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1 
The past, present and future of credit risk 
 

Introduction 
 

Credit risk has been in the headlines for the last few years. The volatility in the credit 
market a few years ago and the turmoil surrounding the major defaults of Enron, 
WorldCom and Marconi have forced credit investors to pay close attention to risk and 
reward. But despite these, the appetite for credit risk has not diminished, and historically 
low interest rates have made investors turn to credit to provide extra return. Every year 
the credit derivatives and structured credit markets have grown at a great pace. 
According to the British Bankers� Association survey published at the end of September 
2004, total outstanding notionals of credit derivatives have jumped during the first half of 
2004 from $3.55 trillion at the end of 2003 to $5.02 trillion, and are predicted to surpass 
the $8.2 trillion mark by 2006. 

The volatility in the investment grade market in 2002 also forced dealers and end-users 
to develop analytics to support their investment decisions, as it was found that the 
traditional rating and fundamental research proved insufficient to evaluate credit risk. 
This has resulted in an increased interest in credit risk modeling in the academic world, 
and only recently these techniques are being implemented in real-world applications. 

We must begin with the most fundamental question of all: 

• What is credit risk? 

Further questions follow from this, which go to the heart of trading, structuring and risk 
management: 

• How is credit risk priced? 

• How should one invest in credit risk? 

• How should one manage credit risk? 

None of these questions is straightforward and all are interrelated. But we have to start 
somewhere, and the natural place to start is by defining a credit-risky asset. 

A credit-risky asset is one that might not honor its financial obligations. 
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There are several approaches to modeling the default risk in an asset, commonly known 
as the reduced-form models, hybrid models, and structural (or Merton) models. These 
are described in more detail in the Appendix. In essence, reduced-form models can be 
thought of as generalizations of interest rate models and are direct models of the term 
structure of credit spread. By contrast, structural models seek to understand the 
dynamics of the financial structure of a firm, with default occurring when it is unable to 
meet its financial obligations. The term structure of credit spread then comes from the 
asset model. Structural models are essential to understanding the relation between 
equity and credit. Finally, hybrid models are essentially equity models with credit risk 
bolted onto the side. They are generally easier to calibrate to the equity and debt market 
than structural models and are a popular choice for pricing credit-risky equity products 
such as convertible bonds. 

This primer is concerned with the modeling of portfolio credit risk. When an investor has 
a portfolio of credits to deal with, many of the following questions arise: 

• What is the distribution of loss in my portfolio? 

• What assumptions are being made when I derive this loss distribution? 

• What does correlation mean? 

• What does the market tell me about credit risk? 

• How do I allocate risk amongst the constituents of my portfolio? 

• Which constituents generate the most return on risk and which the least?  

• How do changes in the portfolio composition manifest themselves at the 
portfolio level? 

• How do I price credit default baskets and CDOs? 

• How do I quantify and manage risk when I buy or sell tranches from baskets or 
CDOs? 

We shall tackle all of these except those on baskets and CDOs, which will be covered in 
later publications. (However, the technical ideas used in the pricing of these products 
rest on what is contained herein.) This primer is aimed at a technical audience, but not 
all of the pieces will use mathematics: we think it is just as important to develop an 
intuitive understanding of all subjects discussed.  Given that objective, those clients 
most interested in the series would include:   

• Managers of bond portfolios; 

• Credit vs. equity investors; 

• Loan portfolio managers; 

• CDO managers; 

• CDO investors; 

• Securities traders; 

• Insurance companies; and 

• Pension funds. 
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Charting the course 
It is well known that portfolio modeling, whether in the context of derivatives or of credit 
risk, is difficult because it requires the aggregation of correlated risky positions with 
nonlinear payoffs. There are many issues to be covered, and a brief overview is as 
follows: 

• First, we introduce factor models and large-portfolio approximations to the �loss 
distribution� or �distribution of P&L�. 

• Next, we examine how to deal with portfolios that do not fit into this idealized 
picture. 

• Having obtained the distribution, which represents uncertainty, we wish to 
measure it, and this brings in the notion of risk measures. 

• Next we address several difficult questions on the subject of risk contributions 
and portfolio optimization. 

Before we begin we examine an important aspect of risk and portfolio management that 
is not treated very satisfactorily in literature on the subject. 

 

Views of credit 
There are different ways of looking at asset management, portfolio management or risk 
management. It is possible to define two �extremes�, as follows. 

Trading view 
Equity and debt are tradable instruments and indeed they have both been traded in 
Europe for well over 200 years. If we take this notion to its extreme, and regard trading 
as a continuous activity, we can argue that all �credit risk� is just �market risk�, i.e. 
trading or mark-to-market (MTM) losses, and look at it over a very short time horizon (a 
few days). We shall refer to this as �PV sensitivity�, as the basic notion in market risk 
management is the sensitivity of the value of the portfolio (PV or P&L) over a short time 
horizon to small changes in the underlying explanatory variables. Examples of 
explanatory variables could be, in Fixed Income: 

EUR/USD exchange rate; 5Y JPY interest rate; 3M-into-10Y GBP/USD swaption vol; � 

or in Equity Derivatives: 

value of the S&P500; implied volatility of IBM shares; � . 

First-order sensitivities to small changes are generally known as deltas, while 
convexities (second-order sensitivities) are known as gammas and cross-gammas. 
Collectively they are known as �greeks�. The �greeks� approach has one great 
advantage, in that sensitivities can be added in a portfolio. So, referring to one particular 
explanatory variable, e.g. EUR/USD spot, one can take the deltas and gammas of the 
trades of one trader, add them to get the trader�s greeks, aggregate over traders to get 
the desk�s greeks, aggregate over desks to get the business line�s greeks, and 
aggregate over business lines to get the greeks for the whole business. After this 
relatively simple process one arrives at the sensitivities of the global P&L to all the 
explanatory variables, and it is attractive to view the whole P&L as a complex derivative 
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that can be hedged using vanilla instruments once its deltas and gammas are known. 
Philosophically the end product of the analysis is a sort of �top-down� view. By this we 
mean that the microstructure of the portfolio can be ignored and the portfolio is 
consolidated into a single instrument whose value depends upon a small number of 
explanatory variables. This is attractive to heads of trading desks because a reasonably 
complete picture of the risk can be conveyed without �information overload� occurring. 

This approach works very well when coupled with the Merton model for the valuation of 
equity and credit (implemented in our CUSP� model), because we can analyze credit 
and equity in a consistent way and hence provide a unified methodology for the risk 
analysis of a variety of products: bonds, CDS, equity, equity derivatives and so on. This 
is particularly useful for the analysis of �capital structure arbitrage�, which is the common 
name given to a variety of trades based on the supposed misalignment of volatility in the 
equity and credit markets, for example, long the stock and long the CDS, or long the 
equity put and short the CDS. 

The distribution of P&L requires more information, namely how volatile the explanatory 
variables are, and how they are correlated. To express the joint distribution of small 
movements of all the explanatory variables it is common to use volatilities and 
correlations. What typically happens on trading desks is that these are taken into 
account �by judgment�. For example, a swaps trader knows which parts of the yield 
curve are more volatile and which are less, and also that being long the 5Y and 7Y rate 
and short the 6Y rate is likely to result in a fair degree of cancellation. 

The time when this approach can come badly unstuck is when large movements occur: 
sensitivity analysis does not tell us about changes that are larger than infinitesimal. It is 
possible for an instrument to be locally insensitive to some underlying variable (have 
zero delta and gamma1), but for it to change in value when the underlying moves a long 
way, as for example in Figure 1.1. 

