Some Spectral Facts

A. J. Seary and W. D. Richards

School of Communication
Simon Fraser University
Burnaby BC Canada V 5A 156
email: seary@sfu.ca, richards@sfu.ca
Presented to INSNA Sunbelt XVIII

Definitions

A good introduction to Spectral Graph Theory isfound in "Spectra of Graphs" by Cvetkovic, Doob and Sachs (CDS, 1980).
Assume G is an undirected connected loopless graph without multipleedges which is not complete. (The definitions below can be extended to weighted graphs, but for simplicity we will not consider multigraphs here. A ssuming G isconnected and not complete avoids certain trivial results). G has nodes V and edges E, with $|\mathrm{V}|=\mathrm{n}$.

TheA djacency M atrix $A(G)$ of graph G is a binary matrix with

$$
A(i, j)=1 \text { if } i \text { is connected to } j
$$

$=0$ otherwise
The eigenpairs of A are $\left(\alpha_{i}, a_{i}\right)$ such that $A a_{i}=\alpha_{i} a_{i}$
The eigenvalues $\{\alpha\}$ are called thespectrum of A . The eigenvectors a_{i} are orthogonal.
If G isk-regular, then $\mathrm{a}_{0}=1 / \sqrt{ } \mathrm{n}$, with $\alpha_{0}=\max \left(\alpha_{\mathrm{i}}\right)=\mathrm{k}$.
TheLaplacian M atrix $L(G)$ is a matrix with
$L(i, j)=-1$ if i is connected to j
$L(i, i)=\operatorname{deg}(i)$ wheredeg (i) is the degree of nodei
$L(i, j)=0$ otherwise
The eigenpairs of L are $\left(\lambda_{i}, l_{i}\right)$ with $\lambda_{0}=\min \left(\lambda_{i}\right)=0$ and $I_{1}=1 / \sqrt{ } n$
Thel ${ }_{i}$ aremutually orthogonal and the Laplacian spectrum is $0=\lambda_{0} \leq \lambda_{1} \leq, \ldots, \leq \lambda_{n-1} \leq n$
The multiplicity of 0 as an eigenvalue is equal to the number of components in G.
There are a number of other equvalent definition of L the simplest being:

$$
\mathrm{L}=\mathrm{D}-\mathrm{A}
$$

whereD is the diagonal matrix of node degrees.
TheN ormal matrix $N(G)$ is a matrix with
$N(i, j)=1 /(\sqrt{ }(\operatorname{deg}(i) \sqrt{ } \operatorname{deg}(j))$ if i is connected to j
$N(i, j)=0$ otherwise
Wemay view N as $D^{-1 / 2} A D^{-1 / 2}$. Let $\left(\gamma_{i}, c_{i}\right)$ betheeigenpairs of N.
The Normal spectrum is $1=\gamma_{0}=\max \left(\gamma_{i}\right) \geq \gamma_{1} \geq, \ldots, \geq \gamma_{n-1} \geq-1$

Then calculate the pairs:

$$
\left(\gamma_{i}, D^{-1 / 2} c_{i}\right)=\left(v_{i}, n_{i}\right)
$$

Wehave that

$$
n_{i} D n_{j}=\delta_{i j}
$$

That is, the vectors are orthonormal in theD (or χ^{2}) metric. TheN ormal spectrum is called theQ-spectrum in CDS. The multiplicity of eigenvalue 1 is the number of components in G.

Compositions

TheK ronecker product (tensor product) of two graphs G_{1} and G_{2} is most easily defined in terms of their adjacency matrices A_{1} and A_{2} as follows:

$$
\left(A_{1} \otimes A_{2}\right)_{i j}=A_{2} \text { when } A_{1}(i, j)=1
$$

$=0$ otherwise, e.g.:

TheC artesian Product may be defined in terms of the K ronecker product as:

$$
\mathrm{A}_{1} \oplus \mathrm{~A}_{2}=\mathrm{A}_{1} \otimes \mathrm{l}_{2}+\mathrm{A}_{2} \otimes \mathrm{l}_{1}
$$

where the I_{i} are identity matrices of size $\left|\mathrm{V}_{\mathrm{i}}\right|$.
Then we havethat the Adjacency spectrum of $\mathrm{A}_{1} \oplus \mathrm{~A}_{2}$ is $\left\{\alpha_{i}+\beta_{j}\right\}$ where $\left\{\alpha_{i}\right\}$ is the spectrum of A_{1} and $\left\{\beta_{j}\right\}$ is the spectrum of A_{2} That is, the spectrum is the sum of all possible pairs. Furthermore, the eigenvectors of $\mathrm{A}_{1} \oplus \mathrm{~A}_{2}$ belonging to $\left\{\alpha_{i}+\beta_{j}\right\}$ are K ronecker products of the corresponding eigenvectors of A_{1} and A_{2}, so that the eigenpairs are:

$$
\left(\left\{\alpha_{i}+\beta_{j}\right\},\left\{a_{i} \otimes b_{j}\right\}\right)
$$

