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Abstract 
Evidence from many countries in recent years suggests that collateral values and 
recovery rates on corporate defaults can be volatile and, moreover, that they tend to go 
down just when the number of defaults goes up in economic downturns. This link 
between recovery rates and default rates has traditionally been neglected by credit risk 
models, as most of them focused on default risk and adopted static loss assumptions, 
treating the recovery rate either as a constant parameter or as a stochastic variable 
independent from the probability of default. This traditional focus on default analysis 
has been partly reversed by the recent significant increase in the number of studies 
dedicated to the subject of recovery rate estimation and the relationship between default 
and recovery rates. This paper presents a detailed review of the way credit risk models, 
developed during the last thirty years, treat the recovery rate and, more specifically, its 
relationship with the probability of default of an obligor. Recent empirical evidence 
concerning this issue is also presented and discussed.  
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1. Introduction 

Three main variables affect the credit risk of a financial asset: (i) the probability 

of default (PD), (ii) the “loss given default” (LGD), which is equal to one minus the 

recovery rate in the event of default (RR), and (iii) the exposure at default (EAD). 

While significant attention has been devoted by the credit risk literature on the 

estimation of the first component (PD), much less attention has been dedicated to the 

estimation of RR and to the relationship between PD and RR. This is mainly the 

consequence of two related factors. First, credit pricing models and risk management 

applications tend to focus on the systematic risk components of credit risk, as these are 

the only ones that attract risk-premia. Second, credit risk models traditionally assumed 

RR to be dependent on individual features (e.g. collateral or seniority) that do not 

respond to systematic factors, and to be independent of PD.  

This traditional focus on default analysis has been partly reversed by the recent 

increase in the number of studies dedicated to the subject of RR estimation and the 

relationship between the PD and RR (Fridson, Garman and Okashima [2000], Gupton, 

Gates and Carty [2000], Jokivuolle and Peura [2003], Altman, Brady, Resti and Sironi 

[2001 and 2004], Frye [2000a, 2000b and 2000c], and Jarrow [2001]). This is partly the 

consequence of the parallel increase in default rates and decrease of recovery rates 

registered during the 1999-2002 period. More generally, evidence from many countries 

in recent years suggests that collateral values and recovery rates can be volatile and, 

moreover, they tend to go down just when the number of defaults goes up in economic 

downturns (Schleifer and Vishny [1992], Altman [2001], Hamilton, Gupton and 

Berthault [2001]).  

 This paper presents a detailed review of the way credit risk models developed 

during the last thirty years have treated the recovery rate and, more specifically, its 

relationship with the probability of default of an obligor. These models can be divided 

into two main categories: (a) credit pricing models, and (b) portfolio credit value-at-risk 

(VaR) models. Credit pricing models can in turn be divided into three main approaches: 

(i) “first generation” structural-form models, (ii) “second generation” structural-form 

models, and (iii) reduced-form models. These three different approaches together with 

their basic assumptions, advantages, drawbacks and empirical performance are 
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reviewed in sections 2, 3 and 4. Credit VaR models are then examined in section 5. The 

more recent studies explicitly modeling and empirically investigating the relationship 

between PD and RR are reviewed in section 6. Section 7 presents some recent empirical 

evidence on recovery rates on both defaulted bonds and loans and also on the 

relationship between default and recovery rates. Section 8 concludes. 

2. First generation structural-form models: the Merton approach 

The first category of credit risk models are the ones based on the original 

framework developed by Merton (1974) using the principles of option pricing (Black 

and Scholes, 1973). In such a framework, the default process of a company is driven by 

the value of the company’s assets and the risk of a firm’s default is therefore explicitly 

linked to the variability of the firm’s asset value. The basic intuition behind the Merton 

model is relatively simple: default occurs when the value of a firm’s assets (the market 

value of the firm) is lower than that of its liabilities. The payment to the debtholders at 

the maturity of the debt is therefore the smaller of two quantities: the face value of the 

debt or the market value of the firm’s assets. Assuming that the company’s debt is 

entirely represented by a zero-coupon bond, if the value of the firm at maturity is greater 

than the face value of the bond, then the bondholder gets back the face value of the 

bond. However, if the value of the firm is less than the face value of the bond,  the 

shareholders get nothing and the bondholder gets back the market value of the firm. The 

payoff at maturity to the bondholder is therefore equivalent to the face value of the bond 

minus a put option on the value of the firm, with a strike price equal to the face value of 

the bond and a maturity equal to the maturity of the bond. Following this basic intuition, 

Merton derived an explicit formula for risky bonds which can be used both to estimate 

the PD of a firm and to estimate the yield differential between a risky bond and a 

default-free bond. 

In addition to Merton (1974), first generation structural-form models include 

Black and Cox (1976), Geske (1977), and Vasicek (1984). Each of these models tries to 

refine the original Merton framework by removing one or more of the unrealistic 

assumptions. Black and Cox (1976) introduce the possibility of more complex capital 

structures, with subordinated debt; Geske (1977) introduces interest-paying debt; 
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Vasicek (1984) introduces the distinction between short and long term liabilities which 

now represents a distinctive feature of the KMV model1. 

Under these models all the relevant credit risk elements, including default and 

recovery at default, are a function of the structural characteristics of the firm: asset 

volatility (business risk) and leverage (financial risk). The RR is therefore an 

endogenous variable, as the creditors’ payoff is a function of the residual value of the 

defaulted company’s assets. More precisely, under the Merton’s theoretical framework, 

PD and RR tend to be inversely related (see Appendix A for a simulation exercise on 

this relationship). If, for example, the firm’s value increases, then its PD tends to 

decrease while the expected RR at default increases (ceteris paribus). On the other side, 

if the firm’s debt increases, its PD increases while the expected RR at default decreases. 

Finally, if the firm’s asset volatility increases, its PD increases while the expected RR at 

default decreases, since the possible asset values can be quite low relative to liability 

levels.   

Although the line of research that followed the Merton approach has proven very 

useful in addressing the qualitatively important aspects of pricing credit risks, it has 

been less successful in practical applications2. This lack of success has been attributed 

to different reasons. First, under Merton’s model the firm defaults only at maturity of 

the debt, a scenario that is at odds with reality. Second, for the model to be used in 

valuing default-risky debts of a firm with more than one class of debt in its capital 

structure (complex capital structures), the priority/seniority structures of various debts 

have to be specified. Also, this framework assumes that the absolute-priority rules are 

actually adhered to upon default in that debts are paid off in the order of their seniority. 

However, empirical evidence in Franks and Torous (1994) indicates that the absolute-

priority rules are often violated. Moreover, the use of a lognormal distribution in the 

basic Merton model (instead of a more fat tailed distribution) tends to overstate 

recovery rates in the event of default. 

