Overnight interest rates and aggregate market expectations

Nikola Gradojevic a,⁎, Ramazan Gencay b

a Faculty of Business Administration, Lakehead University, 955 Oliver Road, Thunder Bay, ON Canada P7B 5E1
b Department of Economics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6

Received 3 May 2007; received in revised form 24 September 2007; accepted 24 October 2007
Available online 1 November 2007

Abstract

This paper introduces an entropy approach to measuring market expectations with respect to overnight interest rates in an inter-bank money market. The findings for the Turkish 2000–2001 borrowing crisis suggest that a dynamic, non-extensive entropy framework provides a valuable insight into the degree of aggregate market concerns during the crisis.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Non-additive entropy; Tsallis entropy; q-Gaussian distribution

JEL classification: G0; G1; C40

1. Introduction

The Turkish financial crisis that peaked in February 2001 is an example of extreme risks in financial markets. The events that led to the crisis began in 1999 with a government reform program that was supposed to curb inflation by fixing the value of the Turkish Lira against a basket of foreign currencies. The structure of the program was such that it left the interest rate to be market determined. In other words, the reform implied that the volatility of interest rates would increase over the course of the program implementation (Gençay and Selçuk, 2006). However, the increase in the (simple annual) overnight interest rate that followed was unprecedented and reached 873% on December 1, 2000, 2058% on February 20, 2001, and 4019% on February 21, 2001. The government immediately abandoned the tabliya program, the Turkish Lira depreciated against the U.S. dollar by 40% in one week, and the interest rate declined to stable levels.

We study the dynamics of market expectations of the overnight interest rate during the crisis using a non-extensive (or Tsallis) entropic measure.1 We argue that the sentiment of a financial market can be summarized through the aggregation of the subjective expectations of its participants. If the expectations of market participants are highly dispersed and independent, extreme interest rate movements are less likely to occur. If however, market participants have highly dependent and less dispersed expectations, the aggregate market sentiment could drive the interest rate to extraordinary levels. Our approach extracts aggregate market expectations from a past sequence of interest rates via time-dependent Tsallis entropy. By utilizing this particular measure we concentrate on long-range, time-dependent, interactive instability in the market (Gell-Mann and Tsallis, 2004; Martin et al., 2000). Moreover, the Tsallis (or a q-Gaussian) distribution that is estimated by maximizing the Tsallis entropy can capture the frequency of extreme events together with ordinary frequencies satisfactorily (Borland, 2002; Gell-Mann and Tsallis, 2004). The findings show that from an entropic perspective market concerns between December 2000 and February 2001 were particularly strong

⁎ Corresponding author. Tel.: +1 807 3438419; fax: +1 807 3438443.
E-mail addresses: n gradoj @lakeheadu.ca (N. Gradojevic),
gencay @sfu.ca (R. Gencay).

0165-1765/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.econlet.2007.10.024

The time-dependent Tsallis entropy (TE) is calculated with a moving window of 200 days for the overnight interest rate. The lower boundary of \(S_1 \) is the minimum of the moving window. Accordingly, the upper boundary of \(S_{10} \) is the maximum of the moving window. Aggregate expectation probabilities \((p_i) \) are calculated from the ratio between the number of observations in each interval and the total number of observations in the moving window. The maximum entropy (expectations homogeneity) corresponds to equal probability of 10% for each state. The minimum entropy (expectations heterogeneity) occurs when all observations concentrate in one particular state such that one state receives 100% of the probability. In this particular case above, distribution of expectations is more evenly distributed until November 29, 2000 which becomes more concentrated towards December 1, 2000 in states \(s_1, \ldots, s_4 \). The increased concentration leads to a reduction in the entropy. The entropy is bounded between \([0, 1.48]\) for \(q = 2.66 \).}

and that subsequent high interest rate levels were to some extent predictable.

2. \(q \)-Gaussianity and Tsallis entropy

We will motivate our approach of modeling aggregate market expectations through a time-dependent Tsallis entropy by relating how the number of states (or regimes) in a market translate themselves into a probability distribution of the aggregate market sentiment. One well-known entropy is the Shannon information measure \((S_2) \):

\[
S_2(f(x)) = \int f(x) \ln \left(\frac{1}{f(x)} \right) dx
\]

or, in discrete setting \(S_2 \) is,

\[
S_2 = -\sum_{i=1}^{n} p_i \ln p_i, \quad \sum_{i=1}^{n} p_i = 1
\]

where the number of states \(i = 1, \ldots, n \), \(p_i \) is the probability of outcome \(i \), and \(n \) is the number of states. Namely, the entropy is the sum over the product of the probability of outcome \(p_i \) times the logarithm of the inverse of \(p_i \). This is also called \(i \)'s surprisal and the entropy of \(x \) is the expected value of its outcome’s surprisal. It is worthwhile to note that if two states \(A \) and \(B \) are independent from one another, \(p(A \cup B) = p(A)p(B) \), then \(S_S \) is additive \(S_S(A \cup B) = S_S(A) + S_S(B) \).

