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ABSTRACT
We will discuss the roles of positive and negative eigenvalues of the Normal spectrum
in identifying long paths in a network. These roles may be understood in terms of the
"vibrational modes" of the associated eigenvectors. Nodes clustered together in an
off-diagonal (almost bipartite) blockmodel may in fact be quite far apart in either
graph-theoretic or random walk distance, especially in large sparse networks.  We use
p* as a tool to evaluate the blockmodels based on eigenvector partitions. We will also
discuss fitting p* models large networks, recently added to MultiNet.

INTRODUCTION
The main purpose of this paper is to discuss the role and interpretation of negative eigenvalues (and
associated eigenvectors) of the Normal Spectrum of a (binary, symmetric) graph. The Normal
spectrum (defined below) is closely related to Correspondence Analysis, which for such graphs is
eigendecomposition of the P2 (actually, P ) matrix, treating the adjacency matrix as a contingency
table. We have viewed partitions of a graph based on the eigenvectors belonging to the largest
eigenvalues as a way of approximately maximising P2, a hard combinatorial problem (Chung,
Graham, Yau, 1996). That is, simple polynomials based on the signs of the eigenvector components
can be used to permute the rows and columns of an adjacency matrix so that a few "blocks" contain
most of the links, while the rest are mainly empty. This approximate procedure usually works quite
well, even for directed graphs, though the partitions are based on undirected graphs. (Normal
eigendecomposition can be easily extended to multi-graphs or edge-weighted graphs, but there is
currently no agreement on how to extend the procedure to directed graphs, except in certain special
cases (Chung, Faber, Manteuffel,1994)). Comparing the quality of partitions based on the largest
eigenvectors by looking at P2 leads to difficulties when the number of blocks changes. More
importantly, a partition based on the largest eigenvectors can fail for reasons to be discussed,
although very good partitions can still be found by looking at smaller eigenvalues. We recently
implemented a version of p* in MultiNet (Seary, Richards, 2000), because p* promised to be a



completely independent way of assessing the goodness (actually, badness) of a fit using different
permutations with different numbers of "blocks". Since p* (as we have implemented it, based on the
work of  Frank & Strauss (1986)) focusses on local structure and the Normal eigenvectors provide
global structure via blocking, it seems that p* and eigendecomposition are complimentary. As we
shall see, the Normal spectrum also provides information about local structure, and this comes from
the negative eigenvalues.

PHYSICAL ANALOGY
To discuss the role of negative eigenvalues, we consider the following physical analogy. The analogy
is quite good: it is the basis of Markov Chain Monte Carlo (MCMC) methods, and has stirred much
recent research into graph spectra. In physics, problems such as wave propagation and diffusion are
generally solved by considering the spatial and time-dependent parts of the problem separately. The
spatial part leads to consideration of the eigenvalues and eigenfunctions of the Laplacian operator
L2 . 

The resulting eigenfunctions generally have a close relationship with the geometry of the space under
consideration. In the discrete case, where the "space" is a set of nodes connected by edges - a graph
- the Laplacian operator has a discrete version with a very simple form: it is a square matrix which
acts on vectors which have dimension equal to the number of nodes, with definition (see Seary &
Richards, 1995,  for some alternative derivations).

            Laplacian(G) = D(G) - A(G)

where D(G) is a diagonal matrix of node degrees, and A(G) is the adjacency matrix of a graph G. It
is easy to show that the eigenvalues of D-A are non-negative, with a lowest value of 0, and highest
possible value of maximum degree. The second-smallest eigenvalue plays an important role in
spectral graph theory, since it provides a measure of how "random" the graph is. The largest possible
eigenvalue is only attained when the graph is bipartite semi-regular. The eigenvalues may be
considered as the amount of energy required to stimulate each mode of vibration (eigenvector). The
highest frequency vibrations correspond to highest amount of energy. Figures 1a and b show the
highest vibration for an even cycle, and a rectangular grid. In each case, the vibration is the largest
possible, because in each case the graphs are bipartite. But this can be viewed as a local property!
Graphs that, locally, look like a path (or cycle, or tree) are, locally, bipartite. In each case, we know
that, because the highest frequency is attained, the graphs must be triangle free - the type of count
that p* makes.