 

                                                 
1 In the KMV model, default occurs when the firm’s asset value goes below a threshold represented by 
the sum of the total amount of short term liabilities and half of the amount of long term liabilities.  
2 The standard reference is Jones, Mason and Rosenfeld (1984), who find that, even for firms with very 
simple capital structures, a Merton-type model is unable to price investment-grade corporate bonds better 
than a naive model that assumes no risk of default. 
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3. Second-generation structural-form models 

In response to such difficulties, an alternative approach has been developed 

which still adopts the original Merton framework as far as the default process is 

concerned but, at the same time, removes one of the unrealistic assumptions of the 

Merton model, namely, that default can occur only at maturity of the debt when the 

firm’s assets are no longer sufficient to cover debt obligations. Instead, it is assumed 

that default may occur any time between the issuance and maturity of the debt and that 

default is triggered when the value of the firm’s assets reaches a lower threshold level3. 

These models include Kim, Ramaswamy and Sundaresan (1993), Hull and White 

(1995), Nielsen, Saà-Requejo, Santa Clara (1993), Longstaff and Schwartz (1995) and 

others.  

Under these models the RR in the event of default is exogenous and independent from 

the firm’s asset value. It is generally defined as a fixed ratio of the outstanding debt 

value and is therefore independent from the PD. For example, Longstaff and Schwartz 

(1995) argue that, by looking at the history of defaults and the recovery ratios for 

various classes of debt of comparable firms, one can form a reliable estimate of the RR. 

In their model, they allow for a stochastic term structure of interest rates and for some 

correlation between defaults and interest rates. They find that this correlation between 

default risk and the interest rate has a significant effect on the properties of the credit 

spread4. This approach simplifies the first class of models by both exogenously 

specifying the cash flows to risky debt in the event of bankruptcy and simplifying the 

bankruptcy process. The latter occurs when the value of the firm’s underlying assets hits 

some exogenously specified boundary.  

Despite these improvements with respect to the original Merton’s framework, 

second generation structural-form models still suffer from three main drawbacks, which 

represent the main reasons behind their relatively poor empirical performance5. First, 

they still require estimates for the parameters of the firm’s asset value, which is 

nonobservable. Indeed, unlike the stock price in the Black and Scholes formula for 

                                                 
3 One of the earliest studies based on this framework is Black and Cox (1976). However, this is not 
included in the second-generation models in terms of the treatment of the recovery rate.  
4 Using Moody’s corporate bond yield data, they find that credit spreads are negatively related to interest 
rates and that durations of risky bonds depend on the correlation with interest rates. 
5 See Eom, Helwege and Huang (2001) for an empirical analysis of structural-form models. 
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valuing equity options, the current market value of a firm is not easily observable. 

Second, structural-form models cannot incorporate credit-rating changes that occur 

quite frequently for default-risky corporate debts. Most corporate bonds undergo credit 

downgrades before they actually default. As a consequence, any credit risk model 

should take into account the uncertainty associated with credit rating changes as well as 

the uncertainty concerning default. Finally, most structural-form models assume that the 

value of the firm is continuous in time. As a result, the time of default can be predicted 

just before it happens and hence, as argued by Duffie and Lando (2000), there are no 

“sudden surprises”. In other words, without recurring to a “jump process”, the PD of a 

firm is known with certainty. 

4. Reduced-form models 

The attempt to overcome the above mentioned shortcomings of structural-form 

models gave rise to reduced-form models. These include Litterman and Iben (1991), 

Madan and Unal (1995), Jarrow and Turnbull (1995), Jarrow, Lando and Turnbull 

(1997), Lando (1998), Duffie and Singleton (1999), and Duffie (1998). Unlike 

structural-form models, reduced-form models do not condition default on the value of 

the firm, and parameters related to the firm’s value need not be estimated to implement 

them. In addition to that, reduced-form models introduce separate explicit assumptions 

on the dynamic of both PD and RR. These variables are modeled independently from 

the structural features of the firm, its asset volatility and leverage. Generally speaking, 

reduced-form models assume an exogenous RR that is independent from the PD. More 

specifically, reduced-form models take as primitives the behavior of default-free interest 

rates, the RR of defaultable bonds at default, as well as a stochastic process for default 

intensity. At each instant, there is some probability that a firm defaults on its 

obligations. Both this probability and the RR in the event of default may vary 

stochastically through time. Those stochastic processes determine the price of credit 

risk. Although these processes are not formally linked to the firm’s asset value, there is 

presumably some underlying relation. Thus Duffie and Singleton (1999) describe these 

alternative approaches as a reduced-form models. 

Reduced-form models fundamentally differ from typical structural-form models 

in the degree of predictability of the default as they can accomodate for defaults that are 
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sudden surprises. A typical reduced-form model assumes that an exogenous random 

variable drives default and that the probability of default over any time interval is 

nonzero. Default occurs when the random variable undergoes a discrete shift in its level. 

These models treat defaults as unpredictable Poisson events. The time at which the 

discrete shift will occur cannot be foretold on the basis of information available today. 

Reduced-form models somewhat differ by the manner in which the RR is 

parameterized. For example, Jarrow and Turnbull (1995) assumed that, at default, a 

bond would have a market value equal to an exogenously specified fraction of an 

otherwise equivalent default-free bond. Duffie and Singleton (1999) followed with a 

model that, when market value at default (i.e. RR) is exogenously specified, allows for 

closed-form solutions for the term-structure of credit spreads. Their model also allows 

for a random RR that depends on the pre-default value of the bond. While this model 

assumes an exogenous process for the expected loss at default, meaning that the RR 

does not depend on the value of the defaultable claim, it allows for correlation between 

the default hazard-rate process and RR. Indeed, in this model, the behavior of both PD 

and RR may be allowed to depend on firm-specific or macroeconomic variables and 

therefore to be correlated.  

Other models assume that bonds of the same issuer, seniority, and face value 

have the same RR at default, regardless of the remaining maturity. For example, Duffie 

(1998) assumes that, at default, the holder of a bond of given face value receives a fixed 

payment, irrespective of the coupon level or maturity, and the same fraction of face 

value as any other bond of the same seniority. This allows him to use recovery 

parameters based on statistics provided by rating agencies such as Moody’s. Jarrow, 

Lando and Turnbull (1997) also allow for different debt seniorities to translate into 

different RRs for a given firm. Both Lando (1998) and Jarrow, Lando and Turnbull 

(1997) use transition matrices (historical probabilities of credit rating changes) to price 

defaultable bonds.  

Empirical evidence concerning reduced-form models is rather limited. Using the 

Duffie and Singleton (1999) framework, Duffee (1999) finds that these models have 

difficulty in explaining the observed term structure of credit spreads across firms of 

different credit risk qualities. In particular, such models have difficulty generating both 
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relatively flat yield spreads when firms have low credit risk and steeper yield spreads 

when firms have higher credit risk. 

A recent attempt to combine the advantages of structural-form models – a clear 

economic mechanism behind the default process - and the ones of reduced-form models 

– unpredictability of default - can be found in Zhou (2001). This is done by modeling 

the evolution of firm value as a jump-diffusion process. This model links RRs to the 

firm value at default so that the variation in RRs is endogenously generated and the 

correlation between RRs and credit ratings reported in Altman (1989) and Gupton, 

Gates and Carty (2000) is justified (see also Table 4 below). 