The entropy is the sum over the product of the probability of outcome \(p_i \) times the logarithm of the inverse of \(p_i \). This is also called \(i \)'s surprisal and the entropy of \(x \) is the expected value of its outcome’s surprisal. It is worthwhile to note that if two states \(A \) and \(B \) are independent from one another, \(p(A \cup B) = p(A)p(B) \), then \(S_S \) is additive \(S_S(A \cup B) = S_S(A) + S_S(B) \).

\[
\text{Tsallis (1988) entropy} \ (S_q) \ \text{is a generalization to a non-additive measure}
\]

\[
S_q(f(x)) = \frac{1}{q-1} \int f(x)^q dx
\]

where \(q \) is a measure of non-additivity such that \(S_q(A \cup B) = S_q(A) + S_q(B) - (1-q)S_q(A)S_q(B) \). Tsallis entropy recovers the Shannon entropy when \(q \rightarrow 1 \) such that \(\lim_{q \rightarrow 1} S_q = S_S \).

\[
S_q = \frac{1 - \sum_{i=1}^{n} p_i^q}{q-1}
\]

The maximum entropy principle for Tsallis entropy under the constraints

\[
\int f(x)dx = 1, \quad \frac{\int x^2 f(x)^q dx}{\int f(x)^q dx} = \sigma^2
\]

yields \(q \)-Gaussian probability density function

\[
f(x) = \frac{\exp \left(-\beta_q x^2 \right)}{\int \exp \left(-\beta_q x^2 \right) dx} \propto \left[1 + (1-q)(-\beta_q x^2) \right]^{\frac{1}{1-q}}
\]

where \(\beta_q \) is a function of \(q \) and \(\exp_q(x) \) is the \(q \)-exponential function defined by

\[
\exp_q(x) = \begin{cases}
1 + (1-q)x & \text{if } 1 + (1-q)x > 0 \\
0 & \text{otherwise.}
\end{cases}
\]

\(\beta_q \) is a function of \(q \) and \(\exp_q(x) \) is the \(q \)-exponential function defined by

\[
\exp_q(x) = \begin{cases}
1 + (1-q)x & \text{if } 1 + (1-q)x > 0 \\
0 & \text{otherwise.}
\end{cases}
\]

\(\beta_q \) is a function of \(q \) and \(\exp_q(x) \) is the \(q \)-exponential function defined by

\[
\exp_q(x) = \begin{cases}
1 + (1-q)x & \text{if } 1 + (1-q)x > 0 \\
0 & \text{otherwise.}
\end{cases}
\]

\(\beta_q \) is a function of \(q \) and \(\exp_q(x) \) is the \(q \)-exponential function defined by

\[
\exp_q(x) = \begin{cases}
1 + (1-q)x & \text{if } 1 + (1-q)x > 0 \\
0 & \text{otherwise.}
\end{cases}
\]

\(\beta_q \) is a function of \(q \) and \(\exp_q(x) \) is the \(q \)-exponential function defined by

\[
\exp_q(x) = \begin{cases}
1 + (1-q)x & \text{if } 1 + (1-q)x > 0 \\
0 & \text{otherwise.}
\end{cases}
\]

\(\beta_q \) is a function of \(q \) and \(\exp_q(x) \) is the \(q \)-exponential function defined by

\[
\exp_q(x) = \begin{cases}
1 + (1-q)x & \text{if } 1 + (1-q)x > 0 \\
0 & \text{otherwise.}
\end{cases}
\]
For \(q \rightarrow 1 \), \(q \)-Gaussian distribution\(^3\) recovers the usual Gaussian distribution.

As Gaussian distribution is unable to approximate fat tails (or extreme events) that are observed in many high-frequency empirical distributions in finance, we turn our attention to \(q \)-Gaussian probability distribution.\(^4\) Borland (2002) shows that \(q \)-Gaussian distribution provides a much better fit to the empirical distribution of high-frequency S&P 500 and Nasdaq returns than the log-normal.

Through a moving window approach, the evolution of \(S_q \) for the overnight interest rate is calculated over time.\(^5\) The calculation of a time-dependent entropy is influenced by the following considerations (Thakor and Tong, 2004):

1. **Number of states.** With too few states, one may not be able to characterize the underlying market sentiment reliably, and with too many states, tracking fine changes becomes difficult. Without loss of generality, we set \(n = 10 \).

2. **Partitioning method.** There are two different methods for partitioning the range of a time series: (a) fixed partitioning (equipartition is performed on all available data) and (b) adaptive partitioning (equipartition is performed on each moving window of data, i.e., it changes over time). The adaptive partitioning approach can track transient changes better than the fixed partitioning and is more suitable for our application.

