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Abstract: We view the (signed) eigenvalues produced by Correspondence Analysis as belonging to the
the spectrum associated with the combinatorial Laplacian operator. We show how this spectrum can
be used to provide bounds on distance and diameter of a graph. 

For random and semi-random (Watts & Strogatz, 1998) graphs, the extreme eigenvalues provide
bounds on diameter. When a graph is far from being random, the eigenvalues provide bounds on the
distances between subsets of nodes, and thus provide bounds on the number of cohesive blocks (where
the eigenvectors provide blocking information). 

Introduction

In this paper we will assume that all graphs are undirected. Then the singular values and vectors
produced by Correspondence Analysis (CA) are simply eigenvalues and eigenvectors. CA has been
suggested as a method for finding block structure in graphs and for graph visualisation (Noma &
Smith, 1986; Seary & Richards, 1995). The fact that the squared eigenvalues are a partition of P2

(Greenacre, 1984) may be used to argue that the corresponding eigenvectors measure "important"
contributions to the structure of a graph (Richards and Seary, 1997) has led to criticisms of CA as a
statistical method (Roberts, 1996). E.g., how do we deal with the "missing values" along the diagonal?

We avoid such problems completely by viewing CA as a technique of Spectral Graph Theory (SGT).
In fact CA belongs to a closely-knit family as we describe below. SGT is the study of the relationship
between spectra of graphs and graph invariants such as diameter, connectivity, expansion, cover time
and many others. We will concentrate on diameter and distances between subsets, and show the
relationship between these invariants and the eigenvalues.

Definitions

A good introduction to SGT is found in "Spectra of Graphs" by Cvetkovic, Doob and Sachs(CDS,
1980). Many of the results below come from the more recent "Spectral Graph Theory" by Fan Chung
(Chung, 1995).

Assume G is an undirected connected loopless graph without multiple edges which is not complete.
(The definitions below can be extended to weighted graphs, but for simplicity we will not consider
multigraphs here. Assuming G is connected and not complete avoids certain trivial results). G has
nodes V and edges E, with *V* = n.



The Adjacency Matrix A(G) of graph G is a binary matrix with

A(i,j) = 1 if i is connected to j

    = 0 otherwise

The eigenpairs of A are ("i , ai) such that Aai = "iai

If G is k-regular, then a0 = 1/%n, with "0 = max("i) = k.

The Laplacian Matrix L’(G) is a matrix with 

L’(i,j) = -1 if i is connected to j 

L’(i,i) = deg(i) where deg(i) is the degree of node i

L’(i,j) = 0 otherwise

The eigenpairs of L’ are (8’i , l’i) with 8’0 = min(8’i) = 0 and l’1 = 1/%n

The l’i  are mutually orthogonal and 0=8’0# 8’1# ,..., # 8’n-1 # n

The multiplicity of 0 as an eigenvalue is equal to the number of components in G.

There are a number of other equvalent definitions of L’ the simplest being:

L’ = D - A

where D is the diagonal matrix of node degrees.

The CA matrix C(G) is a matrix with

C(i,j) = 1/(%(deg(i)%deg(j)) if i is connected to j

C(i,j) = 0 otherwise

We may view C as D-1/2AD-1/2. Let ((i , ci) be the eigenpairs of C. 

We have 1=(0 = max((i) $(1 $ ,..., $ (n-1 $ -1

Then CA calculates the pairs

((i , D
-1/2(i ci)

Also, CA generally removes the (normalised) P2 expecteds, which removes the eigenpair belonging to
eigenvalue 1 and produces a "trivial" vector of length 0.

Most versions of CA assume that G is not symmetric and ignore the signs of (i, though these are
important.



The Normal matrix N(G) is C(G). The eigenpairs are

((i  , D
-1/2ci) = (<i  , ni)

This differs from CA only in the definition of the vectors, which remain normalized.

We have that

niDni = *ij

That is, the vectors are orthonormal in the D (or P2) metric. The Normal spectrum is referred to as the
Q-spectrum in CDS.

An interesting property of N(G) is that we can add a constant value c along the diagonal without
changing the eigenvectors. so that the eigenvalues become c + <i and the eigenvectors are unchanged
(Seary & Richards, 1995). This corresponds to adding a constant cdeg(i) to the original adjacency
matrix A.

The cohesive (positive eigenvalue) on-diagonal blocks of G may be emphasized by shifting the
spectrum as follows:

<’ = (1+<) / 2

This makes all eigenvalues positive: positive <i become closer to 1, while negative <i become close to
zero. This equation goes too far, since the most negative <n-1 is only -1 for bipartite graphs. In general,
we need only shift by <n-1 $ -1 to ensure all eigenvalues are positive:

<’ = (<i - <n-1) / 2

The shifting technique will be used extensively below.

