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Definitions

A good introduction to Spectral Graph Theory is found in "Spectra of Graphs" by Cvetkovic, Doob and
Sachs (CDS, 1980).

Assume G is an undirected connected loopless graph without multiple edges which is not complete. (The
definitions below can be extended to weighted graphs, but for simplicity we will not consider multigraphs
here. Assuming G is connected and not complete avoids certain trivial results). G has nodes V and edges E,
with *V* = n.

The Adjacency Matrix A(G) of graph G is a binary matrix with

                   A(i,j) = 1 if i is connected to j

         = 0 otherwise

The eigenpairs of A are ("i , ai) such that Aai = "iai

The eigenvalues {"} are called the spectrum of A. The eigenvectors ai are orthogonal.

If G is k-regular, then a0 = 1/%n, with "0 = max("i) = k.

The Laplacian Matrix L(G) is a matrix with 

                   L(i,j) = -1 if i is connected to j 

 L(i,i) = deg(i) where deg(i) is the degree of node i

 L(i,j) = 0 otherwise

The eigenpairs of L are (8i , li) with 80 = min(8i) = 0 and l1 = 1/%n

The li  are mutually orthogonal and the Laplacian spectrum is 0=80# 81# ,..., # 8n-1 # n

The multiplicity of 0 as an eigenvalue is equal to the number of components in G.

There are a number of other equvalent definitions of L the simplest being:
                   L = D - A
where D is the diagonal matrix of node degrees.

The Normal matrix N(G) is a matrix with

                    N(i,j) = 1/(%(deg(i)%deg(j)) if i is connected to j

                    N(i,j) = 0 otherwise

We may view N as D-1/2AD-1/2. Let ((i , ci) be the eigenpairs of N. 

The Normal spectrum is 1= (0 = max((i) $(1 $ ,..., $ (n-1 $ -1
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Then calculate the pairs:

                    ((i , D
-1/2ci) = (<i  , ni)

We have that

                      niDnj = *ij

That is, the vectors are orthonormal in the D (or P2) metric. The Normal spectrum is called the Q-spectrum
in CDS. The multiplicity of eigenvalue 1 is the number of components in G.

Compositions
The Kronecker product (tensor product) of two graphs G1 and G2  is most easily defined in terms of their
adjacency matrices A1 and A2  as follows:

(A1qA2)ij = A2  when A1 (i,j) = 1
                     = 0   otherwise, e.g.:
             A1        A2               A1qA2
   1 1 1    0 1 1 0 1 1 0 1 1 0 1 1 Note: this is a core-periphery
   1 0 0 q  1 0 1       = 1 0 1 1 0 1 1 0 1 structure, where A1 is a
   1 0 0    1 1 0  1 1 0 1 1 0 1 1 0     blockmodel.
                       0 1 1 0 0 0 0 0 0
                      1 0 1 0 0 0 0 0 0
                     1 1 0 0 0 0 0 0 0
                 0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0                  

The Cartesian Product may be defined in terms of the Kronecker product as:

 A1rA2 = A1qI2 + A2qI1

where the Ii are identity matrices of size *Vi* .

Then we have that the Adjacency spectrum of A1rA2 is {"i + $j} 
where {"i} is the spectrum of A1  and {$j} is the spectrum of A2

That is, the spectrum is the sum of all possible pairs.
Furthermore, the eigenvectors of A1rA2 belonging to {"i + $j} are Kronecker products of the corresponding
eigenvectors of A1 and A2 , so that the eigenpairs are:

                    ({"i + $j} ,{ ai q bj })

We say the Adjacency spectrum behaves well under Cartesian product.
The Laplacian also behaves well under Cartesian product L1rL2 with eigenpairs:

  ({8i + 6j} ,{ li q kj })

Further, the eigenvalues of L1 and L2 always contain a 80 = 0 with corresponding constant eigenvector, so
that the corresponding eigenpairs of L1rL2 are (81+0, l1q1). The term l1q1 means that the components of l1

are replicated *V2* times. Since the Cartesian product of two paths is a grid, this produces a perfectly
rectangular representation. The Laplacian is therefore a useful tool in problems involving regular grids (or
hypergrids).

However, N does not behave well under Cartesian product.
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The Kronecker product  was defined above. It turns out that the Adjacency spectrum also behaves well under
Kronecker product, so that A1qA2 has eigenpairs

({"i × $j} ,{ ai q bj })

The Laplacian does not behave well under Kronecker product.

However, the Normal spectrum does behave well under Kronecker product (Chow, 1997), so that N1qN2

has eigenpairs

 ({<i × :j} ,{ ni q mj })

Further, the eigenvalues of N1 and N2 always contain a <0 = 1 with corresponding constant eigenvector, so
that the corresponding eigenpairs of N1qN2 are (<1 × 1, n1q1). The term n1q1 means that the components of
n1 are replicated  *V2* times. This produces clustering of the components of  N1qN2 for these eigenvectors.

It appears that the behaviour under Kronecker product explains why both the Adjacency and Normal
eigenvectors are good at detecting both on- and off-diagonal blocks. The signs of the Adjacency (after
removing row-means) eigenvectors were studied by (Schwartz, 1977) and shown to be essentially those
found by CONCOR.

Visualisation
The Laplacian can L provide good visual representations of graphs which are Cartesian products (such as
grids and hypercubes); while N can provide good visual representations of graphs which are Kronecker
products (such as graphs consisting of blocks). The reasons for this are suggested above and have mostly to
do with the behaviour of eigenpairs which are sums and products with 0 and 1, respectively. For general
(not k-regular) graphs, eigenpairs of A do not provide such good representations since, in general, there is
no constant eigenvector to combine with. 

Another way of describing these results is to consider the relationship between the eigenvector components
for a node and those it is connected to. It is evident from the definition of eigendecomposition that (where
u~v means u is connected to v)

ai(u) = Eu~vai(v)/"i    for eigenpair i of A

li(u) = Eu~vli(v)/(8i-deg(u)) for eigenpair i of L

ni(u) = Eu~vni(v)/(<i×deg(u)) for eigenpair i of N

Note that A has no control for node degree. Consider the effect for "important" eigenpairs (*"*� k o 1, 8� 0
and *v* � 1) when deg(u) is small: a(u) will be folded toward the origin, while l(u) and n(u) will sit further
away from the origin than its neighbours. This effect makes it difficult to interpret visual representations
based on A, except for k-regular graphs where all three spectra are essentially the same.
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