As mentioned, the second-smallest eigenvalue is important (Alon, 1986). The corresponding
eigenvector can be used to partition the graph with few edges between the two parts. If this eigenvalue
is far from 0, the corresponding edge-cut will be poor, and all distances in the graph are short (see
below). These properties are generally associated with random graphs. Conversely, a value close to
0 corresponds to a graph with structure. 



We now introduce the Normal spectrum by performing a simple operation to the Laplacian:
 
          CombLap(G) = D-1 (D - A)

                      = I - D-1 A = I - Markov(G)

This has the form of a Laplacian (it is sometimes called the Combinatorial Laplacian (Dodziuk &
Kendall, 1985), where the second term is a matrix of transition probabilities: the Markov chain matrix
for a simple random walk on the graph G. Since the eigenvalues of Markov(G) can between -1 and
1, the eigenvalues of CombLap(G) can be between 0 and 2. Again, the highest value is only attained
for bipartite graphs, and the second-lowest is large for graphs with short distances. Such graphs are
the basis of MCMC methods.

The matrix used to define the Normal spectrum is

           Normal(G) = D-1/2 A D-1/2

This should look familiar to users of Correspondence Analysis (CA). In CA, we generally go on to
remove a "trivial" eigenvector (the P2 expected) before performing an SVD, then further adjust the
length of the resulting singular vectors by singular values. Symmetrising means that singular values
and vectors are eigen-values and -vectors. Some implementations of CA ignore eigenvalue signs (they
are absorbed in one or other of the eigenspaces), while others implicitly weight the diagonal with
row/column degrees which supresses all negative eigenvectors (this is the method used by the
MultiNet CorrAnal procedure). The Normal eigendecomposition does very little pre- or post-

   

  a) grid              b) cycle

Figure1. Bipartite graphs and negative eigenvectors



processing: no trivial vector is removed (this destroys sparsity), eigenvalue signs are preserved, and
the vectors are merely normalised to length 1.

It turns out that Normal(G) has exactly the same eigenvalues as Markov(G), and the eigenvectors
differ by a simple transformation which does not affect the signs. We can map between:

{8 0,...8 n-1}, the eigenvalues of CombLap(G) and

{< 0,...< n-1}, the eigenvalues of Normal(G) very simply:

       {8 i}     =     0, ... , 2           i=1 , ... , n-1
       {< i}     =     1, ... ,-1

That is, the positive eigenvalues of Normal(G) correspond to low-frequencies and the negative
eigenvalues correspond to high frequencies. Since Markov(G) = D-1 A is the matrix for simple
random walks on a graph, the i,jth   entry of [Markov(G)]p is the probability that a random walk from
i will reach j in p steps (Cvetkovic, Doob, Sachs, 1980). This observation can be used to find bounds
on distances between subsets of the graph, including a bound on the diameter of the graph (Chung,
1995).  The proofs involve finding powers of Markov(G) from the eigenvalues and eigenvectors, and
lead to the following set of bounds:
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for distances between (k+1)-subsets of the graph. This is simplified version of the formula proved in
Chung (1995). A much better bound can be found for the diameter (k = 1).

A very similar formula shows that distance bounds can be found from other pairs of large and small
eigenvalues besides the largest and second-smallest. The important point to note is that for pairs of
eigenvalues near their extreme values (0 and 2, respectively), the denominator is near 0, which gives
very large distances. This will be the case when G contains a long path (or cycle). When we map this
to the Normal spectrum, we can see that pairs of large eigenvalues of opposite sign correspond to
large distances. They also correspond to large oscillations in the corresponding negative eigenvector.