The combinatorial Laplacian L(G) (Dodziuk & Kendall, 1986; Chung, Gregor’yan & Yau, 1996) is
simply I-N(G). By the remark above, the eigenvalues are 8i = 1-<i . The eigenvectors are those of L so
that

 li lj = *ij

That is, the eigenvectors form an orthogonal system, which we will use below.

Note that while n0 = 1/%n is a constant vector,  l0 = D1/21 is not. We prefer to use ni since the
components satisfy the P2 measure of distance: nodes with similar row-profiles have similar
components.

   

We apologize for all these different matrices and spectra (though the last three are closely related). In
fact, we can also define L in terms of L’ as follows:

L = D-1/2L’D-1/2

We have

{8} = {1- <} and {<} = {1 - 8}

so that



0 = 80 = min(8i) # 81 # ,..., # 8n-1 # 2

Just as for L’ the eigenvalues of L are all positive. Also:

{l} = {D1/2 n} and {n} = {D-1/2 l}

One further definition (or redefinition):

The volume of a Graph G is 

vol G = Ei ,V deg(i) = 2*E*

The volume of any subset SdV  is just 

vol S  = Ei ,S deg(i)

so that the volume of a node is just its node degree.

The term volume is used because of an analogy to the continuous case (where the Laplacian is L2 ). It
turns out that many important results involving the continuous Laplacian on Riemannian manifolds
can be translated to similar results on graphs (and vice-versa). A small cottage industry arose in the 80’s
doing just that, with many applications in network and algorithm design. The main goal was to
explicitly construct graphs that had desirable properties of random graphs: small diameter, many
disjoint paths, and sparsity. Because of this, the first attempts to bound diameter in terms of
eigenvalues worked reasonably well for random-like graphs, but were very poor for graphs with block
structure. Also many important results about k-regular graphs using the adjacency spectrum can be
translated into results on general graphs using the Laplacian spectrum. For example:

For G k-regular, the complexity 6(G) = 1/nAi=1(k - "i)

For G in general, 6(G) = 1/nAi=18’i

 (This is a very old result: Kirchoff’s Matrix-Tree Theorem).

In the 90’s, another cottage industry arose with the realisation that Markov chains could be analysed
by using the combinatorial Laplacian (Jerrum & Sinclair, 1989; Diaconis & Stroock, 1991): translating
results from the Laplacian L’ to combinatorial L as in

For G in general, 6(G) = Ai=18i Ai vol(i)/Eivol(i)

This result (Runge, 1976) illustrates that the translation requires careful bookkeeping about the degree
of each vertex. The advantage is that we can make arguments in more detail than is possible for L’ (and
these same arguments apply almost trivially to the Normal spectrum). 

Bounds on diameter

We will now present a series of eigenvalue bounds of diameter. In order to show the improvement in
the bounds over the last decade, we will use the technique introduced by (Watts and Strogatz, 1998)
to construct a series of graphs with constant edge density and variable randomness.



Their technique starts with a circulant graph of width k, and rewires edges at random with probability
p. For details see (WS, 1998). WS used this process to show that clusterability (cohesion) decreases
much more slowly than mean distance for increasing p, so that so-called "Small World" (semi-random)
graphs with both clusters and short distances are easy to construct. We present results from their model
in Figure 1, which shows cohesion (dotted) and diameter (solid) for a circulant graphs with 1000 nodes
and width 10 over a range of

log(p) from -6 to 0. The results shown are means for 20 random graphs at each probability p.

 We start with a simple example to illustrate the technique used to estimate bounds on diameter devised
by (Chung, 1988).

We can naively calculate diameter by simply raising matrix A(G) to a power m for which all entries in
Am are >0. Then the diameter is m, since there is a path between every node in G.