5. Credit Value-at-Risk Models 

During the second part of the Nineties, banks and consultants started developing 

credit risk models aimed at measuring the potential loss, with a predetermined 

confidence level, that a portfolio of credit exposures could suffer within a specified time 

horizon (generally one year). These vaue-at-risk (VaR) models include J.P. Morgan’s 

CreditMetrics (Gupton, Finger and Bhatia [1997]), Credit Suisse Financial Products’ 

CreditRisk+ (1997), McKinsey’s CreditPortfolioView (Wilson, 1998), KMV’s 

CreditPortfolioManager, and Kamakura’s   

Credit VaR models can be gathered in two main categories: 1) Default Mode 

models (DM) and 2) Mark-to-Market (MTM) models. In the former, credit risk is 

identified with default risk and a binomial approach is adopted. Therefore, only two 

possible events are taken into account: default and survival. The latter includes all 

possible changes of the borrower creditworthiness, technically called “credit 

migrations”. In DM models, credit losses only arise when a default occurs. On the other 

hand, MTM models are multinomial, in that losses arise also when credit migrations 

occur. The two approaches basically differ for the amount of data necessary to feed 

them: limited in the case of default mode models, much wider in the case of mark-to-

market ones.  

The main output of a credit risk model is the probability density function (PDF) 

of the future losses on a credit portfolio. From the analysis of such loss distribution, a 

financial institution can estimate both the expected loss and the unexpected loss on its 
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credit portfolio. The expected loss equals the (unconditional) mean of the loss 

distribution; it represents the amount the bank can expect to lose within a specific 

period of time (usually one year). On the other side, the unexpected loss represents the 

“deviation” from expected loss and measures the actual portfolio risk. This can in turn 

be measured as the standard deviation of the loss distribution. Such measure is relevant 

only in the case of a normal distribution and is therefore hardly useful for credit risk 

measurement: indeed, the distribution of credit losses is usually highly asymmetrical 

and fat-tailed. This implies that the probability of large losses is higher than the one 

associated with a normal distribution. Financial institutions typically apply credit risk 

models to evaluate the “economic capital” necessary to face the risk associated with 

their credit portfolios. In such a framework, provisions for credit losses should cover 

expected losses6, while economic capital is seen as a cushion for unexpected losses. 

This distinction is currently (in late 2003) the cause for a further delay in the “” of Basel 

II. 

Credit VaR models can largely be seen as reduced-form models, where the RR is 

typically taken as an exogenous constant parameter or a stochastic variable independent 

from PD. Some of these models, such as CreditMetrics, CreditPortfolioView and 

CreditPortfolioManager, treat the RR in the event of default as a stochastic variable – 

generally modeled through a beta distribution - independent from the PD. Others, such 

as CreditRisk+, treat it as a constant parameter that must be specified as an input for 

each single credit exposure. While a comprehensive analysis of these models goes 

beyond the aim of this review7, it is important to highlight that all credit VaR models 

treat RR and PD as two independent variables. 

6. The latest contributions on the PD-RR relationship 

During the last three years, new approaches explicitly modeling and empirically 

investigating the relationship between PD and RR have been developed. These models 

include Frye (2000a and 2000b), Jarrow (2001), Hu and Perraudin (2002), Jokivuolle 

and Peura (2003), Carey and Gordy (2003), Bakshi et al. (2001), Altman, Brady, Resti 

and Sironi (2001 and 2004), and Acharya, Bharath and Srinivasan (2003). 

                                                 
6 As discussed in Jones and Mingo (1998), reserves are used to cover expected losses..  
7 For a comprehensive analysis of these models, see Crouhy, Galai and Mark (2000) and Gordy (2000). 
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The model proposed by Frye (2000a and 2000b) draws from the conditional 

approach suggested by Finger (1999) and Gordy (2000). In these models, defaults are 

driven by a single systematic factor – the state of the economy - rather than by a 

multitude of correlation parameters. These models are based on the assumption that the 

same economic conditions that cause defaults to rise might cause RRs to decline, i.e. 

that the distribution of recovery is different in high-default periods from low-default 

ones. In Frye’s model, both PD and RR depend on the state of the systematic factor. The 

correlation between these two variables therefore derives from their mutual dependence 

on the systematic factor.  

The intuition behind Frye’s theoretical model is relatively simple: if a borrower 

defaults on a loan, a bank’s recovery may depend on the value of the loan collateral. 

The value of the collateral, like the value of other assets, depends on economic 

conditions. If the economy experiences a recession, RRs may decrease just as default 

rates tend to increase. This gives rise to a negative correlation between default rates and 

RRs.  

While the model originally developed by Frye (2000a) implied recovery to be 

taken from an equation that determines collateral, Frye (2000b) modeled recovery 

directly. This allowed him to empirically test his model using data on defaults and 

recoveries from U.S. corporate bond data. More precisely, data from Moody’s Default 

Risk Service database for the 1982-1997 period were used for the empirical analysis8. 

Results show a strong negative correlation between default rates and RRs for corporate 

bonds. This evidence is consistent with the most recent U.S. bond market data, 

indicating a simultaneous increase in default rates and LGDs for the 1999-2002 period9. 

Frye’s (2000b and 2000c) empirical analysis allows him to conclude that in a severe 

economic downturn bond recoveries might decline 20-25 percentage points from their 

normal-year average. Loan recoveries may decline by a similar amount, but from a 

higher level. 

Jarrow (2001) presents a new methodology for estimating RRs and PDs implicit 

in both debt and equity prices. As in Frye (2000a and 2000b), RRs and PDs are 

                                                 
8 Data for the 1970-1981 period have been eliminated from the sample period because of the low number 
of default prices available for the computation of yearly recovery rates. 
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correlated and depend on the state of the macroeconomy. However, Jarrow’s 

methodology explicitly incorporates equity prices in the estimation procedure, allowing 

the separate identification of RRs and PDs and the use of an expanded and relevant 

dataset. In addition to that, the methodology explicitly incorporates a liquidity premium 

in the estimation procedure, which is considered essential in light of the high variability 

in the yield spreads between risky debt and U.S. Treasury securities.  

Using four different datasets (Moody’s Default Risk Service database of bond 

defaults and LGDs, Society of Actuaries database of private placement defaults and 

LGDs, Standard & Poor’s database of bond defaults and LGDs, and Portfolio 

Management Data’s database of LGDs) ranging from 1970 to 1999, Carey and Gordy 

(2003) analyze LGD measures and their correlation with default rates. Their preliminary 

results contrast with the findings of Frye (2000b): estimates of simple default rate-LGD 

correlation are close to zero. They also find that limiting the sample period to 1988-

1998, estimated correlations are more in line with Frye’s results (0.45 for senior debt 

and 0.8 for subordinated debt). The authors note that during this short period the 

correlation arises not so much because LGDs are low during the low-default years 

1993-1996, but rather because LGDs are relatively high during the high-default years 

1990 and 1991. They therefore conclude that the basic intuition behind the Frye’s model 

may not adequately characterize the relationship between default rates and LGDs. 

Indeed, a weak or asymmetric relationship suggests that default rates and LGDs may be 

influenced by different components of the economic cycle. 