Figure 1.1. (a) local analysis shows no sensitivity to underlying variable; (b) full picture may have 
a nasty surprise 

 

(a) (b) 

 

 

 

 

 

 

 

 

                                                                                 
1 and even for all derivatives to be zero at some point, i.e. the function is �locally flat�. For example, exp(-1/x²) 
in the vicinity of x=0. 

Change in underlying variable

P&L 

Change in underlying variable

P&L 

?? 
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By expressing the portfolio value through asset models such as Figure 1.1(b), and a 
joint distribution of all explanatory or underlying variables, one ends up with a complete 
picture of the distribution of P&L at some time horizon. This is then commonly measured 
using VaR (hence the term �10-day VaR� which is ubiquitous in market risk 
departments). 

 

Buy-and-hold view 
By contrast, the common meaning of �credit risk management�, as it is known in banks, 
is different. There, the emphasis is on the distribution of default losses rather than MTM, 
and the time horizon is longer (often 1 year, or for counterparty risk the full life of the 
trade, which may be many years). Certain types of loans cannot be traded, and 
traditionally counterparty risk has been seen as a �sit on it and hope for the best� type of 
risk (though that is changing). For non-tradable assets MTM makes little sense and a 
buy-and-hold analysis is more appropriate, where one looks at real loss. With the 
emphasis being on a loss distribution, the idea is first to find a risk measure (we shall 
talk about this later) and then find the sensitivity of that risk measure to various 
parameters such as change in asset allocations. The whole subject has more of an 
�insurance-company� feel about it, whereas a securities house would not hold risk. For 
example, a securities house trades catastrophe bonds, but an insurance company buys 
and holds them. Rather than hedging risk, as happens in MTM, one seeks to diversify it 
instead, and achieve sufficient return to cover the risk. The PV sensitivity says nothing 
about diversification. 

How does the modeling work? The usual way of setting about it is to model each asset 
individually. In commercial implementations such as KMV and CreditMetrics, the Merton 
model has found favor. So, in fact, the Merton model is useful in both the trading and the 
buy-and-hold setting: in the former, one trades the embedded put option2 in credit-risky 
debt, and in the latter, one holds onto it until maturity. Then, once the individual assets 
have been modeled, it is necessary to find a correlation model that describes the co-
movements. At this point it is currently fashionable to drag in copulas3, though if one 
persists with the Merton model it is not strictly necessary to do so, as correlation can be 
introduced simply by prescribing that the joint distribution of asset returns be multivariate 
Normal. Generally the resulting models are analytically intractable and so Monte Carlo is 
used to obtain the loss distribution (as for example in CreditMetrics and KMV). The main 
objections to this are that it is slow and that it is hard to do further analysis such as 
sensitivity analysis and portfolio optimization. On the other hand, a large amount of 
progress has been made in portfolio analytics: when reviewing this, which we shall do 
shortly, we shall obtain a good insight into how portfolios �work�. 

 
 

 

 

                                                                                 
2 i.e. the embedded short put option on the firm�s assets 
3 �Demystifying copulas�, Chapter 4. 
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Comparison 
In comparing the two approaches some questions become apparent, which we state 
and answer now. 

 
• What does PV sensitivity say about proprietary trading and risk/reward? 

In short, it doesn�t, and this is the most important distinction between them. PV 
sensitivity is designed for people who are hedging their risk out. This is mainly suited to 
flow trading in which the idea is to take no risk and make a small margin on each trade. 
The buy-and-hold viewpoint explicitly acknowledges that risk is being taken and seeks 
adequate compensation for it. PV sensitivity says nothing about correlation or 
diversification. 

 
• What is the right time horizon? 

To answer this question we have to understand what we are trying to do. If we want to 
hedge our risk out then a very short time horizon is right. If we often hold trades for a 
while, perhaps a few months, then that should be the horizon. It is unlikely to be right to 
look over a period of years, however, even with so-called �economic capital� 
management where one looks at risks that are likely to sit around for that sort of period: 
as more and more risks are becoming tradable, the time horizon will naturally decrease 
from the maturity of the trade to the trading (or hedging) horizon. 

For this reason we suggest that a period of about 3 months is sensible. Portfolio 
managers often tend to think on this kind of horizon, and so do people who put on 
proprietary trades such as basis or cap-arb trades: although some trades will be 
expected to move into profit more quickly, one often has to wait a little longer to derive 
maximum benefit from the position. 

There is another reason why we choose 3 months, but we shall come to that later. 

 
• What is understood by �credit risk�? 

For buy-and-hold, credit risk is the inability of a market participant4 to repay, and can be 
thought of as event risk: the credit riskiness of a bond is its default probability, often in 
the form of a credit rating. In MTM, credit risk is a form of optionality that can be traded, 
and the credit riskiness of a bond is its volatility, which can be extracted from the 
volatility of the issuer�s assets and the leverage of the debt. CSFB�s CUSP� model 
extracts this information from the debt and equity markets. 

 
• Why, in the buy-and-hold setting, cannot one seek to explain the risk in terms of 

explanatory variables, as in market risk? 

In market risk, the number of explanatory variables is generally quite small. For 
example, if we run a USD swaps desk, the explanatory variables are the USD swap 
rates at all maturities. It doesn�t matter if our desk has done ten swaps, or ten thousand: 
they can all be aggregated. But in credit risk there is a fundamental heterogeneity and 
the number of explanatory variables is too large: one is sensitive to the default of each 
                                                                                 
4 e.g. a bond issuer (credit risk) or a market counterparty (counterparty risk) 
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issuer, and so one has as many explanatory variables as issuers. And working out the 
sensitivity of the portfolio value to each default event is not very helpful: if ABC defaults 
we lose $34M, if DEF defaults we lose $58M � this ignores correlation, and is therefore 
rather useless. 

 
• It would be nice if the buy-and-hold setting had a top-down view. A detailed 

bottom-up model culminating in a single VaR number is not much help in 
portfolio management, so some sort of �the portfolio value depends on a small 
number of risk factors� analysis would be nice. Can anything be done? 

Yes, provided that the portfolio is diversified: large portfolio approximations then come 
into play. In fact, if a portfolio is large enough, nearly all of the risk comes from the 
variation of the conditional expected loss, by which we mean the expected loss 
conditional on the set of risk-factors to which the portfolio is sensitive. This bears a good 
deal of resemblance to the top-down approach described earlier: the finer details are 
ignored and only the sensitivity of the portfolio to a small number of risk factors is 
important. The difference between an explanatory variable and a risk factor is that there 
are many explanatory variables, whose correlation is expressed through a few risk 
factors that capture the movements of large parts of the investment universe. So for 
example, the asset level of ABC Inc (a Consumer Products company) is an explanatory 
variable in the Merton model, but the average asset return of Consumer Products is a 
risk factor. 

Notice that if a portfolio is not diversified (by reason of single-name exposures), the 
large portfolio approximations only tell us about part of the risk. We therefore have to 
report large exposures separately. 

 

 

CUSP/PortfolioRisk+ 
For the record, we round off this chapter with a very brief commentary on CSFB�s 
PortfolioRisk+, and explain how it fits into the picture we have described above. 

The first point is that CUSP/PR+ embraces MTM valuation in a way that KMV and 
CreditMetrics do not. This is why, for example, KMV always talks about expected default 
frequencies (EDFs), whereas CUSP generates a continuous distribution of credit 
spread. For investors in investment-grade paper, EDFs are of almost no interest at all. 
In other words, KMV and CreditMetrics are suitable for calculating economic capital on 
loan portfolios, but not for �running money�. 