However, for large G this is not very efficient. Instead, we express Am in terms of the
eigendecomposition. The following result applies only to regular graphs, but illustrates the methods
we will use later. We know a0 = 1/%n with  "0 = k = max("i) so that

(Am)rs = Gi("i)
m(aiai*)rs eigendecomposition

$ km/n - *Gi>0 ("i)
m (ai )r(ai*)s* force inequality

$ km/n - *"*m{Gi>0 *(ai )r **(ai*)s*} *"*=*"1*=maxi>0*"i*

$ km/n - *"*m{Gi>0 
 (ai )r 

2}1/2 {Gi>0 (ai*)s
2}1/2 Cauchy-Schwartz

= km/n - *"*m{1-(a0 )r 
2}1/2{1-(a0*)s

2 }1/2 constant eigenvector

=  km/n -"m(1-  1/n) since a0 = 1/%n

> 0    if the two RHS terms cancel

Now, to make the two terms on the right cancel, choose  

m = j ln(n-1)/ln(k/")k

so that 

Diam(G) # j ln(n-1)/ln(k/")k

The steps followed here are very similar for bounds developed below. The bound is very poor for the
starting circulant (regular) graph used in the WS model.

The dashed curve shows an eigenvalue bound for distance based on combinatorial Laplacian
eigenvalues, due to (Chung, Faber & Manteuffel, 1994). The bound is fair for p=1 but poor elsewhere.
The  method used for this bound is reminiscent of sparse matrix techniques for finding eigenpairs.
Here we begin to use the detail available with L by calculating

Diam(G) = max(dist(X,Y))    X,Y0 V(G)



To bound the distances between all pairs of subsets, define vectors

R X (x) =  1 if x0X, 0 otherwise

R Y (y) =  1 if y0Y, 0 otherwise

Now express R X  and R Y as Fourier series in li  

D1/2R X  = E ai li     ,     D
1/2R Y = E bi li 

Note that

a0 = volX/%volG , b0 = volY/%volG

and Ei>0ai
2 = 2D1/2RX 2

2 - a0
2 

= volX - (volX)2/volG  

= volX(volG\X)/volG

=  G\X (the complement of X) '
vol X vol X̄

vol G
X̄

Similarly,

j
i >0

b 2
i '

vol Y vol Ȳ

vol G

To estimate distance, form the inner product

IP = +D1/2RY  , pt(L)D1/2RX,

= Gi pt(8i) ai bi inner product with li lj = *ij

= a0 b0 + Gi>0 pt(8i) ai bi constant eigenvector

where pt(z) is some polynomial in z. We choose pt(z) = (1-z)t so that, assuming 

1 - 81 $ 8n-1 - 1   (or *<1* $ *<n-1*) (we will relax this restriction later),

then * pt (8i )* # (1 - 8)t  where 8 = 81

So IP $ (volXvolY)/volG - (1-8)t (Gi>0ai
2

 bi
2 )1/2      repeating the steps above

'
vol X vol Y

vol G
& (1&8)t

vol X vol X̄ vol Y vol Ȳ

vol G



t $
ln

vol X̄ vol Ȳ

vol X vol Y

ln
1

1& 8

Diam (G) # max

ln
vol X̄ vol Ȳ

vol X vol Y

ln
1

1& 8

Diam (G) # max

ln
vol X̄ vol Ȳ

vol X vol Y

ln
8n&1% 81

8n&1& 81

Now to ensure that the two terms on the right cancel (so that IP>0), choose

so that  

To bound the diameter, take the maximum value by choosing X and Y as single nodes with the smallest
degree. 

Trick #1: Set 8= 28/(8n-1 + 81)  i.e, shift the spectrum

Then the bound for diameter becomes

This is the lighter dashed curve shown in Figure 1.

Trick #2: pt(z) = (1-z)t is not the best polynomial. A better choice is the Chebyshev polynomial Tt(z)
usually defined as

                    T t(z) = cos(t cos-1(z))

= cosh(t cosh-1(z))

The last expression is not as familiar, but note that cosh-1(z) is very close to ln(z) for large z. We will use
the polynomial 

St ( z ) '

Tt (
8n&1% 81& 2 z

8n&1& 81

)

Tt (
8n&1% 81

8n&1& 81

)



By the minimax property of Chebyshev polynomials,  

maxze0[81 , 8n-1 ] St(81) $ 1/Tt((8n-1 + 81)/(8n-1 - 81))

Now the inequality becomes

IP $ (volXvolY)/volG - St(8) (volXvolY(volG\X)(volG\Y))1/2/volG

To make the RHS equal to 0 choose 

t $
cosh&1 vol X̄ vol Ȳ

vol X vol Y

cosh&1
8n&1% 81

8n&1& 81

Then the bound on diameter becomes

Diam (G) # max

cosh&1 vol X̄ vol Ȳ

vol X vol Y

cosh&1
8n&1% 81

8n&1& 81

where the maximum is ensured by choosing X and Y to be nodes with the smallest degrees. This gives
the dash-dot curve in figure 1. The bound is much better at low p, because 

cosh-1(z) behaves quite differently from ln(z) around z=1 (or 81 near 0).

