EigenvalueBounds

A. J. Seary and W. D. Richards
School of Communication
Simon Fraser U niversity Burnaby BC CanadaV5A1S6 email: seary@sfu.ca, richards@sfu.ca Presented to INSNA Sunbelt XVIII
Draft - not for citation or distribution

Abstract

W eview the(signed) eigenvaluesproduced by CorrespondenceA nalysisasbelongingto the the spectrum associated with the combinatorial Laplacian operator. W eshow how this spectrum can be used to providebounds on distance and diameter of a graph. For random and semi-random (W atts \& Strogatz, 1998) graphs, the extreme eigenvalues provide bounds on diameter. When agraph isfar from being random, theeigenvalues provideboundson the distancesbetween subsetsof nodes, and thusprovideboundson thenumber of cohesiveblocks(where the eigenvectors provideblocking information).

Introduction

In this paper we will assume that all graphs are undirected. Then the singular values and vectors produced by Correspondence A nalysis (CA) are simply eigenvalues and eigenvectors. CA has been suggested as a method for finding block structure in graphs and for graph visualisation (Noma \& Smith, 1986; Seary \& Richards, 1995). The fact that the squared eigenvalues are a partition of χ^{2} (Greenacre, 1984) may be used to argue that the corresponding eigenvectors measure "important" contributions to the structure of a graph (Richards and Seary, 1997) has led to criticisms of CA as a statistical method (Roberts, 1996). E.g., how do we deal with the "missingvalues" along the diagonal?
W eavoid such problems completely by viewing CA as a technique of Spectral Graph Theory (SGT). In fact CA belongs to a closely-knit family as we describe below. SGT isthestudy of the relationship between spectra of graphs and graph invariantssuch asdiameter, connectivity, expansion, cover time and many others. We will concentrate on diameter and distances between subsets, and show the relationship between these invariants and the eigenvalues.

Definitions

A good introduction to SGT is found in "Spectra of Graphs" by Cvetkovic, Doob and Sachs(CDS, 1980). M any of theresults below comefrom the more recent "Spectral Graph Theory" by Fan Chung (Chung, 1995).

AssumeG is an undirected connected loopless graph without multiple edges which is not complete. (The definitions below can be extended to weighted graphs, but for simplicity we will not consider multigraphs here. A ssuming G is connected and not complete avoids certain trivial results). G has nodes V and edges E , with $|\mathrm{V}|=\mathrm{n}$.

The A djacency M atrix $\mathbf{A}(\mathrm{G})$ of graph G is abinary matrix with
$A(i, j)=1$ ifi is connected to j

$$
=0 \text { otherwise }
$$

The eigenpairs of \mathbf{A} are $\left(\alpha_{i}, \mathbf{a}_{i}\right)$ such that $\mathbf{A a _ { i }}=\alpha_{i} \mathbf{a}_{i}$
If G is k-regular, then $\mathbf{a}_{0}=\mathbf{1} / \sqrt{ } n$, with $\alpha_{0}=\max \left(\alpha_{i}\right)=k$.

The Laplacian M atrix $\mathbf{L}^{\prime}(\mathrm{G})$ is a matrix with
$L^{\prime}(i, j)=-1$ if is connected to j
$\mathbf{L}^{\prime}(\mathrm{i}, \mathrm{i})=\operatorname{deg}(\mathrm{i})$ wheredeg(i) is the degree of nodei
$\mathbf{L}^{\prime}(\mathrm{i}, \mathrm{j})=0$ otherwise
The eigenpairs of \mathbf{L}^{\prime} are $\left(\lambda_{i}^{\prime}, \mathbf{l}_{i}\right)$ with $\lambda_{0}^{\prime}=\min \left(\lambda_{i}^{\prime}\right)=0$ and $\mathbf{l}_{1}^{\prime}=\mathbf{I} / \sqrt{ } n$
The l_{i}^{\prime} are mutually orthogonal and $0=\lambda_{0}^{\prime} \leq \lambda_{1}^{\prime} \leq, \ldots, \leq \lambda_{n-1}^{\prime} \leq n$
The multiplicity of 0 as an eigenvalue is equal to the number of components in G .
There are a number of other equvalent definitions of \mathbf{L} 'the simplest being:

$$
\mathrm{L}^{\prime}=\mathbf{D}-\mathbf{A}
$$

where \mathbf{D} is the diagonal matrix of node degrees.