As an example of this, see figure 2, which is taken from actual data (as are the rest of the examples
in this paper). This network comes from data collected by Stork.

and represents who nominated who as a "good friend". Two views are given: 2a shows the largest
negative eigenvector along the x-axis. In 2b, the view has been rotated to show the largest positive
eigenvector. The network is clearly dominated by a cycle. The partition from 2a puts 48 in the same



part as 15, even though they are far apart. We suggest that this can be understood by considering the
two off-diagonal blocks - which always occur in pairs - as a single anti-block. A partition based on
the first (negative) and second (positive) eigenvector approximately maximises  P2 and also gives a
"significantly" better (smaller) -2*LogPseudoLikelihood (-2LogPL) from a p* fit when compared to
the partition from the first two positive eigenvectors (tables 1a and 1b). (The statement about
"significance" assumes that differences in -2*LogPL are distributed approximately as P2 with the
appropriate degrees of freedom (Crouch & Wasserman, 1998). We will put such statements about
"significance" in quotes. As of this writing, the actual distribution remains unclear; perhaps it should
be called pseudo-significance.) In fact, it gives a "significantly" better p* fit than any of the node
attributes that come with this dataset. We must also note that the actual number of links correctly
predicted by p* is rather small at the 0.5 probability level, and at lower probability level, p* "predicts"
the predefined  blocks more than anything else.

KENT DATA
The adjacency matrix for this data is shown in figure 3. It has the appearance of a core-periphery
network: nodes in the two peripheries can only reach each other by passing through the "core". This
network is very directed: only 6 (0.5%) of the links are reciprocated. It is also very sparse, with 1332
nodes and 1139 links. In particular, the "core" itself is quite sparse. We might expect that, with few
connections within the "core", there may be long paths or cycles from the two "peripheries" through
the core and back again. Because the "core" is so sparse we suggest calling this an intersection-
periphery network.

The three largest eigenvectors are shown in figure 4. This view is dominated by a long path from top
to bottom of length 17 (and this is the diameter of the large component of this network).  Note the

     

a) negative (high frequncy)             b) positive (low frequency)

Figure 2: Negative eigenvectors and cycles



oscillations in the x-axis from the first, negative, eigenvalue.  Views of 2nd, 3rd, 4th eigenvectors are
similar: in each case the views are dominated by a long path, whose length can be upper-bounded by
the corresponding eigenvalues. Not until the 13th eigenvector do we see a picture that is not
dominated by a long path. How do we find this representation?

Figure 3: Kent adjacency matrix

Figure 4: Kent long paths



One simple method is to recursively remove nodes with 0 or 1 links. The effect is to shorten all the
long paths and results in figure 5a. By rotating along the y-axis and then the x-axis, we see in figure
5b a number of long cycles. These cycles are present in figure 5a as the oscillations across the x-axis
coming from the second eigenvector with negative eigenvalue. As in the example above, the partition
based on these three (positive, negative, positive) eigenvectors give larger P2 and "significantly" better
-2LogPL than a partition based on the first three positive eigenvectors (tables 2a and 2b). Note that
each bipartite anti-block pair all the nodes in one of the bipartitions belong to the "core". The
blockmodel used is based on permutations to successively smaller 2n x 2n blocks of an identity matrix:

8 x 8 positive (no change), 4 x 4 negative        2 x 2 positive (no change)
1 0 0 0 0 0 0 0             0 0 1 0 0 0 0 0        0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0             0 0 0 1 0 0 0 0        0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0             1 0 0 0 0 0 0 0        1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0    ->       0 1 0 0 0 0 0 0  ->    0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0             0 0 0 0 0 0 1 0        0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0             0 0 0 0 0 0 0 1        0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0             0 0 0 0 1 0 0 0        0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1             0 0 0 0 0 1 0 0        0 0 0 0 0 1 0 0

Now we are ready to examine the larger network. We find by taking inner products that eigenvectors
13-15 correspond to eigenvectors 1-3 of the "pruned" network,
positive sequence of eigenvalues. The partition is presented in table 3a, and appears to be rather good.

 with the same positive, negative,

Figure 5: Kent core with long paths “pruned”

a) second eigenvalue negative                                        b) all eigenvalues positive



Figure 6a shows this view of the network. The view involving only positive eigenvectors is shown in
figure 6b. The blockmodel is as for the smaller network. Again, this partition gives higher P 2 and
"significantly" lower -2LogPL in a p* fit than the all-positive eigenvalue partition. These results are
shown in tables 2c and 2d.

