A Economic Model of Friendship :

 homophily, minorities and segregation

Presented by Chengxin Liang (Vanessa) 301167072

Content

- Importance of network structure
- Introductions of this research paper
- 3 empirical observations of friendship formation made by other researchers
- How the authors use new model to understand these observations
- Experiments
- How these observations generated by
- Biases in preferences
- Biases in meeting
- Conclusions

Importance of network structure

- The network structure of social interactions influences a variety of behaviors and economic outcome
-Decisions of which product to buy
-Investment in education
- Access to jobs
-Social mobility
-How quickly information diffuse

Introductions of the paper

- Purpose of this paper:

Examine the properties of a steady-state equilibrium of a matching process of friendship formation.

Stable relationship

Introductions of the paper

- Main focus of the paper : Homophily
- Homophily
- a phenomenon of social networks
- this refers to a tendency of various types of individuals to associated with others who are similar to themselves in terms of:

3 empirical observations

- Larger groups tend to form more same-type ties and fewer other ties
- Larger groups form more ties per capita
- All groups are biased towards same-type relative to demographics with most extreme bias coming from middle size group

3 empirical observations

- Larger groups tend to form more same-type ties and fewer other ties

3 empirical observations

- Larger groups form more ties (friendships) per capita

3 empirical observations

- All groups are biased towards same-type relative to demographics with most extreme bias coming from \downarrow middle size group

Segments of human population broken down by age or sex or income. ect

All groups are biased towards same-type
extreme bias

Use model to understand the observations

- Homophily
- a tendency of various types of individuals to associated with others who are similar to themselves.

Homophily

People of similar characteristics tend to befriend each other

Use model to understand the observations

- Measurement of Homophily
$\mathrm{Ni}=$ number of type i person
$\mathrm{N}=$ the total populations
$\mathrm{Wi}=$ fraction of type i in a population

$$
w_{i}=\frac{N_{i}}{N}
$$

Example:

- Suppose there are 10 persons in our classroom
- 6 Chinese
- 4 Canadian

$$
\begin{aligned}
& \mathrm{WCH}=6 / 10=0.6 \\
& \mathrm{WCA}_{\mathrm{CA}}=4 / 10=0.4
\end{aligned}
$$

Use model to understand the observations

- Measurement of Homophily
- Definition 1:
$\mathrm{Hi}=$ homophily index
$\mathrm{Si}=$ same-type friendship
di $=$ different-type friendship

$$
H_{i}=\frac{s_{i}}{s_{i}+d_{i}}
$$

Example : Group 1

- $\mathrm{Si}=3$ friendships between Chinese \& Chinese
- $\mathbf{d i}=4$ friendship between Chinese \& Canadian

$$
\mathrm{H}_{\mathrm{CA}}=4 / 3+4=0.57
$$

Example : Group 2

- $\mathbf{S i}=\mathbf{6}$ friendships between

Chinese \& Chinese

- $\mathbf{d i}=1$ friendship between

Chinese \& Canadian
$H_{\text {сн }}=6 / 6+1=0.85$

Use model to understand the observations

- Measurement of Homophily
- Definition 2:

A profile $(\mathrm{s}, \mathrm{d})=(\mathrm{s} 1, \mathrm{~d} 1, \mathrm{~s} 2, \mathrm{~d} 2, \ldots, \mathrm{sK}, \mathrm{dK})$ satisfies relative homophily if $\mathrm{Wi}>\mathrm{Wj}$ implies $\mathrm{Hi}>\mathrm{Hj}$.