3. **Estimation of \(q \).** The entropic index \(q \) is the degree of long-memory in the data. Gell-Mann and Tsallis (2004) estimate \(q \approx 1.4 \) for high-frequency financial data (returns and volumes) and stress that as the data frequency decreases, \(q \) approaches unity. Larger \(q \) values (1 < \(q \) ≤ 2) emphasize highly volatile activities in the signal when a time-dependent entropy is plotted against time, i.e., the entropy is more sensitive to possible disturbances in the probability distribution function. In this paper, we find the optimal \(q \) by minimizing the sum of the squared errors of the logarithms of the \(q \)-Gaussian probability density and the data-implied empirical density.

4. **Sliding step (\(\Delta \)) and moving window size (\(K \)).** The sliding step (the number of observations by which the moving

\(^3\) For a zero mean process with unitary variance \(b_q = 1/(5 - 3q) \) with \(q < 5/3 \).

\(^4\) For \(q > 1 \), the \(q \)-Gaussian distribution exhibits thicker tails than the standard normal distribution. Similar results are also demonstrated in Osorio et al. (2004) where the distribution of high-frequency returns are more successfully approximated by \(q = 1.4 \) rather than \(q = 1 \). It should be noted that the volatility clustering is more prevalent in higher frequency returns than in their lower frequency counterparts.

\(^5\) See Gamero et al. (1997) or Tong et al. (2002) for more information.
window is shifted forward across time) and moving window size (the number of observations used in calculating the entropy) determine the time resolution of S_q. If the focus is on tracking the local changes, the sliding step is set to be very small (e.g., one observation: $\Delta = 1$). Non-overlapping windows ($\Delta \geq K$) are useful only when one is interested in monitoring the general trend of a time series. To get a reliable probability distribution function, K should not be too small. We set $\Delta = 1$ and $K = 200$.

3. Results

The data are the daily overnight interest rates (simple annual percent) from January 2, 1990 to November 30, 2001 (2999 observations). They are calculated by the Central Bank of Turkey as a weighted average of intraday transactions in the inter-bank money market. Excess skewness and kurtosis are observed for both the sample period before the crisis and the full sample. Noteworthy, fat-tailness and skewness substantially increased during the crisis.6

First, we estimate the long-memory parameter (\hat{q}) for the sample period before the crisis and find that $\hat{q} = 2.66$ (0.02).7 Using the optimal q, next we investigate the evolution of the time-dependent Tsallis entropy based on overnight interest rates.

Table 1 presents how the probabilities of the states are distributed before and during the crisis. During the time period of February and early November 2000, at least eight out of ten states have positive probabilities indicating that some market participants are expecting upward movements in prices (s_{10}) whereas others are expecting a downward market (s_1). Since most states have positive probabilities in this period, there is no consensus amongst the market participants as to which direction the market is going to evolve. A sudden change in the distribution of probabilities (concentration increases towards states $s_1 \sim s_4$) is apparent when the entropy declined from November 29, 2000 to December 1, 2000, while the interest rate increased from 160.78 to 873.13. Fig. 1 also shows a major dip in the entropy on December 1, 2000. This indicates the lack of aggregate expectations heterogeneity and concerns that the interest rate is too high.

The most striking result is the behavior of the entropy following December 1, 2000 when there were concerns about the Treasury’s ability to borrow from the domestic market at favorable terms. These concerns were not directly reflected in the interest rate that was relatively stable during this period. However, after the entropy had bottomed out, it did not gradually recover, but, on December 26, 2000, hit a ceiling at 0.126 with the probabilities still concentrated in states $s_1 \sim s_4$. At this value, the entropy remained stable until February 20, 2001, when the interest rate reached 2000% (the entropy then decreased to 0.039).

For comparison purposes, Fig. 1 also includes a plot of the more standard Shannon entropy ($q = 1$).8 It exhibits features similar to the Tsallis entropy, but there are a few differences: 1. The Shannon entropy is more volatile (and, thus, less reliable as a diagnostic measure), especially in the region before the crisis; 2. Its values are much higher and, for instance, range between 1.5 and 2 before the slump; 3. Its values never get as close to zero as the Tsallis entropy does during the crisis (therefore clearly indicating expectations homogeneity).

Therefore, our approach extracts very useful information regarding the extreme expectations and the entropy provides a powerful platform to measure and predict the concentration of these expectations in a particular direction. In the end, it is important to stress that our findings are not sensitive to various reasonable choices for the size of the moving window K (100–1000 days) and the number of states n (7–10).

4. Conclusions

By monitoring a time-dependent Tsallis entropy, one can gain insight into the evolution of the aggregate market expectations and obtain an early indication of upcoming crises. We extract the entropy from the daily overnight interest rates before, during and after Turkish financial crisis in February, 2001. The results suggest that the entropy performs well in tracking aggregate market expectations as reflected in interest rates and, thus, complement the work by Gençay and Selçuk (2006) who also found that an interest rate crisis of large magnitude was to be expected. This innovative approach could benefit both investors and policy makers that in this case failed to anticipate such extreme events.

References

6 For more information about the data see Gençay and Selçuk (2006).

7 The number in parentheses is the bootstrap standard error. We use one leave-out bootstrap with replacement for a window size of $K = 200$ observations.

8 We thank the anonymous referee for this and other useful suggestions.