structure of social interactions influences a variety of behaviors and economic outcome

- •Decisions of which product to buy
- •Investment in education
- •Access to jobs
- Social mobility
- •How quickly information diffuse

Introductions of the paper

Purpose of this paper:

Examine the properties of a steady-state equilibrium of a matching process of friendship formation.

how people meet each others

Stable relationship

Introductions of the paper

• Main focus of the paper : Homophily

- Homophily
 - a phenomenon of social networks
 - this refers to a tendency of various types of individuals to associated with others who are similar to themselves in terms of :

 Larger groups tend to form more same-type ties and fewer other ties

◆ Larger groups form more ties per capita

 All groups are biased towards same-type relative to demographics with most extreme bias coming from middle size group

Larger groups tend to form more same-type ties and fewer other ties

Larger groups form more ties (friendships) per capita

 All groups are biased towards <u>same-type</u> relative to demographics with <u>most extreme bias</u> coming from <u>middle size</u> group

Segments of human population broken down by <u>age or sex</u> or <u>income</u>. ect

Group 1	Group 2	Group 3
50	40	8
All groups towards s	are biased ame-type	Most extreme bias

Homophily

• a tendency of various types of individuals to associated with others who are similar to themselves.

- Measurement of Homophily
 - Ni = number of type i person
 - N = the total populations
 - Wi = fraction of type i in a population

Example:

- Suppose there are 10 persons in our classroom
- 6 Chinese
- 4 Canadian

 $W_{CH} = 6 / 10 = 0.6$

 $W_{CA} = 4/10 = 0.4$

- Measurement of Homophily
 - Definition 1:
 - Hi = homophily index
 - Si = same-type friendship
 - di = different-type friendship

$$H_i = \frac{s_i}{s_i + d_i}.$$

Example : Group 1

- Si =3 friendships between Chinese & Chinese
- **di** = 4 friendship between Chinese & Canadian

 $H_{CA} = 4 / 3 + 4 = 0.57$

Example : Group 2

- Si = 6 friendships between Chinese & Chinese
 - **di** = 1 friendship between Chinese & Canadian

 $H_{CH} = 6 / 6 + 1 = 0.85$

• Measurement of Homophily

• Definition 2:

A profile (s, d) = (s1, d1, s2, d2, ..., sK, dK) satisfies relative homophily if Wi > Wj implies Hi > Hj.

• Do a comparison of these 2 values:

 $w_i = \frac{N_i}{N} \qquad \qquad H_i = \frac{s_i}{s_i + d_i}.$

It satisfy relative homophily, if Wi > Wj implies Hi > Hj

In our example : WCH=0.6 > WCA=0.4, then HCH=0.85 > HCA=0.57

• Measurement of Homophily

Definition 3 :

The profile (s, d) = (s1, d1, s2, d2, ..., sK, dK) satisfies baseline homophily if for all i:

$$w_i = \frac{N_i}{N} = H_i = \frac{s_i}{s_i + d_i}.$$

baseline homophily

relative homophily

• Measurement of Homophily

Definition 4 : The profile (s, d) satisfies **inbreeding homophily** for type i if

Hi > Wi

In favor of same-type friendship

Definition 5: The profile (s, d) satisfies **heterophily** for type i if

Hi < Wi

In favor of differenttype friendship

Measurement of Homophily
Definition 6 : The inbreeding homophily of type i is

$$IH_i = \frac{H_i - w_i}{1 - w_i}.$$

IHi > 0 inbreeding homophily (in favor of same-type friendship)

- IHi < 0 inbreeding heterophily (in favor of different-type friendship)
- IHi = 0 baseline homophily (relative homophily)
- IHi = 1 completely inbreeds (completely homophily)

• Pattern of US high school friendship

	Ethnicity of Students				
Percent of Friends	White	Black	Hispanic	Others	
by Ethnicity:	n=131	n=96	n=13	n=15	
	% = 51	% = 38	% = 5	% = 6	
White	85	7	47	74	
Black	4	85	46	11	
Hispanic	4	6	(2)	4	
Others	7	2	5	(11)	

- The IH index of inbreeding homophily is 0.69 for whites (whose relative population is 51%)
- 0.76 for blacks (relative population 38%)
- 0.11 for Hispanics (2% of population)

Experiment

 Conduct an experiment on a representative sample of US high schools students.

っていた

· Simple Model:

Enter the

room

Random matching

Incurs a fixed cost and there is **diminishing return** to form friendships

Diminishing return to from friendship

Experiments

• Outcomes :

The determinant of an individual's strategy of finding a friend is : his/ her preference & the types he/ she faced

2 implications of the model:

- If agents' preferences over friendships are insensitive to type, then all agents form the same number of friendships.
- types are matched in frequencies in proportion to their relative stocks in the matching process cannot generate inbreeding.(probability of meeting same-type or different types)

Experiment

Given the 2 implications from the model

• Examine type- sensitivity of preference to show that if Agent see <u>higher marginal</u> <u>returns</u> when form a mix of friendship that is biased towards same-type

- Examine bias in meeting
- Generate inbreeding homophily Deal to :
- Tracking Membership Meet friends through friends

Match with the 2nd observation: Larger groups form more ties per capita Match with 3rd observation: **biased towards same-type and generate inbreeding homophily**

Given the 2 implications from the model

Benefit for sensitive type

Benefit for insensitive type

Given the 2 implications from the model

• Examine type- sensitivity of preference to show that if Agent see higher marginal returns when form a mix of friendship that is biased towards same-type

10%

80%

Random matching

30%

60%

Random matching with preference/bias

10%

10%

Conclusions

- Started a experiment in a selected sample of American high schools:
- Find that
 - larger racial groups form more friends per capita
 - while all groups display inbreeding homophily
 - with highest levels for middle size group
- it shown that:
 - If all types meet the same number of friends per unit of time
 - then generating differences in per capita friendships in our model requires more than just having preferences on # of friends .

Conclusion

- So, without differences in meeting rates across type, to generate observed data preferences need to be sensitive to types.
- The paper finds that the observed inbreeding homophily patterns can only be generated with some bias in the meeting process in favor of own type.
 - Thus according to this model's results, both type sensitive preferences and biased opportunities play a role in friendship formation.

Question Time