- Do a comparison of these 2 values:

$$
w_{i}=\frac{N_{i}}{N} \quad H_{i}=\frac{s_{i}}{s_{i}+d_{i}}
$$

It satisfy relative homophily, if $\mathrm{Wi}>\mathrm{Wj}$ implies $\mathrm{Hi}>\mathrm{Hj}$
In our example : $\mathrm{WCH}=0.6>\mathrm{WCA}_{\mathrm{CA}}=0.4$, then $\mathrm{HCH}=0.85>\mathrm{HCA}=0.57$

Use model to understand the observations

- Measurement of Homophily

Definition 3 :
The profile $(\mathrm{s}, \mathrm{d})=(\mathrm{s} 1, \mathrm{~d} 1, \mathrm{~s} 2, \mathrm{~d} 2, \ldots, \mathrm{sK}, \mathrm{dK})$ satisfies baseline homophily if for all i :

$$
w_{i}=\frac{N_{i}}{N} \quad=\quad H_{i}=\frac{s_{i}}{s_{i}+d_{i}}
$$

baseline homophily \longrightarrow relative homophily

Use model to understand the observations

- Measurement of Homophily

Definition 4 : The profile (s, d) satisfies inbreeding homophily for type if

$\mathrm{Hi}>\mathrm{Wi}$

In favor of same-type friendship

Definition 5: The profile (s, d) satisfies heterophily for type if

$$
\mathrm{Hi}<\mathrm{Wi}^{2}
$$

Use model to understand the observations

- Measurement of Homophily

Definition 6 : The inbreeding homophily of type i is

$$
I H_{i}=\frac{H_{i}-w_{i}}{1-w_{i}}
$$

$\mathrm{IHi}>0 \quad$ inbreeding homophily (in favor of same-type friendship)
$\mathrm{IHi}<0$ inbreeding heterophily (in favor of different-type friendship)
$\mathrm{IHi}=0 \quad$ baseline homophily (relative homophily)
$\mathrm{IHi}=1 \quad$ completely inbreeds (completely homophily)

Use model to understand the observations

- Pattern of US high school friendship

	Ethnicity of Students			
Percent of Friends				
by Ethnicity:	White	Black	Hispanic	Others
	$\%=131$	$\mathrm{n}=96$	$\mathrm{n}=13$	$\mathrm{n}=15$
$\%=51$	$\%=38$	$\%=5$	$\%=6$	
White	85	7	47	74
Black	4	85	46	11
Hispanic	4	6	2	4
Others	7	2	5	11

- The IH index of inbreeding homophily is 0.69 for whites (whose relative population is 51%)
- 0.76 for blacks (relative population 38%)
- 0.11 for Hispanics (2% of population)

Experiment

- Conduct an experiment on a representative sample of US high schools students.
- Simple Model:

Experiment

Diminishing return to from friendship

Experiments

- Outcomes :

The determinant of an individual's strategy of finding a friend is : his/ her preference \& the types he/ she faced

2 implications of the model:

- If agents' preferences over friendships are insensitive to type, then all agents form the same number of friendships.
- types are matched in frequencies in proportion to their relative stocks in the matching process cannot generate inbreeding. (probability of meeting same-type or different types)

Experiment

Given the 2 implications from the model

Experiment

Given the 2 implications from the model

- Examine type- sensitivity of preference to show that if Agent see higher marginal returns when form a mix of friendship that is biased towards same-type

Experiment

Given the 2 implications from the model

- Examine type- sensitivity of

preference to show that if

Agent see higher marginal returns when form a mix of friendship that is biased towards same-type

Random matching

Random matching with preference/bias

Conclusions

- Started a experiment in a selected sample of American high schools:
- Find that
- larger racial groups form more friends per capita
- while all groups display inbreeding homophily
- with highest levels for middle size group
- it shown that:
- If all types meet the same number of friends per unit of time
- then generating differences in per capita friendships in our model requires more than just having preferences on \# of friends .

Conclusion

- So, without differences in meeting rates across type, to generate observed data preferences need to be sensitive to types.
- The paper finds that the observed inbreeding homophily patterns can only be generated with some bias in the meeting process in favor of own type.
- Thus according to this model's results, both type sensitive preferences and biased opportunities play a role in friendship formation.

Question Time