On the matter of horizon, we opt for 3 months not just for the reasons stated earlier 
(principally, that this is the horizon of interest of our investors) but also because we use 
equity option volatility to calibrate CUSP, and that is liquid in the 3-12 month range 
(there ain�t no such animal as a 10-day option). 

The table below compares a �typical� market risk system, a �typical� credit risk system 
and PortfolioRisk+2. 
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  FI5 Market risk CUSP/PortfolioRisk+ Credit risk

 Horizon 1-10 days 3 (-12) months 1-10 years or more
 Output PV sensitivities to 

explanatory variables
Sensitivity of risk measure 

(VaR etc) to asset 
allocations and risk factors 

Risk measure (VaR etc)

 Treatment of credit risk MTM, usually by 
consideration of spread 

volatility within some rating 
bucket

MTM, Merton model used to 
give spread distribution 

Buy-and-hold: default 
probabilities (EDFs) from 

credit ratings or from 
Merton

 Explanatory variables Rates, FX, sector or rating 
spread curves

Credit: individual firm�s-
asset returns 

IR/FX: swap curve and FX 
spot movements 

Individual firm�s-asset 
returns (KMV) or credit 
ratings (CreditMetrics)

 Risk factors Obtained from PCA6 on set 
of explanatory variables

Credit Risk: Sector factors 
IR/FX: from PCA on set of 

explanatory variables 

Country/Sector factors

 Source: Credit Suisse First Boston  

 

                                                                                 
5 Fixed Income. 
6 Principal Components Analysis. 



 

 The Quantitative Credit Strategist
The default/no-default world, and factor models

  

 

 29 October 2004 15

2 
The default/no-default world, and factor models 
In this chapter we lay the groundwork for future discussions by examining the 
basics of credit portfolio modeling, factor models, systematic and unsystematic 
risk. 

How are portfolios modeled? 
This most basic question must be addressed first. The problem of modeling a portfolio can 
be expressed thus: we have a large number of assets, each of which can go up or down 
in value in the course of time. Importantly, their price movements are correlated: they will 
have a tendency to move in the same direction, though in derivatives markets they can 
also have a tendency to move in opposite directions instead. The problem is: given some 
large set of assets, model the distribution of the total portfolio value. However, �risk� means 
that we do not know what the gain or loss in portfolio value will be. 

One�s first inclination is to try to model each asset individually, coming up with a 
distribution for each. However, we quickly encounter the problem of how to model the 
correlation: how to glue the distributions together to obtain a statistical description of the 
probabilities of all possible combinations of movements of the assets, rather than just an 
expression for each asset in isolation from the others.  This �bottom-up� approach is 
extremely difficult, however, particularly when the portfolio is large. 

An alternative idea is to take a �top-down� view.  The example that we shall concentrate 
on here is a simple basket of bonds (or loans) subject to risk of default. A manager 
periodically looking at the performance of the portfolio will notice that the profit-and-loss 
has been volatile. He will then want to know why, and will probably compare his portfolio 
with those of other firms. Crucially, there are two important reasons why this volatility 
occurs, as shown by the following two possible explanations: 

A. �From 1996 to 1998 we had bad losses. So did other accounts. This was because of 
bad economic conditions.� 

B. �In second quarter 1999, we should have done well, but took a hit on ABC Inc, 
which pulled us down.� 

By understanding the difference between these explanations, we converge on the factor 
approach to credit portfolio modeling, which is the basis of the modern approach. In the 
first case we can hypothesise the existence of a factor that has caused the default risk 
of this, and indeed all, portfolios to increase; in the second, the loss was due to a 
specific event. The second is known as specific risk: if the portfolio manager had had a 
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smaller exposure to ABC, �putting fewer eggs in one basket�, the loss would have been 
less. By contrast, the first is known as systematic risk, and it is not alleviated by 
diversification. 

In more detail, the factor approach is based on the following line of argument: 

• There are latent (hidden) factors that determine the average loss across the 
market or sectors in it. Systematic risk occurs because we do not know what the 
state of the world will be. 

• For a large enough portfolio, the observed loss will be determined only by the 
states of these factors. 

• Conditional on these factors being known, losses from individual assets are 
independent. Independence is a useful property because it is relatively easy to 
deal with�and whereas there are many ways in which assets can be correlated, 
there is only one way in which they can be independent. 

• Even if we know the state of the world, we do not know exactly what the loss will 
be in our own portfolio. This �unsystematic� risk will be particularly significant if our 
portfolio is small, or contains a few large exposures. 

Unsystematic risk can be understood in the following way: suppose that you have a 
portfolio of 100 loans of similar credit worthiness and the underlying default probability 
for loans of this credit quality is 1%. Then across the market we see 1% of the loans 
defaulting. However, the proportion of defaults in your sample might not be 1%: most 
likely, you will see none, but you might have several defaults. This uncertainty is 
unsystematic risk. Further, suppose that you do suffer one default. If the loan exposures 
differ, you have even more risk because your financial loss depends on which one 
defaults. So unsystematic risk increases when there are concentrations. 

To put all of this into perspective, take, for example, credit card loans, for which 
managers are sometimes heard to say that there is virtually no credit risk. What this 
means is that over the years it has been observed that credit card default frequency is 
fairly static. Also a credit card company�s portfolio contains a huge number of small 
exposures. So both the systematic and the unsystematic risk are quite small. Fees and 
interest payments compensate the expected loss. 

The separation of portfolio risk into systematic and unsystematic parts is important 
because systematic risk is very model-dependent, whereas the analysis of unsystematic 
risk is purely a mathematical problem. To specify a factor model, we must provide the 
following information: 

• The �states of the world�, i.e., what states it takes and with what probabilities (or it 
may have a continuous distribution). 

• The conditional default probability, or more generally the distribution of the value 
of each asset, in each state of the world.  
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Pictorial example 
Figure 2.1 gives a good picture of what is going on, in the context of a credit portfolio. 
We shall make some simplifying assumptions, which will all be relaxed as we develop 
the subject further. We shall assume that there are five states of the world (more 
complex models would require many more states, or possibly a continuum of states, but 
the following is sufficient to illustrate the principle). 

 Figure 2.1 Five States of the World   
 

Infinitely finely-divided pf.

Some heterogeneity in pf.

Very heterogeneous pf.

Default rate distributions of assets in pf.

LossLoss

Loss

Loss

rateraterate rate

States of the world
� � � � �

... etc ...

 
 Source: Credit Suisse First Boston  

 

At the top of the figure we have illustrated symbolically five states of the world 
(�����); we must also decide their probabilities. Underneath we have sketched the 
conditional default probabilities, in each of the five states of the world, for three of the 
assets in the portfolio. The bottom part of the figure shows loss distributions for different 
types of portfolio: 

1. First, we have the so-called �infinitely finely divided portfolio�. It is very easy to 
calculate its loss distribution: in each state of the world, we find the conditional 
expected loss, which is easily found because it is the sum of the conditional 
expected losses of the assets in the portfolio. The arrow measures the �risk� of 
the portfolio, by which we mean the loss at some particular level of confidence, 
or �VaR�. (In fact, Basel II regulatory capital is calculated this way, but we shall 
not get side-tracked with that.) 