The CA matrix $\mathbf{C}(\mathrm{G})$ is a matrix with
$\mathbf{C}(\mathrm{i}, \mathrm{j})=1 /(\sqrt{ }(\operatorname{deg}(\mathrm{i}) / \operatorname{deg}(\mathrm{j}))$ if i is connected to j
$\mathbf{C}(\mathrm{i}, \mathrm{j})=0$ otherwise
Wemay view \mathbf{C} as $\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}$. Let $\left(\gamma_{i}, \boldsymbol{c}_{\mathrm{i}}\right)$ betheeigenpairs of \mathbf{C}.
Wehave $1=\gamma_{0}=\max \left(\gamma_{i}\right) \geq \gamma_{1} \geq, \ldots, \geq \gamma_{n-1} \geq-1$
Then CA calculates the pairs

$$
\left(\gamma_{i}, \mathbf{D}^{-1 / 2} \gamma_{i} \boldsymbol{c}_{\mathrm{i}}\right)
$$

Also, CA generally removesthe(normalised) χ^{2} expecteds, which removes theeigenpair belongingto eigenvalue 1 and produces a "trivial" vector of length 0 .
M ost versions of CA assume that G is not symmetric and ignore the signs of γ_{i}, though these are important.

The Normal matrix $\mathbf{N}(G)$ is $\mathbf{C}(G)$. The eigenpairs are

$$
\left(\gamma_{i}, \mathbf{D}^{-1 / 2} \mathbf{c}_{\mathbf{i}}\right)=\left(v_{i}, \mathbf{n}_{\mathbf{i}}\right)
$$

This differs from CA only in the definition of the vectors, which remain normalized.
W ehavethat

$$
\mathbf{n}_{\mathbf{i}} \mathbf{D} \mathbf{n}_{\mathrm{i}}=\delta_{\mathrm{ij}}
$$

That is, thevectorsareorthonormal in the \mathbf{D} (or χ^{2}) metric. TheN ormal spectrum is referred to as the Q-spectrum in CDS.

An interesting property of $\mathbf{N}(G)$ is that we can add a constant value c along the diagonal without changing the eigenvectors. so that the eigenvalues becomec $+v_{i}$ and theeigenvectors are unchanged (Seary \& Richards, 1995). This corresponds to adding a constant cdeg(i) to the original adjacency matrix \mathbf{A}.

The cohesive (positive eigenvalue) on-diagonal blocks of G may be emphasized by shifting the spectrum as follows:

$$
v^{\prime}=(1+v) / 2
$$

This makes all eigenvalues positive: positive v_{i} becomecloser to 1 , while negative v_{i} become close to zero. This equation goes too far, sincethemost negative $v_{\mathrm{n}-1}$ is only -1 for bipartitegraphs. In general, we need only shift by $v_{\mathrm{n}-1} \geq-1$ to ensure all eigenvalues are positive:

$$
v^{\prime}=\left(v_{i}-v_{n-1}\right) / 2
$$

The shifting technique will beused extensively below.
The combinatorial Laplacian L(G) (Dodziuk \& Kendall, 1986; Chung, Gregor'yan \& Yau, 1996) is simply I-N(G). By theremark above, theeigenvalues are $\lambda_{i}=1-v_{i}$. The eigenvectors arethose of \mathbf{L} so that

$$
\mathrm{I}_{\mathrm{i}} \mathrm{I}_{\mathrm{j}}=\delta_{\mathrm{ij}}
$$

That is, theeigenvectorsform an orthogonal system, which we will use below.
N ote that while $\mathbf{n}_{0}=\mathbf{1} / \sqrt{ } \mathrm{n}$ is a constant vector, $\mathbf{I}_{\mathbf{0}}=\mathrm{D}^{1 / 2} \mathbf{1}$ is not. W e prefer to use \mathbf{n}_{i} since the components satisfy the χ^{2} measure of distance: nodes with similar row-profiles have similar components.