Using defaulted bonds’ data for the sample period 1982-2000, which includes 

the relatively high-default years of 1999 and 2000, Altman, Brady, Resti and Sironi 

(2004) find empirical results that appear consistent with Frye’s intuition: a negative 

correlation between default rates and RRs. However, they find that the single systematic 

risk factor – i.e. the performance of the economy - is less predictive than Frye’s model 

would suggest. Their econometric univariate and multivariate models assign a key role 

to the supply of defaulted bonds (the default rate) and show that this variable, together 

with variables that proxy the size of the high-yield bond market and the economic cycle, 

explain a substantial proportion of the variance in bond recovery rates aggregated across 

                                                                                                                                               
9Hamilton, Gupton and Berthault (2001) and Altman, Brady, Resti and Sironi (2003) provide clear 
empirical evidence of this phenomenon. 
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all seniority and collateral levels. They conclude that a simple microeconomic 

mechanism based on supply and demand drives aggregate recovery rates more than a 

macroeconomic model based on the common dependence of default and recovery on the 

state of the cycle. In high default years, the supply of defaulted securities tends to 

exceed demand10, thereby driving secondary market prices down. This in turn 

negatively affects RR estimates, as these are generally measured using bond prices 

shortly after default. 

Altman et al. (2004) also highlight the implications of their results for credit risk 

modelling and for the issue of procyclicality11 of capital requirements. In order to assess 

the impact of a negative correlation between default rates and recovery rates on credit 

risk models, they run Montecarlo simulations on a sample portfolio of bank loans and 

compare the key risk measures (expected and unexpected losses). They show that both 

the expected loss and the unexpected loss are vastly understated if one assumes that PDs 

and RRs are uncorrelated12.  Therefore, credit models that do not carefully factor in the 

negative correlation between PDs and RRs might lead to insufficient bank reserves and 

cause unnecessary shocks to financial markets.  

As far as procyclicality is concerned, they show that this effect tends to be exacerbated 

by the correlation between DRs and RRs: low recovery rates when defaults are high 

would amplify cyclical effects. This would especially be true under the so-called 

“advanced” IRB approach, where banks are free to estimate their own recovery rates 

and might tend to revise them downwards when defaults increase and and ratings 

worsen. The impact of such a mechanism was also assessed by Resti (2002), based on 

simulations over a 20-year period, using a standard portfolio of bank loans (the 

composition of which is adjusted through time according to S&P transition matrices). 

Two main results emerged from this simulation exercise: (i) the procyclicality effect is 

driven more by up- and downgrades, rather than by default rates; in other words, 

adjustments in credit supply needed to comply with capital requirements respond 

                                                 
10 Demand mostly comes from niche investors called “vultures”, who intentionally purchase bonds in 
default. These investors represent a relatively small and specialized segment of the fixed income market. 
11 Prociclicality involves the sensitivity of regulatory capital requirements to economic and financial 
market cycles.  Since ratings and default rates respond to the cycle, the new internal ratings-based (IRB) 
approach proposed by the Basel Committee risks increasing capital charges, and limiting credit supply, 
when the economy is slowing (the reverse being true when the economy is growing at a fast rate). 
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mainly to changes in the structure of weighted assets, and only to a lesser extent to 

actual credit losses (except in extremely high default years); (ii) when RRs are 

permitted to fluctuate with default rates, the procyclicality effect increases significantly.  

 Using Moody’s historical bond market data, Hu and Perraudin (2002) examine 

the dependence between recovery rates and default rates. They first standardize the 

quarterly recovery data in order to filter out the volatility of recovery rates due to 

changes over time in the pool of rated borrowers. They find that correlations between 

quarterly recovery rates and default rates for bonds issued by US-domiciled obligors are 

0.22 for post 1982 data (1983-2000) and 0.19 for the 1971-2000 period. Using extreme 

value theory and other non-parametric techniques, they also examine the impact of this 

negative correlation on credit VaR measures and find that the increase is statistically 

significant when confidence levels exceed 99%.  

Bakshi et al. (2001) enhance the reduced-form models presented in section 4 to 

allow for a flexible correlation between the risk-free rate, the default probability and the 

recovery rate. Based on some preliminary evidence published by rating agencies, they 

force recovery rates to be negatively associated with default probability. They find some 

strong support for this hypothesis through the analysis of a sample of BBB-rated 

corporate bonds: more precisely, their empirical results show that, on average, a 4% 

worsening in the (risk-neutral) hazard rate is associated with a 1% decline in (risk-

neutral) recovery rates. 

A rather different approach is the one proposed by Jokivuolle and Peura (2003). 

The authors present a model for bank loans in which collateral value is correlated with 

the PD. They use the option pricing framework for modeling risky debt: the borrowing 

firm’s total asset value triggers the event of default. However, the firm’s asset value 

does not determine the RR. Rather, the collateral value is in turn assumed to be the only 

stochastic element determining recovery13. Because of this assumption, the model can 

be implemented using an exogenous PD, so that the firm’s asset value parameters need 

not be estimated. In this respect, the model combines features of both structural-form 

                                                                                                                                               
12 Both expected losses and VaR measures associated with different confidence levels tend to be 
underestimated by approximately 30%. 
13 Because of this simplifying assumption the model can be implemented using an exogenous PD, so that 
the firm asset value parameters need not be estimated. In this respect, the model combines features of 
both structural-form and reduced-form models. 
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and reduced-form models. Assuming a positive correlation between a firm’s asset value 

and collateral value, the authors obtain a similar result as Frye (2000a), that realized 

default rates and recovery rates have an inverse relationship. 

Using data on observed prices of defaulted securities in the United States over 

the period 1982-1999, Acharya, Bharath and Srinivasan (2003) find that seniority and 

security are important determinants of recovery rates. While this result is not surprising 

and in line with previous empirical studies on recoveries, their second main result is 

rather striking and concerns the effect of industry-specific and macroeconomic 

conditions in the default year. Indeed, industry conditions at the time of default are 

found to be robust and important determinants of recovery rates. This result is in 

contrast with to those of Altman et al. (2004) in that there is no effect of 

macroeconomic conditions over and above the industry conditions and is in line those 

results in that the effect of industry conditions is robust to inclusion of macroeconomic 

factors.  Acharya, Bharath and Srinivasan (2003) suggest that the linkage, highlighted 

by Altman et al. (2004), between bond market aggregate variables and recoveries as 

arising due to supply-side effects in segmented bond markets may be a manifestation of 

Shleifer and Vishny (1992) industry equilibrium effect: macroeconomic variables and 

bond market conditions appear to be picking up the effect of omitted industry 

conditions. 

7. Empirical evidence 

 This section of our review focuses on different measurements and the most 

recent empirical evidence of default recovery rates.  Most credit risk models utilize 

historical average empirical estimates, combined with their primary analytical 

specification of the probability of default, to arrive at the all-important Loss-Given-

Default (LGD) input.  Since very few financial institutions have ample data on recovery 

rates by asset-type and by type of collateral, model builders and analysts responsible for 

Basel II inputs into their internal rate based (IRB) models begin with estimates from 

public bond and private bank loan markets.  Of course, some banks will research their 

own internal databases in order to conform with the requirements of the Advanced IRB 

approach. 