2. Second, we have the loss distribution for a portfolio that has some unsystematic 
risk, which is more realistic than the first example, but harder to analyze. 
Because there is some uncertainty in portfolio loss even when we know the 
state of the world, each of the spikes in the infinitely fine-grained portfolio 
becomes fattened, though its mean position is the same. 

3. Third, we have the loss distribution where there is a large amount of 
unsystematic risk, usually caused by a few big exposures. If one of the bigger 
ones defaults, the loss will be greater. 
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What is default probability? 
What do we mean by default rate and default rate distribution? Default rate goes under 
a variety of names, including �default probability� (PD) and �expected default frequency� 
(EDF). Most people have an intuitive idea about what a probability is, but a precise 
definition is quite elusive. For example, we say that the probability of an unbiased die 
rolling a six is one-sixth, but what does that actually mean? There are two possible 
definitions. First, over a very large number of repetitions, one-sixth of the time the die 
will roll a six. This brings in a notion of replication: we either roll a huge number of 
�identical� dice simultaneously and look at the outcomes, or we roll one die many times 
over. Secondly, a completely different and more abstract approach is to define a 
probability as a measure of degree of belief. It must satisfy some basic criteria: the 
probability must lie between 0 and 1; the probability of an impossible event is 0; the 
probability of an event that must occur is 1; and the probability of mutually exclusive 
events (i.e., events that cannot occur together) is just the sum of their individual 
probabilities. In this case we would say that the statement that �the probability of an 
unbiased die rolling a six is one-sixth� is not a definition of �probability�, but rather a 
definition of �unbiased�! Both definitions have their uses: the first is fundamental to 
statistical theory, while the second is fundamental in pricing. 

For our purposes, we shall need both definitions. For the moment, we are most 
interested in the statistical notion of probability, but we are faced with the question of 
where the large number of repetitions is supposed to come from. In fact, default rate is 
meaningful only when applied to asset classes, by which we mean a large group of 
assets of similar type (industry, sensitivity to economic and sectorial factors, etc.) and 
differing only in idiosyncratic (company-specific) risk. The proportion of defaults across 
the asset class is then called the default rate. This is rather like rolling a truckload of 
dice in order to find the probability of a six: each die has the same basic characteristics 
(size, shape, distribution of mass) but differs in �specific� ways such as its position, linear 
and angular velocity when it is thrown, and so on. 

Finally, default rate or probability must also be defined for a particular time horizon. The 
default probability over one year might be 0.50%, but for a two-year horizon it is not 
necessarily double this. (To argue at a trivial level, it would not be exactly double this 
anyway, but instead 1−(1−0.0050)2. However, this is unimportant in context.) For 
example the two-year default probability could be 1.20%, which would mean that even if 
the obligor survives one year, there is a higher probability of default in the second year 
(roughly 0.70%), reflecting the view that a downgrade in the firm�s credit quality is likely. 
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What is default rate distribution? 
Why are default events correlated? There are several ways in which default events of 
two obligors, ABC and XYZ, can be, or appear to be, dependent. One is that the 
fortunes of XYZ are directly linked to those of ABC.  This linkage would occur if ABC 
were one of XYZ�s biggest customers. This relationship is very difficult to model and it 
ignores a much more important effect already discussed: systematic risk. In this view, 
default events are not really dependent at all: rather, default of ABC is indicative of the 
fact that we are in a bad state of the world, and so XYZ (and similar obligors) are more 
likely to default.  

Viewed this way, correlation between default events of obligors can be thought of as a 
measure of how dependent they are on systematic factors. The figure below gives a 
good pictorial view: 

 Figure 2.2 Default rate volatility and default correlation are similar concepts  
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 Source: Credit Suisse First Boston  

 

Each of the graphs shows the default rate in each state of the world for a particular type 
of obligor. Graphs A and B show the situation where the average default rate is low, and 
C and D where it is high. More subtle is the distinction between the left two and right two 
graphs. For A and C we see that the default rates of the obligors are mildly sensitive to 
the state-of-the-world, but for B and D the sensitivity is considerably higher (remember 
that in going from left to right the average default rate remains the same). Consequently 
a portfolio of type D will be riskier than C because there is more uncertainty in the 
default rate: in bad years it will suffer much worse. Of course, D is riskier than B also, 
but that is largely due to the difference in credit quality. 

If the default rate of an obligor does not depend at all on the state-of-the-world, then its 
default events will be uncorrelated with those of all other obligors. 
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Numerical example 
Persisting with the idea of five states of the world, let us build the following hypothetical 
example. 

 Table 3.1   
  <<<<<<<  States of the world   >>>>>>  

 Class 34% 40% 20% 5% 1% Mean Stdev 

 P0 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.00% 
 P1 0.20% 0.23% 0.30% 0.44% 0.80% 0.25% 0.08% 
 P2 0.10% 0.20% 0.40% 0.80% 1.60% 0.25% 0.22% 
 Q0 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 0.00% 
 Q1 0.80% 0.92% 1.20% 1.76% 3.20% 1.00% 0.32% 
 Q2 0.40% 0.80% 1.60% 3.20% 6.40% 1.00% 0.86% 

 Source: Credit Suisse First Boston  

 

The probabilities of the five states occurring are given in the top row (34% ... 1%). The 
figures underneath show the default rates for each of six classes of obligors in each 
state. Obligors in class P0, P1 or P2 all have the same average default rate (0.25%), 
and those in class Q0, Q1 or Q2 also have the same average default rate (1%). For 
example, P0-P2 would roughly correspond to S&P credit rating BBB+ and Q0-Q3 to 
credit rating BB+. To check that the mean default rates are correct is quite simple, e.g. 
for P1: 

34%x0.20% + 40%x0.23% + ... + 1%x0.80% = 0.25%. 

The difference between P0, P1 and P2 is in their default rate volatility, and hence 
correlation. The last column of the table shows the standard deviation of the default rate. 
This is a measure of variability, defined as the square root of the mean square deviation 
from the mean. For P0 there is no deviation from the mean, so the standard deviation is 
zero. For P1 the mean square deviation is 

34%x(0.10%−0.25%)² + 40%x(0.23%−0.25%)² + ...  = 6.34x10-7 

and taking the square root gives 0.08% as in the table. 
 

Correlation numbers: A useful construct? 
Once these calculations with default rates have been mastered it is easy to find default 
correlations. The probability that an obligor of class P1 and one of class Q1 default is 

34%x0.20%x0.80% + 40%x0.23%x0.92% + ...  = 2.75x10-5 

The product of their individual default probabilities is smaller than this: 

0.25%x1.00% = 2.5x10-5 

so there is positive correlation between the default events of the obligors. Numerically 
the correlation coefficient is given by 

00051.0
%)00.11%(00.1%)25.01%(25.0
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This number is generally referred to as the default (event) correlation. By a similar 
calculation the default event correlation between two obligors of type P1 is 0.00025. At 
first sight this looks very small: a correlation coefficient is standardized to lie between -1 
and 1, with perhaps 0.2 or 0.3 being regarded as a low or moderate level of correlation, 
and 0.7 or 0.8 a high level. Surely then a correlation coefficient less than 0.001 is so 
small it can be regarded as negligible? In fact, as we are about to see, this is not the 
case. The default event correlation is not a particularly good guide to the effects of 
correlation on portfolio risk. When the risk comes in the form of rare events, the event 
correlations will typically be very small also. 

It is not difficult to show that when an obligor has the same default rate in each state of 
the world, its default is not correlated with that of any other obligor. 