W eapologize for all these different matrices and spectra (though the last three areclosely related). In fact, we can also define \mathbf{L} in terms of \mathbf{L} 'as follows:

$$
\mathbf{L}=\mathbf{D}^{-1 / 2} \mathbf{L}^{\prime} \mathbf{D}^{-1 / 2}
$$

Wehave

$$
\{\lambda\}=\{1-\nu\} \text { and }\{\nu\}=\{1-\lambda\}
$$

so that

$$
0=\lambda_{0}=\min \left(\lambda_{i}\right) \leq \lambda_{1} \leq, \ldots, \leq \lambda_{n-1} \leq 2
$$

Just as for \mathbf{L} ' the eigenvalues of \mathbf{L} areall positive. Also:

$$
\left\}=\left\{\mathbf{D}^{1 / 2} \mathbf{n}\right\} \text { and }\{\mathbf{n}\}=\left\{\mathbf{D}^{-1 / 2} \mathbf{I}\right\}\right.
$$

Onefurther definition (or redefinition):
The volume of a Graph G is

$$
\operatorname{vol} G=\Sigma_{\mathbf{i} \in \mathbf{V}} \operatorname{deg}(\mathrm{i})=2|\mathrm{E}|
$$

Thevolume of any subset $\mathrm{S} \subset \mathrm{V}$ is just

$$
\operatorname{vol} S=\Sigma_{\mathbf{i} \in \mathbf{S}} \operatorname{deg}(\mathrm{i})
$$

so that the volume of a node is just its node degree.
Theterm volume is used because of an analogy to the continuous case (wherethe Laplacian is ∇^{2}). It turns out that many important results involving thecontinuous Laplacian on Riemannian manifolds can betranslated to similar resultson graphs(and vice-versa). A small cottageindustry arosein the80's doing just that, with many applications in network and algorithm design. The main goal was to explicitly construct graphs that had desirable properties of random graphs: small diameter, many disjoint paths, and sparsity. Because of this, the first attempts to bound diameter in terms of eigenvalues worked reasonably well for random-likegraphs, but werevery poor for graphswith block structure. Also many important results about k-regular graphs using the adjacency spectrum can be translated into results on general graphsusing the Laplacian spectrum. For example:

For $G k$-regular, thecomplexity $\kappa(G)=1 / n \prod_{i=1}\left(k-\alpha_{i}\right)$
For G in general, $\kappa(\mathrm{G})=1 / n \Pi_{\mathrm{i}=1} \lambda^{\prime}{ }_{i}$
(This is a very old result: Kirchoff's M atrix-Tree Theorem).
In the 90 's, another cottageindustry arose with the realisation that M arkov chains could be analysed by usingthecombinatorial Laplacian (Jerrum \& Sinclair, 1989; Diaconis\& Stroock, 1991): translating results from the Laplacian \mathbf{L} ' to combinatorial \mathbf{L} as in

For G in general, $\kappa(G)=\Pi_{i=1} \lambda_{\mathrm{i}} \Pi_{\mathrm{i}} \operatorname{vol}(\mathrm{i}) / \Sigma_{\mathrm{i}} \mathrm{vol}(\mathrm{i})$
Thisresult(Runge, 1976) illustratesthat thetranslation requires careful bookkeepingabout thedegree of each vertex. Theadvantageisthat wecan makearguments in moredetail than is possiblefor L'(and these same arguments apply almost trivially to the N ormal spectrum).

Boundson diameter

W ewill now present a series of eigenvaluebounds of diameter. In order to show theimprovement in the bounds over the last decade, we will use the technique introduced by (W atts and Strogatz, 1998) to construct a series of graphs with constant edge density and variable randomness.

Their techniquestarts with a circulant graph of width k, and rewiresedges at random with probability p. For details see (W S, 1998). W S used this process to show that clusterability (cohesion) decreases much moreslowly than mean distancefor increasingp, so that so-called "Small W orld" (semi-random) graphswith both clusters and short distancesareeasy to construct. W epresentresultsfrom their model in Figure1, which showscohesion (dotted) and diameter (solid) for acirculant graphswith 1000 nodes and width 10 over a range of
$\log (p)$ from -6 to 0 . The results shown are means for 20 random graphs at each probability p.

W estart with asimpleexampleto illustratethetechniqueused to estimateboundson diameter devised by (Chung, 1988).