Figure 6: p* fit to eigenvector blocking for entire network

Figure 7: p* fit to eigenvector blocking for “pruned” core



DISCUSSION
There are a number of features about this analysis that concern us. The fact that we need to look at
the 13th and higher eigenvectors is one of them. We see that the lower eigenvectors are dominated
by long paths in this very articulated network, where pairs of positive and negative eigenvalues give
estimates of the path length. However, this interpretation requires viewing the eigenvector
representation, and even for the one involving 13-15 it is not immediately clear from the view that
this will give approximately correct results, since both paths and cycles are present, and the former
are more obvious. The use of "pruning" to remove long paths was important in recognising the
correct eigenvectors for the large network. The conclusion that these actually are correct is based on
the P2 and p* results (but see below) as well as on some knowledge of the network (the
intersection-periphery structure). 

There is also the problem that results from symmetrisation: some of the "cycles" are really "weak
cycles" where direction is ignored. That this does not seem to be important here is no guarantee
against problems with other networks.

Another concern is the apparent reliance on 2n blocks, but this is not really necessary. Blocks can
easily be combined. For example, for the small ("pruned") network, the lower right 4 x 4 section (see
figure 7 for the motivation) can be combined as

0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0

without "significant" loss of -2LogPL (from 4279 to 4271). The full network has 9 blocks, one of them
coming from a number of disconnected dyads and 2-stars. If we view the bipartite anti-block pairs
as single blocks, the numbers are reduced to 4 for the pruned network, and 5 for the full network.

Finally, there is the quality of the p* fits. While the -2LogPL results confirm our P2 results (and
intuition), the fact remains that no links were correctly predicted, and very few even at the lowest
probability level (0.0625). Even these are largely the result of "predicting" the predefined block
structure. This is an unusual network in some respects: it is much larger than ones usually analysed
in p* presentations; there is almost no reciprocation; there are few transitive triads and no cyclic
triads. We have looked at networks much larger than this (over 4000 nodes) with even lower densities
where p* does a fairly good job of predicting links (about 1/3 correctly) but these networks also have
much more reciprocation and triads, as well as a strong cohesive (on-diagonal) block structure with
much shorter paths. We suspect it is the long paths (and associated off-diagonal block structure) that
causes the fit problems. A similar problem was noticed for the much smaller (n=57) "good friend"
network, which is also dominated by a long path. It may be that p* does not perform well for such
networks. 
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Tables
 
Table 1A.
 MultiNet PSTAR REPORT ON "STORK2.MNW"  7/04/2000  05:10:46                                      
 ITERATIONS = 11                                                                                 
                                               
 LINK = "goodfriend"  LINKS =     52  ORDER =   44  (DIAGONAL NOT INCLUDED)                      
  NODE = "4PN.goodfriend"                                                                        
                                              
 BLOCKING                                                                                        
      0   0   0   1   0           
      0   0   0   0   1                                                                          
      0   0   1   0   0                                                                          
      1   0   0   0   0                                                                          
      0   1   0   0   0                                                                          
                                               
                                                                              
  -2 Log PseudoLikelihood =              266.495                                                 
          Goodness of Fit =             1008.880                                                 
        Model Chi-squared =             2356.374     df = 13                                     
                                            
 FIT AT P = 0.5          
                 PRED            15                                                              
              <P   |   >P                                                                        
           ------------------              
        0 |    1836|       4  26.7%                                                              
 OBS      |--------|--------  -----                                                              
        1 |      41|      11  73.3%                                                              
          |        |                                                                             
  52      |   78.8%|   21.2%                                                                     
                                              
