Symbols and Equations | name | symbol | equation | use | | |--|------------------------------|--|--|--| | i th person's <i>score</i>
on variable X | X_i | x_i | raw data | | | sample <i>mean</i> | \overline{x} | $\frac{\sum x_i}{n}$ | Most common measure of central tendency for interval or ratio data. | | | population
mean | μ | estimated by: x_i | The most often used population parameter for central tendency. | | | i th person's
deviation score | d_{i} | $x_i - \overline{x}$ | Difference between person <i>i</i> 's score and the mean. Used in calculation of standard deviation, <i>z</i> -scores, covariance, correlation, and analysis of variance. | | | i th person's <i>z-</i>
score | \mathcal{Z}_i | $\frac{x_i - \overline{x}}{s} \text{ or } \frac{d_i}{s}$ | Standard score. Tells where the person is located in the distribution relative to the rest of the sample. Can be compared to <i>z</i> -scores for other variables. | | | sample
standard
deviation | \$ or sd | $\sqrt{\frac{\sum_{i}d_{i}^{2}}{n-1}}$ | Most common measure of dispersion for interval or ratio data; used in the calculation of <i>z</i> -scores and other statistics and parameters | | | population
standard
deviation | σ | estimated by: $\sqrt{\frac{\sum d_i^2}{n-1}}$ | Most used population parameter for dispersion. Note "n-1" in denominator – this gives an unbiased estimate | | | sample <i>variance</i> | $\boldsymbol{\mathcal{S}}^2$ | $\frac{\sum d_i^2}{n-1}$ | Fundamental measure of dispersion for an interval or ratio scaled variable. | | | population
variance | σ^2 | estimated by: $\frac{\sum d_i^2}{n-1}$ | Fundamental population measure of variability of an interval or ratio scaled variable. Note "n-1" in denominator – this gives an unbiased estimate | | | standard error of
the mean | $\sigma_{ar{x}}$ | estimated by: $\frac{S}{\sqrt{n}}$ | Standard deviation of the sampling distribution of means. Used to tell how large an error you must accept, at a specified level of confidence, when using your sample's mean to estimate the population's mean (confidence estimates/intervals). | | | standard error of
the difference
between two
means | $\sigma_{\bar{x}_1 - \bar{x}_2}$ | estimated by: $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ | Standard deviation of the sampling distribution of differences between means. Used in z-test to determine whether the difference between two sample means could be due to sampling variability. | | |---|----------------------------------|--|---|--| | z-test for a single
mean | Z | $\frac{\overline{x} - \mu}{\sigma_{\overline{x}}}$ | Critical ratio used to test the significance of the difference between a sample mean and a hypothetical population mean. Used to determine whether a sample could have come from a population with a particular mean. Used for samples with more than 30 members. | | | z-test for
significance of
difference
between sample
means | Z | $\frac{\overline{x}_1 - \overline{x}_2}{\sigma_{\overline{x}_1 - \overline{x}_2}}$ | Critical ratio used to test the significance of the difference between two sample means. Used for samples with more than 30 members. | | | corrected
standard error of
the difference
between means
(takes sample size
into account;) | $SE_{ar{x}_1-ar{x}_2}$ | $\sqrt{\left(\frac{\sum d_1^2 + \sum d_2^2}{n_1 + n_2 - 2}\right) \left(\frac{n_1 + n_2}{n_1 n_2}\right)}$ | Standard deviation of the sampling distribution of differences between means corrected for sample size. <i>Used in t-test</i> to determine whether the difference between two sample means could be due to sampling variability. | | | t-test for
significance of
difference
between sample
means | t | $\frac{\overline{x}_1 - \overline{x}_2}{SE_{\overline{x}_1 - \overline{x}_2}}$ | Critical ratio used to test the significance of
the difference between two sample means.