W ecan naively calculatediameter by simply raising matrix $\mathbf{A}(G)$ to a power m for which all entriesin \mathbf{A}^{m} are >0. Then the diameter is m, sincethere is a path between every nodein G.

However, for large G this is not very efficient. Instead, we express \mathbf{A}^{m} in terms of the eigendecomposition. Thefollowing result applies only to regular graphs, but illustrates the methods we will use later. W e know $\mathbf{a}_{0}=\mathbf{1} / \sqrt{ } \mathrm{n}$ with $\alpha_{0}=\mathrm{k}=\max \left(\alpha_{\mathrm{i}}\right)$ so that

$$
\begin{array}{ll}
\left(\mathbf{A}^{m}\right)_{r s}=\sum_{i}\left(\alpha_{i}\right)^{m}\left(a_{i} a_{i}^{*}\right)_{r s} & \text { eigendecomposition } \\
\geq k^{m} / n-\left|\sum_{i>0}\left(\alpha_{i}\right)^{m}\left(a_{i}\right)_{r}\left(a_{i}^{*}\right)_{s}\right| & \text { forceinequality } \\
\geq k^{m} / n-|\alpha|^{m}\left\{\sum_{i>0}\left|\left(a_{i}\right)_{r}\right|\left|\left(a_{i}^{*}\right)_{s}\right|\right\} & |\alpha|=\left|\alpha_{1}\right|=\text { max }_{i>0}\left|\alpha_{i}\right| \\
\geq k^{m} / n-|\alpha|^{m}\left\{\Sigma_{i>0}\left(\mathbf{a}_{i}\right)_{r}^{2}\right\}^{1 / 2}\left\{\sum_{i>0}\left(\mathbf{a}_{i}^{*}\right)_{s}^{2}\right\}^{1 / 2} & \text { Cauchy-Schwartz } \\
=k^{m} / n-|\alpha|^{m}\left\{1-\left(a_{0}\right)_{r}^{2}\right\}^{1 / 2}\left\{1-\left(a_{0}^{*}\right)_{s}^{2}\right\}^{1 / 2} & \text { constant eigenvector } \\
=k^{m} / n-\alpha^{m}(1-1 / n) & \text { since } a_{0}=1 / \sqrt{ } n \\
>0 & \text { if thetwo RHS terms cancel }
\end{array}
$$

Now, to make the two terms on the right cancel, choose

$$
m=\lceil\ln (n-1) / \ln (k / \alpha)\rceil
$$

so that

$$
\operatorname{Diam}(\mathrm{G}) \leq\lceil\ln (\mathrm{n}-1) / \ln (\mathrm{k} / \alpha)\rceil
$$

Thesteps followed here are very similar for bounds developed below. Thebound is very poor for the starting circulant (regular) graph used in theW S model.

The dashed curve shows an eigenvalue bound for distance based on combinatorial Laplacian eigenvalues, dueto (Chung, Faber \& M anteuffel, 1994). Thebound isfair for $p=1$ but poor elsewhere. The method used for this bound is reminiscent of sparse matrix techniques for finding eigenpairs. Here we begin to use the detail available with \mathbf{L} by calculating

$$
\operatorname{Diam}(G)=\max (\operatorname{dist}(X, Y)) \quad X, Y \in V(G)
$$

To bound the distances between all pairs of subsets, define vectors
$\Psi_{X}(x)=1$ if $x \in X, 0$ otherwise
$\Psi_{Y}(y)=1$ if $y \in Y, 0$ otherwise

Now express ψ_{X} and Ψ_{Y} as Fourier series in \mathbf{I}_{i}

$$
\mathbf{D}^{1 / 2} \Psi_{X}=\sum \mathrm{a}_{\mathrm{i}} \mathbf{I}_{\mathrm{i}}, \quad \mathbf{D}^{1 / 2} \Psi_{\mathrm{Y}}=\sum \mathrm{b}_{\mathrm{i}} \mathbf{I}_{\mathrm{i}}
$$