                                                                                                 
-------------------------------------------------------------                                    

Table 1B.
 MultiNet PSTAR REPORT ON "STORK2.MNW"  7/04/2000  05:12:34                                      
 ITERATIONS =  9                                                                                 

 LINK = "goodfriend"  LINKS =     52  ORDER =   44  (DIAGONAL NOT INCLUDED)                      
 NODE = "4PP.goodfriend"                                                                         
 
BLOCKING                                                                                         
    1   0   0   0   0                                                                            
    0   1   0   0   0                                                                            
    0   0   1   0   0                                                                            
    0   0   0   1   0                                                                            
    0   0   0   0   1                                                                            
                                                                                               
     -2 Log PseudoLikelihood =              293.842                                              
             Goodness of Fit =              904.230                                              
           Model Chi-squared =             2329.027     df = 13                                  

 FIT AT P = 0.5                                                                                  
               PRED            12                                                                
            <P   |   >P                                                                          
        ------------------                                                                       
      0 |    1836|       4  33.3%                                                                
OBS     |--------|--------  -----                                                                
      1 |      44|       8  66.7%                                                                
        |        |                                                                               
52      |   84.6%|   15.4%                                                                       
                                            
                                                                                                 



                                                                                             
Table 2A.
 MultiNet 2-D NETWORK XTABS REPORT ON "KENT.MNW"  9/04/2000  22:40:54     
 Crosstabulation of FROM 8PN.link with TO 8PN.link                               
 COUNT                                                                                       
 ROW %                    ROWS = FROM 8PN.link                                         
 COL %                    COLS = TO 8PN.link                                           
                      -5P             -1P              1P              5P                    
              -7P             -3P              0P              3P              7P     TOTAL  
         ----------------------------------------------------------------------------------- 
         |      19       1     326      10       0       1       3       8       1     369   
   -7P   |    5.15%   0.27%  88.35%   2.71%   0.0 %   0.27%   0.81%   2.17%   0.27%  27.7 %  
         |    5.38%   1.56%  93.68%  22.22%   0.0 %   1.52%   1.83%  13.11%   0.72%          
         |                                                                                   
         |       1       1       3      35       0       0       0       0       1      41   
   -5P   |    2.44%   2.44%   7.32%  85.37%   0.0 %   0.0 %   0.0 %   0.0 %   2.44%   3.08%  
         |    0.28%   1.56%   0.86%  77.78%   0.0 %   0.0 %   0.0 %   0.0 %   0.72%          
         |                                                                                   
         |     312       0      13       0       0       9       3       1       2     340   
   -3P   |   91.76%   0.0 %   3.82%   0.0 %   0.0 %   2.65%   0.88%   0.29%   0.59%  25.53%  
         |   88.39%   0.0 %   3.74%   0.0 %   0.0 %  13.64%   1.83%   1.64%   1.44%          
         |                                                                                   
         |      11      61       1       0       0       0       3       1       0      77   
   -1P   |   14.29%  79.22%   1.3 %   0.0 %   0.0 %   0.0 %   3.9 %   1.3 %   0.0 %   5.78%  
         |    3.12%  95.31%   0.29%   0.0 %   0.0 %   0.0 %   1.83%   1.64%   0.0 %          
         |                                                                                   
         |       0       0       0       0      92       0       0       0       0      92   
    0P   |    0.0 %   0.0 %   0.0 %   0.0 % 100.0 %   0.0 %   0.0 %   0.0 %   0.0 %   6.91%  
         |    0.0 %   0.0 %   0.0 %   0.0 % 100.0 %   0.0 %   0.0 %   0.0 %   0.0 %          
         |                                                                                   
         |       0       1       3       0       0       1       1      45       4      55   
    1P   |    0.0 %   1.82%   5.45%   0.0 %   0.0 %   1.82%   1.82%  81.82%   7.27%   4.13%  
         |    0.0 %   1.56%   0.86%   0.0 %   0.0 %   1.52%   0.61%  73.77%   2.88%          
         |                                                                                   
         |       3       0       0       0       0       0       4       3     119     129   
    3P   |    2.33%   0.0 %   0.0 %   0.0 %   0.0 %   0.0 %   3.1 %   2.33%  92.25%   9.68%  
         |    0.85%   0.0 %   0.0 %   0.0 %   0.0 %   0.0 %   2.44%   4.92%  85.61%          
         |                                                                                   
         |       5       0       2       0       0      54       3       2       1      67   
    5P   |    7.46%   0.0 %   2.99%   0.0 %   0.0 %  80.6 %   4.48%   2.99%   1.49%   5.03%  
         |    1.42%   0.0 %   0.57%   0.0 %   0.0 %  81.82%   1.83%   3.28%   0.72%          
         |                                                                                   
         |       2       0       0       0       0       1     147       1      11     162   
    7P   |    1.23%   0.0 %   0.0 %   0.0 %   0.0 %   0.62%  90.74%   0.62%   6.79%  12.16%  
         |    0.57%   0.0 %   0.0 %   0.0 %   0.0 %   1.52%  89.63%   1.64%   7.91%          
         |                                                                                   
         |     353      64     348      45      92      66     164      61     139    1332   
   TOTAL |                                                                                   
         |   26.5 %   4.8 %  26.13%   3.38%   6.91%   4.95%  12.31%   4.58%  10.44%          
                                                                                             