We shall not have much cause to refer to correlation coefficients again, but for the sake 
of completeness here is the mathematical definition: 

)1()1( 2211

2112

pppp
pppD

−−
−

=ρ . 

Here p1 and p2 are the individual default probabilities and p12 is the joint default 
probability (probability that both obligors in question default). We said that the 
correlation coefficient must lie between -1 and 1 but in fact we can do better. Suppose 
that p1≤p2 (if not, interchange p1 and p2). Now p12≤p1≤p2 (the probability that both occur 
must be less than either of the individual default probabilities) and so 
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This upper bound is only equal to 1 when the two obligors have equal default probability; 
otherwise it must be less. For example, if p1=0.25% and p2=1.00% then 

5.0
99.0
01.0

9975.0
0025.0 ≈≤ρD  

So it is simply not possible for the default correlation to be 60%. To try and impose a 
constant default event correlation across a portfolio is bound to lead to 
nonsense. 

 

Portfolio analysis 
If the portfolio consists entirely of obligors of class P0, there is no correlation and no 
systematic risk: whatever state of the world we are in, the expected proportion of 
defaults in the portfolio is always the same (0.25%). However, if all the obligors are of 
type P1, the proportion of defaults does depend on the state of the world, varying from 
0.20% in the best case to 0.80% in the worst case. If the portfolio consists entirely of 
obligors of class P1, then we can be 95% confident that the default rate will be 0.44% or 
less; to be 99% sure we would have to alter this figure from 0.44% to 0.80%. To take a 
specific example, suppose there are 10000 loans (a large portfolio) of notional 1M$. 
Then the credit VaR (value at risk) at 95% confidence is  

10000 x 1M$ x 0.44% = 44M$ 
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and at 99% (or, indeed, at confidence levels higher than that because there are no 
worse states in this simple example and we are neglecting unsystematic risk7) the VaR 
is 

10000 x 1M$ x 0.80% = 80M$. 

For a portfolio of P0 obligors both these figures would have been only 25M$. This shows 
the impact of correlation: the VaR at 99% confidence has been multiplied by more than 
3 (80M$ ÷ 25M$) when a superficially tiny degree of correlation has been introduced 
(tiny as measured by the default event correlation coefficient, which we said was less 
than 0.001). 

 

Putting some structure in 
One of the nice things about the framework we have set up is that it is quite transparent: 
as we have seen, we can at least in simple cases perform credit VaR calculations �on 
the back of an envelope� without the need for any complex analytics or Monte Carlo 
simulation. Set against this, however, is the problem that the framework is too �floppy�: 
we have not said how we obtain the conditional default probabilities in the table, or the 
�states of the world�. To an extent they are subjective�in some markets very 
subjective�but even so we would like some way of obtaining a structure via a small set 
of parameters rather than having to specify the whole matrix ourselves. 

There are several ways to proceed, one of which is through the use of copulas. We shall 
describe these in more generality later but for the moment we shall stick to a simple 
idea, the Gaussian copula model. This can be thought of as a spin-off from the Black-
Scholes-Merton framework, that is, the use of option pricing concepts in corporate 
finance. We regard it only as a spin-off because some corners have to be cut, and we 
do not want to go into the details of the Merton framework just yet. However there is a 
reasonable amount of financial intuition behind it and it is one of the most popular 
approaches in correlation modeling. 
 

Gaussian copula (quasi-Merton) model 
The financial intuition behind this model is that default of an obligor occurs if, at the 
horizon in question, the level of its assets is below that of its liabilities (strike). The asset 
process is modeled as a geometric Brownian motion, in common with the well-known 
Black-Scholes analysis. Then the logarithm of the asset value at the horizon is Normally 
distributed, and after standardizing can be assumed to have mean zero and variance 1. 
We call the standardized log-asset Z, and the standardized log-strike ζ. The default 
probability is then given as 

p = P(Z < ζ) = Φ(ζ) 

with Φ denoting as usual the cumulative Normal distribution function. In option-theoretic 
models, p would be derived from ζ which would in turn depend on the capital structure 
and the level and volatility of the firm�s assets. Here though we shall assume that p is 
given e.g. through internal ratings. 
                                                                                 
7 Unsystematic risk, always present in a finite portfolio, causes the VaR at higher percentiles to rise above this 
figure. 
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To make two assets have correlated defaults, we just have to correlate their Z�s, which 
is easy because multivariate Normal distributions are well-understood. The correlations 
between the Z�s can be expressed through a correlation matrix, but this is not a very 
efficient construction, particularly for a large portfolio. A better approach is to write the 
asset returns in factor form. In doing this, each asset return is written as a sum of 
correlated parts (factors) and an uncorrelated part. These parts, which are random, are 
Normally distributed with mean zero and variance 1. The factors, which can be chosen 
to be independent of each other, are common to all obligors, and the correlation 
between obligors is expressed through the degree of dependence on each factor, much 
as before. The uncorrelated parts correspond to firm-specific effects; they are also 
Normally distributed with mean zero and variance 1, and they are uncorrelated from 
each other and from all the correlation factors. The simplest specification is the one-
factor model, for which an example (with numbers filled in) is 

�
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Here V is the common part of the asset returns and U1, U2 are the uncorrelated parts. 
For each obligor the coefficients have to be chosen so that the sum of their squares is 
equal to 1 (Zi is to have unit variance, and V is independent of Ui so their variances 
add): 

0.60² + 0.80² = 0.28² + 0.96² = 1. 

The correlation between the asset returns (not the correlation between the default 
events) can easily be computed:  

0.60 × 0.28 = 0.168 

(The computation is easy because their mean is 0 and their variance is 1.) Symbolically 
the model can be written 
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and in multiple factor form 
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Additional factors can be thought of as contributions to the asset return coming from 
sectorial (i.e. industry) or country effects. 

We return to the one-factor model and now need to find the conditional default 
probability of an obligor in each state of the world. By state of the world, we mean the 
event that the factor variable V takes some particular value: as V is Normally distributed 
it can take a continuum of values. The derivation is as follows: we have for one asset 

UccVZ 21−+=  
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so conditionally on V (i.e. fixing V) the only variability is in the obligor-specific part U. So 
the conditional default probability is 
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We can make a few observations about this: 

When c=0 the default rate is always Φ(ζ), regardless of V. This means that when there 
is no correlation, there is no variability in default rate, which is what we saw earlier. 

When c approaches 1, the conditional default probability only takes two values: zero 
(when V>ζ), and unity (when V<ζ). If several assets have the same default probability 
(same ζ) then they will all default together or not-default together, so are �perfectly 
correlated�. More generally, once V is known there is no uncertainty about whether any 
particular asset defaults or not, and hence there is no unsystematic risk. This is to be 
expected. 

One can show by direct integration over V that, regardless of the value of c, the average 
default rate is Φ(ζ), i.e. p, as it should be. 

To plot the actual variation of the default rate, we allow V to vary. Here are examples 
that loosely correspond to A, B, C, and D earlier. The top two graphs are for an average 
default rate of 1%, the lower two for 4%; the right two have higher default rate volatilities 
than their counterparts on the left hand side because the correlation parameter c is 
higher (0.10 for the left two, 0.40 for the right). 
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Portfolio analysis with 1-factor Gaussian copula 
We gave examples of how to calculate VaR using the discrete 5-state model earlier. We 

now repeat this exercise with a more complex structure of portfolio and using the 

Gaussian copula model instead. Again we shall take a large enough portfolio to render 

the effects of unsystematic risk negligible. 