N ote that

$$
\mathrm{a}_{0}=\mathrm{volX} / \sqrt{ } \text { volG }, \mathrm{b}_{0}=\mathrm{volY} / \sqrt{ } \mathrm{volG}
$$

and $\quad \Sigma_{\mathrm{i}>0} \mathrm{a}_{\mathrm{i}}{ }^{2}=\left\|\mathbf{D}^{1 / 2} \Psi_{\mathrm{x}}\right\|^{2}-\mathrm{a}_{0}{ }^{2}$
$=$ volX $-(\text { volX })^{2} /$ volG
$=\operatorname{volX}(\operatorname{volG} \backslash X) /$ volG
$=G \backslash X($ the complement of $X)=\frac{\operatorname{vol} X \operatorname{vol} X^{-}}{\operatorname{vol} G} \bar{X}$

Similarly,

$$
\sum_{i>0} b_{i}^{2}=\frac{\mathrm{vol} Y \mathrm{voly}}{\mathrm{vol}} \mathrm{vol}^{-}
$$

To estimatedistance, form the inner product

$$
\begin{array}{ll}
I P=\left\langle\mathbf{D}^{1 / 2} \Psi_{Y}, p_{t}(\mathbf{L}) \mathbf{D}^{1 / 2} \Psi_{\mathrm{X}}\right\rangle & \\
=\Sigma_{i} \mathrm{p}_{\mathrm{t}}\left(\lambda_{\mathrm{i}}\right) \mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} & \text { inner product with } \mathrm{I}_{\mathrm{i}} \mathrm{I}_{\mathrm{j}}=\delta_{\mathrm{ij}} \\
=\mathrm{a}_{0} \mathrm{~b}_{0}+\sum_{\mathrm{i}>0} \mathrm{p}_{\mathrm{t}}\left(\lambda_{\mathrm{i}}\right) \mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} & \text { constant eigenvector }
\end{array}
$$

where $p_{t}(z)$ is some polynomial in z. W echoose $p_{t}(z)=(1-z)^{t}$ so that, assuming

$$
\left.1-\lambda_{1} \geq \lambda_{n-1}-1 \text { (or }\left|v_{1}\right| \geq\left|v_{n-1}\right|\right) \quad \text { (we will relax this restriction later), }
$$

then $\quad\left|p_{t}\left(\lambda_{i}\right)\right| \leq(1-\lambda)^{t} \quad$ where $\lambda=\lambda_{1}$
So $\quad I P \geq($ volXvolY $) /$ volG $-(1-\lambda)^{t}\left(\sum_{i>0} a_{i} b_{i}^{2}\right)^{1 / 2}$ repeating thesteps above

$$
=\frac{\operatorname{volX} \operatorname{vol} Y}{\operatorname{volG}}-(1-\lambda)^{\mathrm{t}} \frac{\sqrt{\operatorname{volX}^{\operatorname{volX}} \bar{X}^{-} \operatorname{vol} Y \operatorname{volY}}}{\operatorname{volG}}
$$

N ow to ensurethat the two terms on the right cancel (so that IP>0), choose

$$
\mathrm{t} \geq \frac{\ln \sqrt{\frac{\mathrm{volX} \mathrm{XolY}}{\mathrm{volX} \operatorname{volY}}}}{\ln \frac{1}{1-\lambda}}
$$

so that

$$
\operatorname{Diam}(G) \leq \max \left|\frac{\ln \sqrt{\frac{\operatorname{volX}^{-} \operatorname{volY}}{\operatorname{volX} \operatorname{volY}}}}{\ln \frac{1}{1-\lambda}}\right|
$$

To bound thediameter, takethemaximum valueby choosing X and Y assinglenodes with thesmallest degree.

Trick \#1: Set $\lambda=2 \lambda /\left(\lambda_{n-1}+\lambda_{1}\right) \quad$ i.e, shift the spectrum
Then the bound for diameter becomes

$$
\operatorname{Diam}(G) \leq \max \left|\frac{\ln \sqrt{\frac{\text { volX volY}}{\text { vol } X \text { vol } Y}}}{\ln \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right|
$$

This is the lighter dashed curve shown in Figure 1.
Trick \#2: $p_{t}(z)=(1-z)^{t}$ is not the best polynomial. A better choice is theChebyshev polynomial $T_{t}(z)$ usually defined as

