Homework Set 3

Constant intensity default models

1. Suppose a firm issues a 2 yr . zero-coupon bond with maturity (par) value 100 . The firm has constant Poisson (objective) default intensity of $h=.15 / \mathrm{yr}$. The riskfree interest rate is constant at $r=.05 / \mathrm{yr}$. Assume the market is risk-neutral toward the default event (it is fully diversifiable), so that the risk-adjusted default intensity is the same as the objective one.
(a) What is the probability the firm defaults before maturity? (determine by formula)
(b) Suppose there are 0 recoveries in default. What is the initial market value of the bond and its contractual yield if purchased for that price?
(c) Repeat for maturities 1 to 5 years and plot the resulting credit spread curve for this issuer.
(d) Suppose recovery upon default is 60% of par, with payment deferred to the bond maturity date. What will be the intial market value and contractual yield of the 2 year bond?
(e) Suppose recovery upon default is 60% of par, with payment made at the time of default. What will be the intial market value and contractual yield of the 2 year bond?
(f) Suppose recovery upon default is 60% of contractual balance owing (i.e., $100 e^{-c(2-t)}$ if t is the default time), with payment made at the time of default. What will be the intial market value and contractual yield of the 2 year bond?
2. Suppose the above firm issues a 5 year bond of 100 par value, with a coupon rate of 20% /year paid semiannually, and with expected recoveries in default being 40% of par value (paid at the time of default). The riskfree yield curve is flat at $5 \% /$ year (continuously compounded).
(a) For what price should this bond trade, and what would be the associated promised yield to maturity, if the default intensity is $.15 /$ year?
(b) If we observe this bond trading at a price of 95, and everyone agrees that recoveries in default will be 40%, what is the market implied default intensity? (i.e., what value of h would make 95 the market price)
(c) Now consider a 5 year credit default swap on this firm. The protection buyer pays a constant, continuous, default swap spread at a rate $c /$ year on a notional debt amount of 100 until the earlier of 5 years or the time of default. If default occurs before 5 years, the protection seller pays at that time a lump sum equal to (100recovery rate). If $h=.15$, what should be the credit default swap spread c ? (i.e., what value of c would make the initial market value of the CDS equal to 0 ?)
3. Consider a portfolio of long-term bonds issued by three firms: 100 of firm $\mathrm{X}, 150$ of firm Y, 200 of firm Z. The firms' market implied default intensities are $.20, .10$ and .05 respectively. Expected recovery rates in default are all 40% of par. You wish to buy a 5 year first-to-default swap reimbursing you for the loss in par value just for whichever firm defaults first. You pay for the swap with a single lump sum premium C at the start of the contract. The riskfree interest rate is constant at 5%.

Do a Monte Carlo simulation of the firms' default times (assume they are independent) to determine the fair market value of the protection and hence what C you should pay.