Early Empirical Evidence 
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 Published data on default recovery rates generally, but not always, use secondary 

bond or bank loan prices.  The first empirical study, that we are aware of, that estimated 

default recovery rates was in Altman, Haldeman and Narayanan’s (1977) ZETA® 

model’s adjustment of the optimal cutoff score in their second generation credit scoring 

model. Interestingly, these bank loan recovery estimates did not come from the 

secondary loan trading market -- they did not exist then -- but from a survey of bank 

workout-department experience (1971-1975).  The general conclusion from this early 

experience of these departments was a recovery rate on non-performing, unsecured 

loans of about thirty percent of the loan amount plus accrued interest.  The cash inflows 

for three years post-default was not discounted back to default date.  We will refer to 

this experience as the “ultimate recovery” since it utilizes post-defaults recoveries, 

usually from the end of the restructuring period. 

 In later studies, ultimate recovery rates refer to the nominal or discounted value 

of bonds or loans based on either the price of the security at the end of the 

reorganization period (usually Chapter 11) or the value of the package of cash or 

securities upon emergence from restructuring.  For example, Altman and Eberhart 

(1994) observed the price performance of defaulted bonds, stratified by seniority, upon 

restructuring emergence as well as the discounted value of these prices.  They 

concluded that the most senior bonds in the capital structure (senior secured and senior 

unsecured) did very well in the post-default period (20-30% per annum returns) but the 

more junior bonds (senior subordinated and subordinated) did poorly, barely breaking 

even on a nominal basis and losing money on a discounted basis.  Similar, but less 

extreme, results were found by Fridson, et. al., Merrill Lynch 2001) when they updated 

(1994-2000) Altman & Eberhart’s earlier study which covered the period 1981-1993. 

More Recent Evidence 

 In Table 1, we present recent empirical evidence on bank loan recoveries 

(Emery, Moody’s, 2003) and on corporate bonds by seniority (Altman and Fanjul, 

2004) based on the average prices of these securities just after the date of default.  Not 

surprisingly, the highest median recovery rates were on senior secured bank loans 

(73.0%) followed by senior secured bonds (54.5%).  Although the data from Moody’s 

and Altman were from different periods and samples, it is interesting to note that the 
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recovery on senior unsecured bonds (42.3%) was similar, but lower than senior 

unsecured bank loans (50.5%), with similar standard deviations (in the mid-twenty 

percents).  The estimates of median recoveries on the senior-subordinated and 

subordinated bonds were virtually the same at 32.0%.  Similar recoveries on defaulted 

bonds can be found in Varma, et. al. (Moody’s, 2003).  For example, Altman’s mean 

recovery rate on almost 2000 bond default issues was 34.3% compared to Moody’s 

1,239 issuer-weighted mean of 35.4%. 

 

TABLE 1 APPROXIMATELY HERE 
 

 Altman and Fanjul (2004) further breakdown bond recoveries just after the 

default date by analyzing recoveries based on the original rating (fallen angels vs. 

original rating non-investment [“junk”] bonds) of different seniorities.  For example, in 

Table 2 we observe that senior-secured bonds, that were originally rated investment 

grade, recovered a median rate of 50.5% vs. just 33.5% for the same seniority bonds 

that were non-investment grade when issued.  This is a dramatic statistically significant 

difference for similar seniority securities.  The mean recovery rate differential was even 

greater.  Since fallen angel defaults are much more prominent of late in the United 

States (e.g., close to 50% in dollar amount of defaults in 2001 and 2002 were fallen 

angels prior to default), these statistics are quite meaningful.  The differential was 

almost as great (42.7% vs. 30.0%) for senior unsecured bonds.  Note that for senior-

subordinated and subordinated bonds, however, the rating at issuance is of no 

consequence, although the sample sizes for investment grade, low seniority bonds were 

very small.  Varma, et. al., (2003) also conclude that the higher the rating prior to 

default, the higher the average recovery rate in default. 

 

TABLE 2 APPROXIMATELY HERE 
 

 In Table 3, we again return to the data on ultimate recoveries, only this time the 

results are from Standard & Poor’s assessment of bank loan and bond recoveries.  These 
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results show the nominal and discounted (by the loan’s pre-default interest rate) 

ultimate recovery at the end of the restructuring period for well over 2,000 defaulted 

loans and notes.  Several items are of interest.  First, the recovery on senior bank debt, 

which are mainly secured, was quite high at 87.3% and 78.8% for nominal and 

discounted values respectively.  Senior secured and senior unsecured notes, which 

include loans and bonds, had lower recoveries and the more junior notes (almost all 

bonds) had, not surprisingly, the lowest recoveries.  Note, the differential between the 

nominal and discounted recovery rates diminish somewhat at the lower seniority levels.   

 

TABLE 3 APPROXIMATELY HERE 
 

 Standard & Poor’s (Keisman, 2003) also finds, not shown in any Table, that 

during the most recent “extreme stress” default years of 1998 to 2002, the recovery rates 

on all seniorities declined compared to their longer 1988-2002 sample period in Table 3.  

Since 1998 and 1999 were not really high default years, the results of S&P for 2000-

2002 are consistent with Altman, Brady, Resti and Sironi’s (2001 and 2004) predictions 

of an inverse relationship between default and recovery rates.  Indeed, recovery rates 

were a relatively low 25% in the corporate bond market for both 2001 and 2002 when 

default rates were in the double-digits but increased to about 45% in 2003 when default 

rates tumbled to below average annual levels of about 4.5 percent (Altman and Fanjul, 

2004). 

 Some recovery studies have concentrated on rates across different industries.  

Altman and Kishore (1996) and FITCH (2003) report a fairly high variance across 

industrial sectors.  For Example, Verde (FITCH, 2003) reports that recovery rates in 

2001 vs. 2002 varied dramatically from one year to the next (e.g., Gaming, Lodging and 

Restaurants recovered 16% in 2001 and 77% in 2002, Retail recovered 7% in 2001 and 

48% in 2002, while transportation recovered 31% in 2001 and 19% in 2002) but 

returned to more normal levels in 2003.    

Another issue highlighted in some studies, especially those from S&P, (Van de 

Castle and Keisman, 1999 and Keisman, 2003) is that an important determinant of 

ultimate recovery rates is the amount that a given seniority has junior liabilities below 
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its level; the greater the proportion of junior securities, the higher the recovery rate on 

the senior tranches.  The theory being that the greater the “equity cushion,” the more 

likely there will be assets of value, which under absolute priority, go first in liquidation 

or reorganization to the more senior tranches.  

8. Concluding remarks 

Table 4 summarizes the way RR and its relationship with PD are dealt with in 

the different credit models described in the previous sections of this paper.  