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{t}}(\mathrm{z})=\cos \left({\left.\mathrm{t} \cos ^{-1}(z)\right)}\right. \\
&=\cosh \left(\cosh ^{-1}(z)\right)
\end{aligned}
$$

Thelastexpression is not asfamiliar, but notethat cosh ${ }^{-1}(z)$ isvery closeto $\ln (z)$ for largez. W ewill use thepolynomial

$$
S_{t}(z)=\frac{T_{t}\left(\frac{\lambda_{n-1}+\lambda_{1}-2 z}{\lambda_{n-1}-\lambda_{1}}\right)}{T_{t}\left(\frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}\right)}
$$

By the minimax property of Chebyshev polynomials,

$$
\max _{z e \in[\lambda 1, \lambda n-1]} S_{t}\left(\lambda_{1}\right) \geq 1 / T_{t}\left(\left(\lambda_{n-1}+\lambda_{1}\right) /\left(\lambda_{n-1}-\lambda_{1}\right)\right)
$$

Now theinequality becomes

$$
I P \geq(\text { volXvolY }) / \text { volG - } S_{t}(\lambda)(\text { volXvolY }(\text { volG|X })(\text { volG } \mid Y))^{1 / 2} / \text { volG }
$$

To maketheRHS equal to 0 choose

$$
\mathrm{t}=\frac{\cosh ^{-1} \sqrt{\frac{\operatorname{vol} \overline{\mathrm{X}} \mathrm{vol} \bar{Y}}{\mathrm{vol} \mathrm{X} \operatorname{vol} Y}}}{\cosh ^{-1} \frac{\lambda_{\mathrm{n}-1}+\lambda_{1}}{\lambda_{\mathrm{n}-1}-\lambda_{1}}}
$$

Then the bound on diameter becomes

$$
\left.\operatorname{Diam}(G) \leq \max \left\lvert\, \frac{\cosh ^{-1} \sqrt{\frac{\text { volX volY}}{\text { volX volY }}}}{\cosh ^{-1} \frac{\lambda_{n-1}+\lambda_{1}}{\lambda_{n-1}-\lambda_{1}}}\right.\right\rceil
$$

wherethemaximum is ensured by choosing X and Y to benodes with thesmallest degrees. This gives thedash-dot curve in figure 1 . The bound is much better at low p, because $\cosh ^{-1}(z)$ behaves quite differently from $\operatorname{In}(z)$ around $z=1$ (or λ_{1} near 0).

Can the bound beimproved at low p ? In (Chung, 1996) thenumerator is replaced by $\cosh ^{-1}($ voIG/volXvoIY) which is much better at $\mathrm{p}=0$ and quitetight atp $=1$. Thisisshown bythelighter dash-dot curvein Figure 1.

Bounds on distance between subsets

W ecan usevery similar methodsto find boundson distances amongmany subsets(Chung,1995). Let $X_{i} \subset V, i=1, \ldots, k+1$ bedisjoint subsets of G.

Then

$$
\min _{i \neq j} \operatorname{dist}\left(X_{i}, X_{j}\right) \leq \max _{i \neq j}\left[\frac{\ln \sqrt{\frac{\operatorname{vol} \bar{X}_{i} \operatorname{vol} \bar{X}_{j}}{\operatorname{vol} X_{j} \operatorname{vol} X_{j}}}}{\ln \frac{\lambda_{n-1}+\lambda_{k}}{\lambda_{n-1}-\lambda_{k}}}\right]
$$

For example, choose 2 nodes: the distance between them is bound by the diameter (using λ_{1}), as we haveseen.

To show this, let X and Y betwo distinct subsets among the X_{i}, and consider

$$
\left\langle\mathbf{D}^{1 / 2} \psi_{Y},(I-L)^{t} D^{1 / 2} \Psi_{X}\right\rangle \geq a_{0} b_{0}+\sum_{i<k}\left(1-\lambda_{i}\right)^{t} a_{i} b_{i}-\sum_{i, k}\left(1-\lambda_{i}\right)^{t} a_{i} b_{i}
$$