Suppose that a portfolio consists of n bonds with exposures aj, average default 

probabilities pj and correlations cj. Conditionally on the value of the factor variable V, the 

expected loss on the portfolio is obtained by multiplying exposure by the conditional 

default rate and summing over the portfolio: 
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To work out the VaR at 99% confidence, we simply need to find the ‘99% worst value’ of 

V and stick it in. For a Normal distribution this is at V=-2.326 (note that it is when V is 

negative that the losses are high). So the VaR is Y(-2.326). 

Here is a specific example. The portfolio of 2000 bonds has been partitioned for ease of 

exposition and is shown below. Also for simplicity we have assumed each bond to have 

a notional, and hence loss given default, of 1 (we assume zero recovery). Using the 

formula above we can plot the VaR for different tail probabilities. The graph shows for 

example that the VaR at 99.9% confidence (tail probability 0.001, V=-3.09) is about 235.  

 Loss distribution of test portfolio    Composition of test portfolio  
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 Qty Notional Def prob Correl

1 150 1.00 0.0009 0.34

2 200 1.00 0.0014 0.52

3 150 1.00 0.0040 0.55

4 300 1.00 0.0081 0.36

5 450 1.00 0.0082 0.34

6 200 1.00 0.0098 0.46

7 150 1.00 0.0117 0.45

8 200 1.00 0.0127 0.50

9 100 1.00 0.0179 0.44

10 100 1.00 0.0184 0.49

 

 Source: Credit Suisse First Boston    Source: Credit Suisse First Boston  
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Conclusions 
We have shown how to set up models of systematic risk and also shown that portfolio 
loss calculations can be carried out quite easily in simple cases. Our next two chapters 
deal with the following issues: 

• Moving from a default/no-default to a mark-to-market model that can also be 
extended across other asset classes; 

• Developing copulas in more depth and showing that the copula method is not 
fundamentally different from the conditional independence approach. 

• Understanding unsystematic risk. 
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3 
Risk and optionalities 
In the previous chapter we discussed factor models in a default/no-default 
context. For traded securities this is too restrictive a treatment and we now 
move towards a mark-to-market treatment of portfolios. We develop a theory of 
explanatory variables and �transfer functions� and show that these are a 
convenient way of modeling correlated nonlinear assets.  

Nonlinear assets 
In olden days, portfolio theory was developed using Gaussian distributions and the joint 
distribution of all the assets in the portfolio was assumed to be multivariate Gaussian. 
The advent of derivative products such as options, which have nonlinear payoffs, made 
this approach untenable. To understand what nonlinear payoffs can do, have a look at 
Figure 3.1. 

Figure 3.1. (a) local analysis shows no sensitivity to underlying variable; (b) full picture may have 
a nasty surprise. 
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The picture that we have in mind is that there exist explanatory variables (or 
�underlyings�); the values of the portfolio�s assets are deterministic functions of these. 
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Indeed the Merton model says this, and the deterministic functions alluded to above are 
just the Black-Scholes formulae. The equity is a call option on the firm value8 S, with 
strike equal to the face value of the debt (K): 
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while the debt is the risk free debt (K) plus a short put option: 
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(Note that by put-call parity we have that the whole is the sum of the parts: ttt DES += .) 

So both the equity and the debt can be written as functions of the underlying asset level. 
For reasons of familiarity (and convenience when defining the correlations) it is useful to 
have Normally distributed explanatory variables. However, St is lognormal, so we write it 
as the exponential of the normalized log-asset-value, whose distribution is N(0,1): 
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So now the equity and debt can be expressed as functions of9 the normalized log-asset-
return Zt: 

),(),( t
D
ttt

E
tt ZgDZgE ==  

with 

( ) ( )
( ) ( )

tT

tTtrKeStz
zd

zdKezdeSzg

zdKezdeSzg

rT

rTtztD
t

rTtztE
t

−σ

−σ±σ−−µ++σ
=

Φ+−Φ=

Φ−Φ=

−

±

−
−

+
σ−µ+σ

−
−

+
σ−µ+σ

)()()/ln(
)(

)()()(

)()()(

2
2
12

2
1

0

)(
0

)(
0

2
2
1

2
2
1

 

Roughly speaking there are only two important parameters needed to specify this, the 
simplest form of the Merton model: 

• )/ln( 0
rTKeSm −= , the �moneyness� of the call option (on S with strike K), is the 

log of the ratio of the asset level to the strike. If we adopt the definition that 
leverage is the ratio of the discounted face value of the debt to the PV of the 
assets of the firm (PV of equity + PV of debt), i.e. 0/ SKe rT− , then we have 

leverage = me− . So the higher m is, the more in-the-money is the call option, 
and the lower the leverage of the firm. The lower m is, the more in-the-money is 
the put option, and the higher the leverage of the firm. When m<0, the company 
is technically insolvent, or has �negative equity�.  

• σ, the volatility of the firm�s assets. All other things being equal, raising the 
volatility causes the equity to become more valuable and the debt less valuable. 

                                                                                 
8 Note: S does NOT denote stock price. 
9 The subscript t in gt indicates that there is time-dependence too, but this is not as important. 
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That these should be independent is a sensible notion: a firm can control its leverage by 
issuing or repaying debt, but its volatility is mainly affected by its business environment 
(called an �exogenous variable�). The parameter µ is the expected growth of the firm 
value. It has no impact on the pricing of the debt or equity of the firm, but when the �real� 
distribution of the debt or equity are required at some point in the future it does come 
into play. For the purposes of this chapter, however, we shall carry out all the analysis in 
the �risk-neutral� measure and just set µ=r. That means that the expected gain in buying 
and holding any instrument is zero, and we just concentrate on the risk (uncertainty in 
value). 

Following electrical engineering parlance, we call the function g the transfer function for 
the asset in question (the transfer function contains the information about how a 
component behaves when a certain input is applied). 

If the transfer function is linear, g(z)=∆.z+g0, and if the explanatory variable has 
distribution N(0,1), then the asset in question has a Normal distribution with mean g0 
and variance ∆². More generally, if g is nonlinear, then we can think of its gradient at the 
origin (z=0) as a sort of �instantaneous volatility�. In essence this is because if Z makes 
a small movement then g(Z) moves by ∆ times as much, and so it is ∆ times as volatile 
as Z is. As we said at the outset, in our discussion of PV sensitivity, ∆ is the simplest 
guide to risk. 

But when we are dealing with options we know perfectly well that the transfer functions 
aren�t going to be linear, and indeed the Black-Scholes ones are not. Figure 3.2 shows 
some examples. In each graph the horizontal axis is normalized so that the mean of the 
explanatory variable is 0 and the standard deviation is 1. This means that the horizontal 
axis can be associated with a probability in a simple way (as we shall show by 
example). Also the debt price is shown as a fraction of its discounted face value, so 1 
corresponds to risk-free, and to make things simple we are assuming that the debt is a 
zero-coupon bond. In (a) the horizon is t=0.5yr, the maturity is T=1yr, the asset vol is 
σ=50% and the leverage parameter is m=0.5. The debt then prices at $97.39 (for $100 
face value), so over the next 6 months it can increase by $2.61 to $100 at best, or go all 
the way down to zero. The probability of the debt losing one-tenth of its value (0.90 on 
the vertical axis) is Φ(�1.5) = 6.7% (as �1.5 is the corresponding coordinate on the 
horizontal axis). Figures (b-e) show the effect of varying the volatility, leverage, and term 
of the debt.  