W e say theA djacency spectrum behaves well under Cartesian product.
The Laplacian also behaves well under Cartesian product $\mathrm{L}_{1} \oplus \mathrm{~L}_{2}$ with eigenpairs:

$$
\left(\left\{\lambda_{\mathrm{i}}+\kappa_{\mathrm{j}}\right\},\left\{\mathrm{I}_{\mathrm{i}} \otimes \mathrm{k}_{\mathrm{j}}\right\}\right)
$$

Further, the eigenvalues of L_{1} and L_{2} always contain a $\lambda_{0}=0$ with corresponding constant eigenvector, so that the corresponding eigenpairs of $L_{1} \oplus L_{2}$ are $\left(\lambda_{1}+0, I_{1} \otimes 1\right)$. Theterm $I_{1} \otimes 1$ means that the components of I_{1} arereplicated $\left|\mathrm{V}_{2}\right|$ times. Since the Cartesian product of two pathsis a grid, this produces a perfectly rectangular representation. The Laplacian is therefore a useful tool in problems involving regular grids (or hypergrids).

However, N does not behave well under Cartesian product.

TheK ronecker product was defined above. It turns out that the A djacency spectrum al so behaves well under Kronecker product, so that $A_{1} \otimes A_{2}$ has eigenpairs

$$
\left(\left\{\alpha_{i} \times \beta_{\mathrm{j}}\right\},\left\{\mathrm{a}_{\mathrm{i}} \otimes \mathrm{~b}_{\mathrm{j}}\right\}\right)
$$

The Laplacian does not behave well under Kronecker product.
H owever, the N ormal spectrum does behave well under K ronecker product (Chow, 1997), so that $\mathrm{N}_{1} \otimes \mathrm{~N}_{2}$ has eigenpairs

$$
\left(\left\{v_{\mathrm{i}} \times \mu_{\mathrm{j}}\right\},\left\{\mathrm{n}_{\mathrm{i}} \otimes \mathrm{~m}_{\mathrm{j}}\right\}\right)
$$

Further, the eigenvalues of N_{1} and N_{2} al ways contain a $v_{0}=1$ with corresponding constant eigenvector, so that the corresponding eigenpairs of $\mathrm{N}_{1} \otimes \mathrm{~N}_{2}$ are $\left(v_{1} \times 1, \mathrm{n}_{1} \otimes 1\right)$. The term $\mathrm{n}_{1} \otimes 1$ means that the components of n_{1} are replicated $\left|\mathrm{V}_{2}\right|$ times. This produces clustering of the components of $\mathrm{N}_{1} \otimes \mathrm{~N}_{2}$ for theseeigenvectors.

It appears that the behaviour under K ronecker product explains why both the Adjacency and Normal eigenvectors are good at detecting both on- and off-diagonal blocks. The signs of the A djacency (after removing row-means) eigenvectors were studied by (Schwartz, 1977) and shown to beessentially those found by CONCOR.

Visualisation
TheLaplacian can L provide good visual representations of graphs which areCartesian products (such as gridsand hypercubes); whileN can providegood visual representations of graphs which are K ronecker products (such as graphs consisting of blocks). The reasons for thisare suggested above and have mostly to do with the behaviour of eigenpairs which aresums and products with 0 and 1, respectively. For general (notk-regular) graphs, eigenpairs of A do not providesuch good representations since, in general, there is no constant eigenvector to combine with.

A nother way of describing these results is to consider the relationship between the eigenvector components for a node and those it is connected to. It is evident from the definition of eigendecomposition that (where $u \sim v$ means u is connected to v)

$$
\begin{array}{ll}
a_{i}(u)=\sum_{u \sim v^{2}} a_{i}(v) / \alpha_{i} & \text { for eigenpair } i \text { of } A \\
l_{i}(u)=\sum_{u \sim v_{i}}(v) /\left(\lambda_{i}-\operatorname{deg}(u)\right) & \text { for eigenpair } i \text { of } L \\
n_{i}(u)=\sum_{u \sim v} n_{i}(v) /\left(v_{i} \times \operatorname{deg}(u)\right) & \text { for eigenpair } i \text { of } N
\end{array}
$$

N ote that A has no control for node degree. Consider the effect for "important" eigenpairs $(|\alpha| \sim k \gg 1, \lambda \approx 0$ and $|v| \simeq 1$) when $\operatorname{deg}(u)$ is small: $a(u)$ will be folded toward theorigin, whilel(u) and $n(u)$ will sit further away from the origin than its neighbours. This effect makes it difficult to interpret visual representations based on A, except for k -regular graphs where all three spectra are essentially the same.

References

Chow, T.Y. (1997). "TheQ-spectrum and spanning trees of tensor products of bipartitegraphs", Proc. Am. M ath. Soc., 125(11): 3155-3161.

Cvetkovic, D.M. , M . Doob, \& H . Sachs. (1980). Spectra of Graphs, Theory and A pplication, A cademic Press.
Richards, W .D. \& Seary, A.J. (1997). Convergence analysis of communication networks, in Organizational Communication: Emerging Perspectives 5 (Ed: G. Barnett \& L. Thayer), Ablex, N orwood NJ, 141-189.

Schwartz, J.E. (1977). An examination of CON COR and related methods for blocking sociometric data, Sociological M ethodology, 255-282.
Seary, A.J. \& Richards, W .D. (1995). Partitioning networks by eigenvectors, Proc. International conference on Social Networks, London, V ol. 1, 47-58.