 

TABLE 4 APPROXIMATELY HERE 

 

While in the original Merton (1974) framework an inverse relationship between 

PD and RR exists, the credit risk models developed during the Nineties treat these two 

variables as independent. The currently available and most used credit pricing and credit 

VaR models are indeed based on this independence assumption and treat RR either as a 

constant parameter or as a stochastic variable independent from PD. In the latter case, 

RR volatility is assumed to represent an idiosyncratic risk which can be eliminated 

through adequate portfolio diversification.  

This assumption strongly contrasts with the growing empirical evidence - 

showing a negative correlation between default and recovery rates – that has been 

reported in the previous section of this paper and in other empirical studies (Frye 

[2000b and 2000c], Altman [2001], Carey and Gordy [2003], Hamilton, Gupton and 

Berthault [2001], Altman, Brady, Resti and Sironi [2001, 2004]). This evidence 

indicates that recovery risk is a systematic risk component. As such, it should attract 

risk premia and should adequately be considered in credit risk management 

applications. The potential consequences – in terms of credit risk underestimation - of 

the PD and RR independence assumption when these two variables are instead 

correlated are shown by Altman, Brady, Resti and Sironi (2004).  

 



 19

References 

Acharya, Viral V., Sreedar T. Bharath, Anand Srinivasan, 2003, Unerstanding the 
Recovery Rates on Defaulted Securities, mimeo. 

Altman, E., R. Haldeman and P. Narayanan, 1977, “ZETA Analysis: A New Model to 
Identify Bankruptcy Risk of Corporations,” Journal of Banking & Finance, Vol. 1, 
No. 1, July, pp. 29-54. 

Altman, Edward I., 1989, “Measuring Corporate Bond Mortality and Performance”, 
Journal of Finance 44, 909-922. 

Altman, E. and A. Eberhart, 1994, “Do Seniority Provisions Protect Bondholders’ 
Investments?” Journal of Portfolio Management, Summer, pp. 67-75. 

Altman, Edward I., 2001, “Altman High Yield Bond and Default Study”, Salomon 
Smith Barney, U.S. Fixed Income High Yield Report, July. 

Altman, E. and G. Fanjul, 2004, “Defaults and Returns in the High Yield Bond Market: 
Analysis Through 2003,” NYU Salomon Center Working Paper, January (also 
through 2003 Q3). 

Altman, Edward I., Brooks Brady, Andrea Resti and Andrea Sironi, 2004, “The Link 
between Default and Recovery Rates: Theory, Empirical Evidence and 
Implications”, NYU Salomon Center Working Paper Series # S-03-4, forthcoming, 
Journal of Business. 

Altman, Edward I., Brooks Brady, Andrea Resti, and Andrea Sironi, 2001, Analyzing 
and Explaining Default Recovery Rates, ISDA Research Report, London, 
December. 

Altman, Edward I. and Vellore M. Kishore, 1996, “Almost Everything You Wanted to 
Know About Recoveries on Defaulted Bonds”, Financial Analysts Journal, 
November/December. 

Bakshi, G., Dilip Madan, Frank Zhang, 2001, “Understanding the Role of Recovery in 
Default Risk Models: Empirical Comparisons and Implied Recovery Rates”, 
Finance and Economics Discussion Series, 2001-37, Federal Reserve Board of 
Governors, Washington D.C. 

Basel Committee on Banking Supervision, 2003, “The New Basel Capital Accord”, 
Consultative Document, Bank for International Settlements, April. 

Black, Fischer and John C. Cox, 1976, “Valuing Corporate Securities: Some Effects of 
Bond Indenture Provisions”, Journal of Finance, 31, 351-367. 

Black, Fischer and Myron Scholes, 1973, “The Pricing of Options and Corporate 
Liabilities”, Journal of Political Economics, May, 637-659. 

Carey, Mark and Michael Gordy, 2003, “Systematic Risk in Recoveries on Defaulted 
Debt”, mimeo, Federal Reserve Board, Washington. 

Credit Suisse Financial Products, 1997, CreditRisk+. A Credit Risk Management 
Framework, Technical Document. 



 20

Crosbie, Peter J., 1999, “Modeling Default Risk”, mimeo, KMV Corporation, San 
Francisco, CA. 

Crouhy, Michel, Dan Galai and Robert Mark, 2000, “A Comparative Analysis of 
Current Credit Risk Models”, Journal of Banking & Finance, 24, 59-117. 

Duffee, Gregory R., 1999, “Estimating the Price of Default Risk”, Review of Financial 
Studies, Spring, 12, No. 1, 197-225. 

Duffie, Darrell, 1998, “Defaultable Term Structure Models with Fractional Recovery of 
Par”, Graduate School of Business, Stanford University. 

Duffie, Darrell and Kenneth J. Singleton, 1999, “Modeling the Term Structures of 
Defaultable Bonds”, Review of Financial Studies, 12, 687-720. 

Duffie, Darrell and David Lando, 2000, “Term Structure of Credit Spreads With 
Incomplete Accounting Information”, Econometrica. 

Emery, K., 2003, Moody’s Loan Default Database as of November 2003, Moody’s 
Investors Service, December. 

Eom, Young Ho, Jean Helwege and Jing-zhi Huang, 2001, “Structural Models of 
Corporate Bond Pricing: An Empirical Analysis”, mimeo. 

Finger, Chris, 1999, Conditional Approaches for CreditMetrics Portfolio 
Distributions, CreditMetrics Monitor, April. 

Franks, Julian, and Walter Torous, 1994, “A Comparison of Financial Recontracting in 
Distressed Exchanges and Chapter 11 Reorganizations”, Journal of Financial 
Economics, 35, 349-370. 

Fridson, Martin S., Christopher M. Garman and Kathryn Okashima, 2000, “Recovery 
Rates: The Search for Meaning”, Merril Lynch & Co., High Yield Strategy. 

Frye, John, 2000a, “Collateral Damage”, Risk, April, 91-94. 

Frye, John, 2000b, “Collateral Damage Detected”, Federal Reserve Bank of Chicago, 
Working Paper, Emerging Issues Series, October, 1-14. 

Frye, John, 2000c, “Depressing Recoveries”, Risk, November.  

Geske, Robert, 1977, “The Valuation of Corporate Liabilities as Compound Options”, 
Journal of Financial and Quantitative Analysis, 12, 541-552. 

Gordy, Michael, 2000, “A Comparative Anatomy of Credit Risk Models”, Journal of 
Banking and Finance, January, 119-149. 

Gupton, Greg M., Daniel Gates and Lea V. Carty, 2000, “Bank Loan Loss Given 
Default”, Moody’s Investors Service, Global Credit Research, November. 

Gupton, Gregory, Christopher Finger, Mickey Bhatia, 1997, CreditMetrics-Technical 
Document, J.P.Morgan & Co., New York. 

Hamilton, David T., Greg M. Gupton and Alexandra Berthault, 2001, “Default and 
Recovery Rates of Corporate Bond Issuers: 2000”, Moody’s Investors Service, 
February. 

Hu, Yen-Ting, and William Perraudin, 2002, “The Dependence of Recovery Rates and 
Defaults”, BirkBeck College, mimeo, February. 



 21

Hull, John, 1997, Options, Futures and Other Derivative Securities, Prentice-Hall, 
Englewood Cliffs, NJ. 