Generally speaking the graphs for debt all have the same kind of shape, the most 
important point being that they all exhibit negative convexity. The main difference is the 
degree of asymmetry. The worst possible case (a limiting case, in fact) is always that 
the debt becomes worthless, though in practice this is often very unlikely. When the 
volatility or leverage is low, or the debt is short term, the value of the credit risk (i.e. the 
value of the embedded put) is very small. This means that there is little upside but, 
relatively, a substantial downside. By contrast, when the volatility or leverage is high, or 
the debt is long-term, the value of the credit risk is much higher. This has two effects: 
the �delta� is higher (gradient of the transfer function at the origin), so the debt is more 
volatile; but there is more symmetry between upside and downside�so the risk is more 
�volatility risk� than �tail risk�. 
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Figure 3.2. Transfer functions for equity and debt (respectively, long call and short put in the Merton model) 

(a) Horizon t=0.5yr, maturity T=1yr, vol σ=50%, leverage m=0.5. Debt spread is 261bp. The debt has a much 
bigger downside than upside, and the opposite is true for the equity. 
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(b) t=0.5yr, T=1yr, σ=50%, m=0.25. Reducing the leverage makes it much less likely that the debt will be hit: so it 
is worth more (spread 8bp), but has almost no upside. 
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(c) t=0.5yr, T=1yr, σ=25%, m=0.5. Reducing the asset vol also makes it much less likely that the debt will be hit, 
so, as in going from (a) to (b), the debt is worth more (spread 3bp), but has almost no upside. 
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Figure 3.2 cont. Long-term debt is more likely to default, but relatively there is less tail risk associated with it: in 
(d) the debt price is $99.77 (per $100 face) so its maximum gain is $0.23, but at 97.5% confidence10 it loses 
$0.65 which is almost 3 times bigger. The position is much less asymmetric for (e), where the debt maturity is 
longer: debt price is $97.61, maximum upside is $2.39, downside at 97.5% confidence is $2.84. For the equity 
there is very little difference between (d/e). 

(d) t=0.5yr, T=5yr, σ=25%, m=0.25.  
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(e) t=0.5yr, T=10yr, σ=25%, m=0.25. 

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

-3 -2 -1 0 1 2 3

log-return in firm value, normalised to unit stdev

va
lu

e 
of

 in
st

ru
m

en
t

debt

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3

log-return in firm value, normalised to unit stdev

va
lu

e 
of

 in
st

ru
m

en
t

equity

 

 

                                                                                 
10 -1.96 standard deviations, hence -1.96 on horizontal axis. 
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As another example of a transfer function, consider the buy-and-hold (default/no-default) 
model of credit risk, that we introduced in the last chapter, expressed as follows. The 
value of the asset (loan, bond, etc.) is given by 

�
�
�

ζ<
ζ>

==
Zr
Z

ZgX
,
,1

)( ,    )(1 p−Φ=ζ , 

where ζ is the �threshold of default�, p is the default probability (EDF) and r is the 
recovery rate. Obviously this g is not linear either: 

Z

g(Z)
1

r 

ζ
 

Transfer function for a default/no-default model. 

 

Asset distributions 
Let us now turn to questions of portfolio modeling. 

It is apparent that if the transfer function of some particular asset is nonlinear, and the 
explanatory variable is Normally distributed, then the distribution of the asset�s return 
can no longer be Normal. It is also apparent that, once the transfer function and the 
explanatory variable�s distribution have been defined, the distribution of the asset�s 
value must be uniquely determined. This seems obvious, but it is not the only way of 
going about portfolio modeling: as we intimated earlier, another seemingly �obvious� 
approach is to find the marginal distribution of each asset and then work out how to 
correlate them (and in fact the copula approach points to this method). We are going to 
show that directly modeling the distributions of assets is not a good idea, and that the 
transfer function / explanatory variable approach is preferable. 

First, if we wish to find the marginal distributions of the assets from the transfer function 
and the distribution of the explanatory variable, we can use the following result. 
Suppose that the probability density function (pdf) of Z is f(z), and suppose that X = 
g(Z). Then provided that g is differentiable and strictly monotonic (increasing or 
decreasing)11, the pdf of X is given by12 

|))((|
))(()( 1

1

xgg
xgfxh −

−

′
= , 

 

 

                                                                                 
11 Has no turning-points. 
12 g� denotes the first derivative of g, and g-1 the inverse of g, i.e. by y=g-1(x) we mean that y satisfies g(y)=x. 
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which is a well-known result13. But the problem starts to become awkward if g has one 
or more turning-points. In that case there may be several values of z that satisfy g(z) = 
x; however, by cutting the function g into pieces, the same method can be followed. One 
arrives at the following generalization: 

�
= ′

=
xzgz zg

zfxh
)(: |)(|

)()( . 

In essence, what is happening is that Z is �folded up� to make X, and so the density of X 
at some point (x say) comes from contributions from various points on the distribution of 
Z. There are further complications if the derivative of g vanishes on some set of non-
zero measure, as the pdf of g(Z) then contains discrete bits (delta functions). 

 

So we can find an expression for the pdf of X, but this formula is difficult to use in 
practice. For one thing, it involves searching the graph of x = g(z) making sure that all 
the solutions have been found for the value of x in question, which is a tedious and 
open-ended problem. Therefore, it might therefore appear that working directly with the 
distributions is a better idea than working with transfer functions (which would then 
remove the need to calculate the distribution from the transfer function). However, this is 
an illusion, for two reasons.  

 

Reason 1 
First, given the distribution of the explanatory variable Z, and the transfer function g, we 
can in principle find the distribution of the asset X=g(Z) (even though, as we have said, it 
is awkward in practice). But the converse is false: given the distribution of the asset X, 
we cannot even in principle find the transfer function. 

This is fairly obvious, but here are two examples. We are assuming that Z is Normally 
distributed, but the principles are valid for more general distributions too. 

Example 1. Take X1 = g1(Z) = Z, and X2 = g2(Z) = �Z. Then X1 and X2 have the same 
distribution (because the distribution of Z is symmetrical about the origin), and so we 
cannot tell the difference between a long and a short position in an asset. In principle 
this ambiguity would be resolved if we stored extra information, i.e. long or short, but the 
next example shows that the problem is much worse. 

Example 2. Take 

X1 = g1(Z) = Z2 

X2 = g2(Z) = Ga�1(½;2;Φ(Z)) 

X3 = g3(Z) = Ga�1(½;2;Φ(�Z)). 

                                                                                 
13 Either by Jacobians or by the following argument. Denote by F the cumulative distribution function of X. If g 
is an increasing function then 
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as required (the last line follows by the chain rule of differentiation). The case for decreasing g is similar. 
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Figure 3.3. Different instruments can have the same P&L distribution. Transfer functions for Example 
2: (top row, left to right) g1(z), g2(z), g3(z) vs. z. When the �input� (Z) is Normally distributed (bottom 
left), the �output� (respectively X1, X2, X3) has the same distribution in each case (bottom right). Asset 
X2 is �call-like�, asset X3 is �put-like�, and asset X1 is �like a call plus a put�. The conclusion is that the 
distribution of X contains less information than the transfer function. 
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Here Ga(α,β,·) denotes the cumulative distribution function of the Gamma distribution 
with parameters α, β. As it is not obvious where this example comes from, we explain it 
now. The pdf (density function) of X1 is 

x
exh

x

π
=

−

2
)(

2
1

1    (x > 0) 

i.e. Gamma with parameters α=½, β=2 (also known as chi-squared with one-degree of 
freedom). The variables X2 and X3 are then constructed to make them have that 
distribution too. The logic is that Φ(Z) is uniformly distributed, and to sample from a 
distribution of your choice you just take a uniformly distributed variable and pass it 
through the relevant inverse cumulative distribution function. That X2 and X3 have the 
same distribution is just the same symmetry argument used in Example 1. 