Used for samples with less than 30 members. | | | t-test for a single
mean | t | $\frac{\overline{x}_1 - \mu}{\sigma_{\overline{x}_1 - \overline{x}_2}}$ | Critical ratio used to test the significance of
the difference between a sample mean and a
hypothetical population mean. Used for
samples with less than 30 members. | | | covariance for a
pair of
continuous
variables | cov_{xy} | $\frac{\sum d_{x_i}d_{y_i}}{n}$ | Relatively crude measure, based on deviation scores, of the strength of the relationship between a pair of continuous variables. | | | Pearson product-
moment
correlation
(Pearson's r) | r_{xy} | $\frac{\sum z_{x_i} z_{y_i}}{n}$ | Extremely useful measure, based on standard scores, of the strength of the relationship between a pair of continuous variables. | | | Spearman rank
correlation
(Spearman's rho) | r_s | $1 - \frac{6\sum_{i} d_i^2}{n^3 - n}$ | Useful measure of the strength of the relationship between a pair of ordinal variables. Based on squared differences in ranks of values in each pair (d_i^2) . May also be used for continuous data. | | |--|--------------------|---|---|--| | Fisher's r to Z | Z | $1/2\big[\ln(1+r)-\ln(1-r)\big]$ | Used to transform Pearson's r or
Spearman's rho into Z which has a
normally-distributed sampling distribution
so it can be tested for significance. | | | standard error of
the difference
between two Zs
(for Z from
Fisher's r to Z) | $\sigma_{z_1-z_2}$ | estimated by: $\sqrt{\frac{1}{n_1 - 3} + \frac{1}{n_2 - 3}}$ | Standard deviation of the sampling distribution of differences between two Zs from Fisher's r to Z. Used to determine whether the difference between a pair of sample correlations could be due to sampling variability. Used for Pearson's r and Spearman's rho. | | | z-test for
significance of
difference
between
correlations | Z | $\frac{Z_1 - Z_2}{\sigma_{Z_1 - Z_2}}$ | Critical ratio used to test the significance of the difference between a pair of Pearson's <i>r</i> or Spearman's rho correlations. | | | standard error of
Z
(for Z from
Fisher's r to Z) | σ_z | estimated by: $\frac{1}{\sqrt{n-3}}$ | Standard deviation of the sampling distribution of Z from Fisher's r to Z. Can be used for estimating confidence intervals of Pearson's r or Spearman's rho. | | | t- test for
significance of
correlation | t | $r\sqrt{(n-2)/(1-r^2)}$ | Critical ratio used to test the significance of Pearson's r or Spearman's rho. | | | between-groups
Sum of Squares | SS_b | $n_1(\overline{x}_1 - \overline{X}_T)^2 + n_2(\overline{x}_2 - \overline{X}_T)^2$ | Measure of variability between groups. Used as the numerator in the F -ratio for ANOVA. | | | within-groups
Sum of Squares | SS_w | $\sum (x_{i,1} - \overline{x}_1)^2 + \sum (x_{i,2} - \overline{x}_2)^2 + \dots$ | Measure of variability within groups. Used as the denominator in the <i>F</i> -ratio for ANOVA. | | | F-ratio | F | $\frac{MS_b}{MS_w} = \frac{SS_b/df_b}{SS_w/df_w}$ | Critical ratio used to test the significance of
the difference between sample means in a
one-way Analysis of variance (ANOVA). | | There are two major classes of standard deviations: those that apply to samples and those that apply to populations. You directly *calculate* the ones that apply to *samples* and you *estimate* the ones that apply to *populations*. ## Statistical tests: their variables and their uses | | variables | level of scaling | sample size | purpose | example | |---|---|------------------------------------|--|---|--| | χ²
chi-squared | one or more
categorical
variables | nominal | no more
than 20% of
cells have
expected
frequency
less than 5 | are row and column variables independent? | compare men and women in
terms of passing or failing a
course.
IV: male/female;
DV: pass/fail | | t-test | 1 discrete IV;
1 continuous
DV | IV nominal
DV int/ratio | less than 30 cases | could the difference be-
tween two sample means
be due to sampling
variability? | compare ages of samples of
men and women.
IV: male/female; DV: age | | z-test of
difference
between
means | 1 discrete IV;
1 continuous
DV | IV nominal
DV int/ratio | 30 or more
cases | could the difference be-
tween two sample means
be due to sampling
variability? | compare ages of samples of
men and women
IV: male/female; DV: age | | z-test of a
single mean | 1 continuous
variable | sample mean;
population
mean | 30 or more
cases | could the difference between \bar{x} and μ be due to sampling variability? | could this sample have come from a population with $\mu = 95.3$? | | ANOVA | discrete
IV(s);
1 continuous
DV | IV(s)
nominal
DV int/ratio | 30 or more
cases | could the difference be-
tween sample means be
due to sampling
variability? | compare ages of samples of
students majoring in CMNS,
PSYC, MATH, ECON,
HIST.
IV: major; DV: age | | regression | continuous
IV(s);
1 continuous
DV | all interval or
ratio | 30 or more
cases | describe the linear contri-
butions of a set of inde-
pendent variables on one
dependent variable. | examine factors (age, GPA, undergrad major, family income) that contribute to success in graduate school. IVs: age, CGPA, major, income; DV: graduate performance | | t-test for
significance
of
correlation | 2 continuous
or ordinal
variables | both at least
ordinal | 20 or more
cases | could sample correlation
be due to sampling varia-
bility? | relation between age and
amount of time spent
sleeping at night.
V1: age; V2: time sleeping | | z-test for
correlation
differences | 2 pairs of
continuous
or ordinal
variables | all at least
ordinal | 30 or more
cases | could difference between sample correlations be due to sampling variability? | compare r (age - GPA) to r (age - coffee consumption). V1: age; V2: GPA; V3: coffee consumption | | z-test for
proportion
differences | 1 discrete IV;
1"continuous
" DV | IV nominal
DV ratio
only | 30 or more
cases | could the difference be-
tween a pair of propor-
tions be due to sampling
variability? | compare proportion of men
and women who study math.
IV: male/female;
DV: % who study math |