Hull, John and Alan White, 1995, “The Impact of Default Risk on the Prices of Options 
and Other Derivative Securities”, Journal of Banking and Finance, 19, 299-322. 

Jarrow, Robert A., 2001, “Default Parameter Estimation Using Market Prices”, 
Financial Analysts Journal, Vol. 57, No. 5, pp. 75-92. 

Jarrow, Robert A., David Lando, Stuart M. Turnbull, 1997, “A Markov Model for the 
Term Structure of Credit Risk Spreads”, Review of Financial Studies, 10, 481-523. 

Jarrow, Robert A. and Stuart M. Turnbull, 1995, “Pricing Derivatives on Financial 
Securities Subject to Credit Risk”, Journal of Finance 50, 53-86. 

Jones, E., S. Mason and E. Rosenfeld, 1984, “Contingent Claims Analysis of Corporate 
Capital Structures: An Empirical Investigation”, Journal of Finance, 39, 611-627. 

Jokivuolle, Esa and Samu Peura, 2003, “A Model for Estimating Recovery Rates and 
Collateral Haircuts for Bank Loans”, European Financial Management, 
forthcoming. 

Kim I.J., K. Ramaswamy, S. Sundaresan, 1993, “Does Default Risk in Coupons Affect 
the Valuation of Corporate Bonds?: A Contingent Claims Model”, Financial 
Management, 22, No. 3, 117-131. 

Lando, David, 1998, “On Cox Processes and Credit Risky Securities”, Review of 
Derivatives Research, 2, 99-120. 

Litterman, Robert and T. Iben, 1991, “Corporate Bond Valuation and the Term 
Structure of Credit Spreads”, Financial Analysts Journal, Spring, 52-64. 

Liu, S., J. C. Lu, D. W. Kolpin and W. Q. Meeker, 1997, “Analysis of Environmental 
Data With Censored Observations”, Environmental Science & Technology, V. 31.  

Longstaff, Francis A., and Eduardo S. Schwartz, 1995, “A Simple Approach to Valuing 
Risky Fixed and Floating Rate Debt”, Journal of Finance, 50, 789-819. 

Madan, Dileep, and Haluk Unal, 1995, “Pricing the Risks of Default”, University of 
Maryland Working Paper. 

Merton, Robert C., 1974, “On the Pricing of Corporate Debt: The Risk Structure of 
Interest Rates”, Journal of Finance, 2, 449-471. 

Nielsen, Lars T., Jesus Saà-Requejo, and Pedro Santa-Clara, 1993, “Default Risk and 
Interest Rate Risk: The Term Structure of Default Spreads”, Working Paper, 
INSEAD.  

Resti, Andrea, 2002, The New Basel Capital Accord: Structure, possible Changes, 
micro- and macroeconomic Effects, Centre for European Policy Studies, 
Brussels. 

Saikat, Nandi, 1998, “Valuation Models for Default-Risky Securities: An Overview”, 
Federal Reserve Bank of Atlanta, Economic Review, Fourth Quarter. 

Schleifer, A. and R. Vishny, 1992, “Liquidation Values and Debt Capacity: A Market 
Equilibrium Approach”, Journal of Finance, 47, 1343-1366. 



 22

Van de Castle, Karen and David Keisman, 2000, “Suddenly Structure Mattered: 
Insights into Recoveries of Defaulted ”, S&P Corporate Ratings, May 24. 

Varma, P., R. Cantor and D. Hamilton, 2003, “Recovery Rates on Defaulted Corporate 
Bonds and Preferred Stocks,” Moody’s Investors Service, December. 

Vasicek, Oldrich A., 1984, Credit Valuation, KMV Corporation, March. 

Verde, Mariarosa, 2003, “Recovery Rates Return to Historic Norms,” FITCH Ratings, 
September. 

Wilson, Thomas C., 1998, “Portfolio Credit Risk”, Federal Reserve Board of New 
York, Economic Policy Review, October, 71-82. 

Zhou, Chunsheng, 2001, “The Term Structure of Credit Spreads with Jump Risk”, 
Journal of Banking & Finance 25, 2015-2040. 



 23

Appendix A 

The relationship between PD and RR in the Merton model 

 

Merton-like default models provide us with a framework for deriving the 

expected recovery rate on a defaulted firm, as well as its default probability. While the 

latter has been given much attention by subsequent research (see e.g. Crosbie, 1999), 

the former has been somewhat overlooked.  

We briefly review the Merton model, emphasizing its implications for recovery 

rates, and showing how it can be used as a theoretical guideline to investigate the 

empirical link between default probabilities and severity. 

In Merton-like models the asset value of the firm follows a geometric Brownian motion: 

dzVdtVdV AAAA σµ +=  

where µ and σA are the firm’s asset value drift and volatility rate and dz is a Wiener 

process. This implies that the log of the asset value at a given future date t 
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Default happens if and only if, at time t, the value of the firm’s assets, V’A, is 

lower than its debt14 Xt. That means that the firm’s probability of default, PD, equals: 

                                                 
14 Short-term debt due at time t can be used instead, since the inability to repay long term debt does not, 
by itself, trigger insolvency. 
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where Φ(.) is the normal c.d.f. and d2 is similar to the quantity used in the standard 

Black-Scholes option pricing formula.  

When default occurs, the recovery rate RR is given by the ratio of the asset value 

to the debt15, V’A/Xt. The expected recovery rate therefore is E(V’A/Xt), that is E(V’A)/Xt. 

However, this is true only if V’A < Xt, otherwise no default happens and no recovery can 

be observed. More formally, the expected recovery rate, RR,  can then be defined as: 
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that is, as 1/ Xt  times the mean of a truncated lognormal variable. This, in turn, is given 

by: 
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* σσ = are the mean and variance of log V’A. 

Plugging these two quantities into the above equation gives the following result: 

                                                 
15 Assuming that bankruptcy costs are negligible. 
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where the meaning of d1 and d2 is similar as in the standard Black-Scholes formula. 

The expected recovery rate therefore turns out to be: 
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Figure 1 shows a graphic representation of PD and RR. The left panel shows the 

normal distribution for AV ′log , with PD given by the grey area on the left; the right 

panel shows the lognomal distribution for V’A/Xt, the expected RR being the average of 

the values below 1, i.e., the mean of the values in the grey tail. 

 

FIGURE 1 APPROXIMATELY HERE 

 

Given the expressions for PD and RR derived above, we can run sensitivity 

analyses on the link between those two variables. Figures 2-4 consider the case of a firm 

with debt (Xt) worth 80, total assets (VA) of 100, an annual asset volatility of 20% and 

an expected return on assets of  5%. This base case will be indicated by dotted vertical 

lines in the graphs; each time, one of the three main variables (Xt, VA and σA) will be 

shocked (both halved and doubled) to see how PD and RR change. 

 

FIGURE 2 APPROXIMATELY HERE 

 

First, in Figure 2, we see that an increase in debt makes default more likely, 

while reducing the recovery rate on the defaulted loan (this could happen when a firm 
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has to face an unexpected liability, e.g. because of legal claims due to polluting 

factories, oil leaks and so on). The opposite happens in Figure 3: when the initial value 

of the firm’s assets is revised upwards (e.g., for a pharmaceutical concern announcing a 

new treatment for some lethal disease), the PD shrinks and the RR grows higher.  