 CHI-SQUARE =       7941.131     D.F. = 64                                                   

Table 2B.
 MultiNet PSTAR REPORT ON "KENT.MNW"  9/04/2000  22:24:29
 ITERATIONS = 12

 LINK = "link"  LINKS =   1332  ORDER = 1139  (DIAGONAL NOT INCLUDED)
 NODE = "8PN.link"
 BLOCKING
    0   0   1   0   0   0   0   0   0
    0   0   0   1   0   0   0   0   0
    1   0   0   0   0   0   0   0   0
    0   1   0   0   0   0   0   0   0
    0   0   0   0   1   0   0   0   0
    0   0   0   0   0   0   0   1   0
    0   0   0   0   0   0   0   0   1
    0   0   0   0   0   1   0   0   0
    0   0   0   0   0   0   1   0   0

  -2 Log PseudoLikelihood =     16194.490
          Goodness of Fit =    720984.365
        Model Chi-squared =   1780695.307   df = 11

FIT AT P = 0.5
                PRED             2
             <P   |   >P
         ------------------
       0 | 1294848|       2 100.0%
 OBS     |--------|--------  -----
       1 |    1332|       0   0.0%
         |        |
 1332    |  100.0%|    0.0%



Table 2C.
 MultiNet 2-D NETWORK XTABS REPORT ON "KENT.MNW"  9/04/2000  22:45:54                        
 Crosstabulation of FROM 8PP.link with TO 8PP.link                                           
 COUNT                                                                                       
 ROW %                    ROWS = FROM 8PP.link                                               
 COL %                    COLS = TO 8PP.link                                                 
                      -5P             -1P              1P              5P                    
              -7P             -3P              0P              3P              7P    TOTAL  
         ----------------------------------------------------------------------------------- 
         |     455      18       7       1       0      12       2       4       2     501   
   -7P   |   90.82%   3.59%   1.4 %   0.2 %   0.0 %   2.4 %   0.4 %   0.8 %   0.4 %  37.61%  
         |   92.67%   8.57%  10.61%   2.33%   0.0 %  11.65%   8.33%   5.88%   0.85%          
         |                                                                                   
         |      12     185       2       1       0       1       4       2       1     208   
   -5P   |    5.77%  88.94%   0.96%   0.48%   0.0 %   0.48%   1.92%   0.96%   0.48%  15.62%  
         |    2.44%  88.1 %   3.03%   2.33%   0.0 %   0.97%  16.67%   2.94%   0.43%          
         |                                                                                   
         |      12       0      56       2       0       1       0       1       2      74   
   -3P   |   16.22%   0.0 %  75.68%   2.7 %   0.0 %   1.35%   0.0 %   1.35%   2.7 %   5.56%  
         |    2.44%   0.0 %  84.85%   4.65%   0.0 %   0.97%   0.0 %   1.47%   0.85%          
         |                                                                                   
         |       2       2       1      38       0       0       0       0       1      44   
   -1P   |    4.55%   4.55%   2.27%  86.36%   0.0 %   0.0 %   0.0 %   0.0 %   2.27%   3.3 %  
         |    0.41%   0.95%   1.52%  88.37%   0.0 %   0.0 %   0.0 %   0.0 %   0.43%          
         |                                                                                   
         |       0       0       0       0      92       0       0       0       0      92   
    0P   |    0.0 %   0.0 %   0.0 %   0.0 % 100.0 %   0.0 %   0.0 %   0.0 %   0.0 %   6.91%  