Can the bound be improved at low p? In (Chung, 1996) the numerator is replaced by 

cosh-1(volG/volXvolY) which is much better at p=0 and quite tight at p=1. This is shown by the lighter
dash-dot curve in Figure 1.

Bounds on distance between subsets

We can use very similar methods to find bounds on distances among many subsets (Chung,1995). Let
Xi d V, i = 1 ,..., k+1 be disjoint subsets of G.

Then

miniûj dist (Xi , Xj ) # maxiûj

ln
vol X̄i vol X̄j

vol Xj vol Xj

ln
8n&1% 8k

8n&1& 8k



For example, choose 2 nodes: the distance between them is bound by the diameter (using 81), as we
have seen.

To show this, let X and Y be two distinct subsets among the Xi, and consider

+D1/2RY  , (I-L)tD1/2RX, $ a0 b0 + Gi<k (1 - 8i)
t ai bi -  Gi$k (1 - 8i)

t ai bi

In (Chung, Grigor’yan and Yau, 1996) it is shown that we can always choose X, Y such that

Gi<k (1 - 8i)
t ai bi $ 0

so that

� D½RY , (I&L )t D½RX � >
vol X vol Y

vol G
& (1&8)t

vol X vol Y vol X̄ vol Ȳ

vol G

Now choose 

t $
ln

vol X̄ vol Ȳ

vol X vol Y

ln
8n&1% 8k

8n&1& 8k

 to ensure that the terms on the RHS cancel.

Can these bounds be improved? In (Chung, 1996) the numerator is replaced by 

ln(volG/volXvolY)

This is some improvement, but better bounds would result by replacing the denominator. As before,
we can find the maximum for all k by fixing the subsets in the numerator to be the nodes with smallest
degree. The result implies that for large 8k the distances are small. Another interpretation is that if the
upper bound on distance is large for a given k, then some pair may be distant, but if all distance bounds
are small for a given 8k, there are too many subsets to allow this. Therefore, we can use these distance
bounds to get an upper bound in the number of (cohesive, on-diagonal) blocks to look for.



References

(Chung, 1988) F.R.K. Chung, "Diameters and Eigenvalues", J. Am. Math. Soc. 1988 2 (2) ,187-196.

(Chung, Faber & Manteuffel, 1994) F.R.K. Chung, V. Faber, & T.A. Manteuffel, "An upper bound in
the diameter of a graph from eigenvalues associated with its Laplacian", SIAM J. Discrete Math.
1994 7 (3) 443-457.

(Chung, 1995) F.K.R. Chung, Spectral Graph Theory, CBMS Lecture Notes, AMS Publication, 1995.

(Chung, 1996) F.K.R. Chung, "Eigenvalues of graphs", Proceedings of ICM, Zürich, 1994, Birkhäuser
Verlag, Berlin, 1333-1342.

(Cvetkovic, Doob & Sachs, 1980) D.M. Cvetkovic, M. Doob, & H. Sachs, Spectra of Graphs, Theory
and Application, Academic Press, 1980.

(Diaconis & Stroock, 1991) P. Diaconis, D.W. Stroock, "Geometric bounds for eigenvalues of Markov
chains", Ann. Appl. Prob. 1991 1 (1) 36-61.

(Dodziuk & Kendall, 1986) J. Dodziuk, W. S. Kendall, "Combinatorial Laplacians and isoperimetric
inequality", From local times to global geometry", (Ed: K.D. Ellworthy). Pittman Research Notes
in Mathematics 150 68-74.

(Greenacre, 1984) M. Greenacre, Theory and Application of Correspondence Analysis, Academic Press,
1984.

(Jerrum & Sinclair, 1989) M. Jerrum, A.J. Sinclair, "Approximating the permanent", SIAM J. Com-
puting 18 (1989) 1149-1178.

(Richards & Seary, 1997) W.D. Richards, A.J. Seary, "Convergence analysis of communication
networks", Organizational Communication: Emerging Perspectives 5.

(Ed: G. Barnett & L. Thayer), Ablex, Norwood NJ, 1997, 141-189.

(Runge, 1976) see (Cvetkovic, Doob & Sachs, 1980) p. 49.

(Seary & Richards, 1995) A.J. Seary, W.D. Richards, "Partitioning networks by eigenvectors",
Proc. International conference on Social Networks, Vol. 1, London, 1995, 47-58.

(Watts & Strogatz, 1998) D.J. Watts, S.H. Strogatz, "Collective dynamics of small-world networks",
Nature, 393, 440-442 (1998).