 

FIGURE 3 APPROXIMATELY HERE 

 

Finally, in Figure 4, we see what happens when asset volatility increases. This 

could be the case of the telecommunications industry over the last three years: as the 

demand for e-commerce and Internet services has slowed down, the value of the 

investments made in broadband lines and UMTS licences has become more uncertain. 

From Figure 4 we see that, in such instances, an increase in asset volatility – even 

leaving leverage unchanged – brings about higher default probabilities and lower 

recovery rates. 

 

FIGURE 4 APPROXIMATELY HERE 
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Table 1 

Recovery at Default* on Public Corporate Bonds (1974-2003) 
and Bank Loans (1989-Q3-2003) 

 
 
    Number      Standard 
Loan/Bond Seniority of Issues Median % Mean % Deviation 
 
Senior Secured Loans      155  73.00  68.50  24.40 
Senior Unsecured Loans       28  50.50  55.00  28.40 
 
Senior Secured Bonds     220  54.49  52.84  23.05 
Senior Unsecured Bonds     910  42.27  34.89  26.62 
Senior Subordinated Bonds     395  32.35  30.17  24.97 
Subordinated Bonds      248  31.96  29.03  22.53 
Discount Bonds      136  18.25  20.93  17.64 
 
Total Sample Bonds   1,909  40.05  34.31  24.87 
 
------------------------------------------------------------------------------------------------------ 
 
*Based on prices just after default on bonds and 30 days after default on loans. 
 
Source:  K. Emery (Moody’s), 2003 (Bank Loans) and Altman & Fanjul, 2004 
(Bonds). 
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Table 2 
 

Investment Grade vs. Non-Investment Grade (Original Rating)  
Prices at Default on Public Bonds 

(1974-2003) 
 
 
 

   N. of       Median Average Weighted Standard 
Bond Seniority Issues     Price % Price % Price % Deviation %  
 
Senior Secured 
Investment Grade   89      50.50 54.50    56.39       24.42 
Non-Invest. Grade 283      33.50 36.63    31.91       26.04 
 
Senior Unsecured 
Investment Grade 299      42.75 46.37*    44.05*      23.57 
Non-Invest. Grade 598      30.00 33.41    31.83       23.65 
 
Senior Subordinated 
Investment Grade   11     27.31 39.54    42.04       24.23 
Non-Invest. Grade 411     26.50 31.48    28.99       24.30 
 
Subordinated 
Investment Grade   12     35.69 35.64    23.55       23.83 
Non-Invest. Grade      238     28.00 30.91    28.66       21.98 
 
Discount 
Investment Grade   --        --     --       --           --- 
Non-invest. Grade      113     16.00 20.69    21.24       17.23 
 
Total Sample           2,054     30.04 34.76    30.78       24.38 
 
------------------------------------------------------------------------------------------------------ 
 
Notes: (*) Including WorldCom, the Average and Weighted Average were 43.53% and 
30.45%  
Non-rated issues were considered as non-investment grade 
 
Source:  Altman and Fanjul, 2004 
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Table 3 
 
 

Ultimate Recovery Rates on Bank Loan Defaults 
Nominal and Discounted Values 

 
(1988-2Q 2003) 

 
 
      Ultimate Ultimate 
      Nominal Discounted Standard 
   Observations  Recovery Recovery Deviation  
 
Senior Bank Debt  750  87.32% 78.8%  29.7%   
 
Senior Secured Notes  222  76.03% 65.1%  32.4%  
  
 
Senior Unsecured Notes 419  59.29% 46.4%  36.3%  
  
 
Senior Subordinated Notes 350  38.41% 31.6%  32.6%  
  
 
Subordinated Notes  343  34.81% 29.4%  34.1%  
 
 
---------------------------------------------------------------------------------------------------------- 
  
Source:  Keisman, 2003, from Standard & Poor’s LossStats™ Database, 2084 
defaulted loans and bond issues that defaulted between 1987-2003.  Recoveries are 
discounted  at each instruments’ pre-default interest rate. 
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Table 4 – The Treatment of LGD and Default Rates within Different Credit Risk Models 
 MAIN MODELS & RELATED EMPIRICAL STUDIES TREATMENT OF LGD RELATIONSHIP BETWEEN RR AND PD 

Credit Pricing Models 
First generation 
structural-form 
models 

Merton (1974), Black and Cox (1976), Geske 
(1977), Vasicek (1984), Crouhy and Galai 
(1994), Mason and Rosenfeld (1984). 

PD and RR are a function of the 
structural characteristics of the 
firm. RR is therefore an 
endogenous variable.  

PD and RR are inversely related (see 
Appendix A). 

Second generation 
structural-form 
models 

Kim, Ramaswamy e Sundaresan (1993), 
Nielsen, Saà-Requejo, Santa Clara (1993), Hull 
and White (1995), Longstaff and Schwartz 
(1995). 

RR is exogenous and 
independent from the firm’s 
asset value. 

RR is generally defined as a fixed 
ratio of the outstanding debt value 
and is therefore independent from PD.

Reduced-form models Litterman and Iben (1991), Madan and Unal 
(1995), Jarrow and Turnbull (1995), Jarrow, 
Lando and Turnbull (1997), Lando (1998), 
Duffie and Singleton (1999), Duffie (1998) and 
Duffee (1999). 

Reduced-form models assume 
an exogenous RR that is either a 
constant or a stochastic variable 
independent from PD. 

Reduced-form models introduce 
separate assumptions on the dynamic 
of PD and RR, which are modeled 
independently from the structural 
features of the firm. 

Latest contributions 
on the PD-RR 
relationship 

Frye (2000a and 2000b), Jarrow (2001), Carey 
and Gordy (2003), Altman, Brady, Resti and 
Sironi (2001 and 2004). 

Both PD and RR are stochastic 
variables which depend on a 
common systematic risk factor 
(the state of the economy). 

PD and RR are negatively correlated. 
In the “macroeconomic approach” 
this derives from the common 
dependence on one single systematic 
factor. In the “microeconomic 
approach” it derives from the supply 
and demand of defaulted securities. 

Credit Value at Risk Models 
CreditMetrics Gupton, Finger and Bhatia (1997).  Stochastic variable (beta distr.) RR independent from PD 
CreditPortfolioView Wilson (1998). Stochastic variable RR independent from PD 
CreditRisk+ Credit Suisse Financial Products (1997). Constant RR independent from PD 
KMV CreditManager McQuown (1997), Crosbie (1999). Stochastic variable RR independent from PD 
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d.f.(V’A/Xt)

1

d.f.(logV’A)

logVA+(µ-σ2/2)tXt logV’A V’A/Xt  

 

Figure 1 
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Figure 2: the effect of debt value on PD and RR 
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Figure 3: the effect of asset value on PD and RR 
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Figure 4: the effect of asset volatility on PD and RR 

 