         |    0.0 %   0.0 %   0.0 %   0.0 % 100.0 %   0.0 %   0.0 %   0.0 %   0.0 %          
         |                                                                                   
         |       6       2       0       1       0      85       1       4       1     100   
    1P   |    6.0 %   2.0 %   0.0 %   1.0 %   0.0 %  85.0 %   1.0 %   4.0 %   1.0 %   7.51%  
         |    1.22%   0.95%   0.0 %   2.33%   0.0 %  82.52%   4.17%   5.88%   0.43%          
         |                                                                                   
         |       0       2       0       0       0       0      16       0       4      22   
    3P   |    0.0 %   9.09%   0.0 %   0.0 %   0.0 %   0.0 %  72.73%   0.0 %  18.18%   1.65%  
         |    0.0 %   0.95%   0.0 %   0.0 %   0.0 %   0.0 %  66.67%   0.0 %   1.7 %          
         |                                                                                   
         |       1       0       0       0       0       2       0      54       4      61   
    5P   |    1.64%   0.0 %   0.0 %   0.0 %   0.0 %   3.28%   0.0 %  88.52%   6.56%   4.58%  
         |    0.2 %   0.0 %   0.0 %   0.0 %   0.0 %   1.94%   0.0 %  79.41%   1.7 %          
         |                                                                                   
         |       3       1       0       0       0       2       1       3     220     230   
    7P   |    1.3 %   0.43%   0.0 %   0.0 %   0.0 %   0.87%   0.43%   1.3 %  95.65%  17.27%  
         |    0.61%   0.48%   0.0 %   0.0 %   0.0 %   1.94%   4.17%   4.41%  93.62%          
         |                                                                                   
         |     491     210      66      43      92     103      24      68     235    1332   
   TOTAL |                                                                                   
         |   36.86%  15.77%   4.95%   3.23%   6.91%   7.73%   1.8 %   5.11%  17.64%          
                                                                                             
 CHI-SQUARE =       7787.392     D.F. = 64                                                   

Table 2D.
 MultiNet PSTAR REPORT ON "KENT.MNW"  9/04/2000  06:55:14                                        
 ITERATIONS = 12                                                                                 
                                                                                  
 LINK = "link"  LINKS =   1332  ORDER = 1139  (DIAGONAL NOT INCLUDED)                            
 NODE = "8PP.link”

 BLOCKING                                                                                        
    1   0   0   0   0   0   0   0   0 
    0   1   0   0   0   0   0   0   0   
    0   0   1   0   0   0   0   0   0   
    0   0   0   1   0   0   0   0   0   
    0   0   0   0   1   0   0   0   0   
    0   0   0   0   0   1   0   0   0   
    0   0   0   0   0   0   1   0   0   
    0   0   0   0   0   0   0   1   0   
    0   0   0   0   0   0   0   0   1   

 -2 Log PseudoLikelihood =   16950.531
         Goodness of Fit =  772892.889
       Model Chi-squared = 1779939.266     df = 11

 FIT AT P = 0.5    

              <P   |   >P   
          ------------------
        0 | 1294850|       0   0.0%
  OBS     |--------|--------  -----
        1 |    1332|       0   0.0%
          |        |        