In (Chung, Grigor'yan and Yau, 1996) it is shown that we can always choose X, Y such that

$$
\Sigma_{i<k}\left(1-\lambda_{i}\right)^{t} a_{i} b_{i} \geq 0
$$

so that

$$
\left\langle\mathbf{D}^{1 / 2} \Psi_{Y},(\mathbf{I}-\mathbf{L})^{\mathrm{t}} \mathbf{D}^{1 / 2} \Psi_{X}\right\rangle>\frac{\operatorname{volX} \operatorname{vol} Y}{\operatorname{volG}}-(1-\lambda)^{t} \frac{\sqrt{\operatorname{volX} \operatorname{vol} Y \operatorname{volX} \operatorname{vol} \mathrm{Y}^{-}}}{\operatorname{volG}}
$$

Now choose

$$
t \geq \frac{\ln \sqrt{\frac{\operatorname{vol}^{-} \mathrm{Xvol}^{-}}{\mathrm{vol} X \operatorname{vol} Y}}}{\ln \frac{\lambda_{\mathrm{n}-1}+\lambda_{\mathrm{k}}}{\lambda_{\mathrm{n}-1}-\lambda_{\mathrm{k}}}}
$$

to ensure that theterms on the RH S cancel.

Can thesebounds beimproved? In (Chung, 1996) thenumerator is replaced by
In(volG/volXvolY)

This issomeimprovement, but better boundswould result by replacing the denominator. Asbefore, we can find themaximum for all k by fixing the subsets in thenumerator to bethenodes with smallest degree. Theresult implies that for large λ_{k} the distances aresmall. A nother interpretation is that if the upper bound on distanceislargefor agiven k, then somepair may bedistant, but if all distancebounds are small for a given λ_{k}, there aretoo many subsets to allow this. Therefore, we can use these distance bounds to get an upper bound in thenumber of (cohesive, on-diagonal) blocks to look for.

References

(Chung, 1988) F.R.K. Chung, "Diameters and Eigenvalues", J. Am. M ath. Soc. 19882 (2) ,187-196.
(Chung, Faber \& M anteuffel, 1994) F.R.K. Chung, V. Faber, \& T.A. M anteuffel, "An upper bound in thediameter of agraph from eigenvalues associated with itsLaplacian", SIAM J. DiscreteM ath. 19947 (3) 443-457.
(Chung, 1995) F.K.R. Chung, Spectral Graph Theory, CBM S Lecture N otes, AM S Publication, 1995.
(Chung, 1996) F.K.R.Chung, "Eigenvalues of graphs", Proceedings of ICM , Zürich, 1994, Birkhäuser V erlag, Berlin, 1333-1342.
(Cvetkovic, Doob \& Sachs, 1980) D.M. Cvetkovic, M. Doob, \& H. Sachs, Spectra of Graphs, Theory and A pplication, A cademic Press, 1980.
(Diaconis\& Stroock, 1991) P.Diaconis, D.W.Stroock, "Geometricboundsfor eigenvaluesofM arkov chains", A nn. Appl. Prob. 1991 1(1) 36-61.
(D odziuk \& K endall, 1986) J. Dodziuk, W . S. K endall, "Combinatorial Laplacians and isoperimetric inequality",From local timestoglobal geometry",(Ed:K.D.Ellworthy). Pittman Research N otes in M athematics 150 68-74.
(Greenacre, 1984) M.Greenacre, Theory and A pplication of C orrespondenceA nalysis, A cademic Press, 1984.
(Jerrum \& Sinclair, 1989) M . Jerrum, A.J. Sinclair, "Approximating the permanent", SIAM J. Computing 18 (1989) 1149-1178.
(Richards \& Seary, 1997) W.D. Richards, A.J. Seary, "Convergence analysis of communication networks", Organizational Communication: Emerging Perspectives 5.
(Ed: G. Barnett \& L. Thayer), Ablex, N orwood NJ, 1997, 141-189.
(Runge, 1976) see(Cvetkovic, Doob \& Sachs, 1980) p. 49.
(Seary \& Richards, 1995) A.J. Seary, W.D. Richards, "Partitioning networks by eigenvectors", Proc. International conference on Social Networks, V ol. 1, London, 1995, 47-58.
(W atts \& Strogatz, 1998) D.J. W atts, S.H. Strogatz, "Collective dynamics of small-world networks", N ature, 393, 440-442 (1998).