Why are there totally different ways of ending up with the same distribution? Answer: the 
transformation for X1 is two-to-one (because g1(z) = g1(�z)), whereas those for X2 and X3 
are one-to-one. You can think of X2 as being a bit like the value of a long call option 
(before expiry) on Z, and that of X3 as being a bit like a long put option; but X1 is more 
subtle, being similar to the value of a long put and long call combined. 
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So the transfer function contains information that is lost in going to the density. But is 
that information important? Yes, very much so. In Figure 3.3, focus on the bottom right-
hand figure, which shows the distribution of the asset X = any of (X1, X2, X3) (they all 
have same distribution). For each of the three assets (X1, X2, X3) there are three 
different interpretations: 

• For X1: the gain is highest when Z moves a long way in either direction; 

• For X2: the gain is highest when Z increases; 

• For X3: the gain is highest when Z decreases. 

Suppose to make things concrete that Z is the return on IBM stock. A risk manager has 
no idea, looking only at the distribution of X, whether his upside comes from IBM going 
up, down or both! 

 

Reason 2 
It is often necessary to aggregate, or at least to model in a coherent way, different 
assets that have the same explanatory variable. Here are some examples: 

• long 5Y CDS and long 7Y bond of the same issuer; 

• long equity and long CDS of the same issuer; 

• short equity put option and long CDS of the same issuer.  

(In each case we are assuming that there is only one explanatory variable, the firm�s 
asset level. A more complex model would require the volatility to be taken into account 
as well: the equity, CDS etc., are options on the firm�s assets, and hence their price is 
dependent on volatility.) Such situations are easily dealt with using transfer functions, 
because they simply add.  

So, if two or more instruments are sensitive to the same explanatory variable, the 
transfer function corresponding to their sum is just the sum of their transfer functions. So 
if X1 is one asset and X2 is another, represented by g1, g2 respectively, and we wish to 
combine them to make one asset X3, with weights a1, a2, then the transfer function that 
represents X3 is just 

)()()( 22113 zgazgazg += . 

The distribution, on the other hand, doesn�t obey a simple rule. So transfer functions are 
easier to deal with. Incidentally, once the decision has been made to represent assets 
via their transfer functions, it is necessary to decide how to store that representation in 
numerical form. There is no �one correct� way of doing this, but it is important to choose 
a method that allows transfer functions to be added and scaled14. A polynomial 
approximation is the easiest. 

 

 

 

                                                                                 
14 More formally, the space of functions is closed under addition and under scaling, or, for short, is a real 
vector space. 
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This point about aggregation takes us back to Reason 1. Although (in the example in 
Figure 3.2) X1, X2, X3 have the same distribution, it is not true that the following have the 
same distribution15: 

• 2X1 (long asset X1 in twice the size), 

• X1+X2 (long one unit of each of X1 and X2), 

• X2+X3 (long one unit of each of X2 and X3). 

Nor, and in fact much more obviously, is it true that these two have the same 
distribution: 

• X1�X1 (long and short one unit of asset X1, which of course exactly cancel 
each other out), 

• X1�X2 (long one unit of X1 short one unit of X2: these clearly don�t hedge each 
other). 

So, it all boils down to this: representing assets by their density or distribution functions 
isn�t a very good idea, because information is lost in doing so. 

In fact, this strikes at the heart of copula-based methods, because the joint distribution 
of (X1, X2, X3) is not easily represented by an off-the-shelf copula. To see why, notice 
that the correlation between X1 and X2 is somewhat unusual, in the following respect 
(please refer to Figure 3.3): 

A. If I know X2, then I know Z and hence I know X1. For example, if X2=7.5, then 
Z=2.5 and so X1=6.25. 

B. If I know X1, then I know Z only up to sign16, and hence I know that X2 must 
take one of two values. For example, if X1=6.25 then Z=±2.5 and X2 is either 
almost 0 or else 7.5. 

An attempt to represent this using one of the well-known copulas (e.g. Gaussian, 
Student-t, or Archimedean) is bound to fail. This is because these are essentially �the 
wrong shape� (see Figure 3.4). Of course, a copula can always be found that describes 
their joint distribution, simply by transforming the marginals so that they both become 
uniform17. But to construct such a copula one needs to know the joint distribution in the 
first place, making the exercise pointless. 

                                                                                 
15 A rigorous proof is a bit messy, but one can always justify it numerically. 
16 In other words we know the magnitude of Z but not its sign, e.g. it might be 2.3 or �2.3. 
17 One would redefine the X1= Ga(½;2; Z2) and X2= Φ(Z). Both are uniformly distributed, and their joint 
distribution is a strange beast as shown in Figure 3 (top picture).  
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Figure 3.4. (Top) Codependence of X1 and X2 in Example 2 (Figure 3.3). Dots represent samples 
from an �imaginary Monte Carlo simulation�. (Bottom) Typical form of codependence representable 
by one of the �standard� copulas, with positive and negative correlation. Neither of the bottom two 
graphs looks like the top one, so a standard copula is a poor representation of the codependence. 
The transfer function approach, on the other hand, captures it in a natural way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are not, however, dismissing the copulas as entirely irrelevant. Their proper role is in 
correlating the explanatory variables together, which is what we discuss next. 
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Correlation 
Another important issue is how to correlate the assets in a sensible way. From what we 
have seen, the obvious way to do this is to correlate the explanatory variables together. 
It is at this point that copulas become useful, though even now they are not strictly 
necessary. In the examples we have considered above, the explanatory variables have 
always been Gaussian. Then the most natural choice of joint distribution of the 
explanatory variables is the multivariate Gaussian, and it is completely specified by its 
covariance matrix. If we wish, we can say the explanatory variables are linked by the 
Gaussian copula, but this does not add anything to the discussion. 

In PR+ this is almost exactly what we do, with an extra step: we represent the 
correlation in a factor form18. The only easily-implementable copulas are the factor 
ones19, by which we mean that we identify risk factors conditionally on which the 
explanatory variables, and hence the asset values, are independent. In the Gaussian 
framework this is easily done: 
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    or    iii VcZ ε+⋅=  for short 

where the Z�s are the explanatory variables, the c�s are the factor weights, the V�s are 
the risk factors (which need not be independent), and the ε�s represent the issuer-
specific risk. PR+ uses sectorial risk factors, i.e. there is one factor for each industrial 
sector20. 

A particularly simple demonstration of this in action is the default/no-default model that 
we talked about earlier. Recall that 
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where ζ is the �threshold of default�, p is the default probability (EDF) and r is the 
recovery rate. Then conditionally on the risk factor V, the conditional default probability 
is21 
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the well-known formula; and the expected value of the asset22 conditionally on the risk 
factor is 
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18 As where we started out: �The default/no default world, and factor models�, Chapter 2. 
19 �Demystifying copulas�, Chapter 4. 
20 See Chapters 11 and 12. 
21 The 2||1 c− arises because it is the standard deviation of ε; this is because the variance of Z is to be 1. 
22 Assuming that p denotes the market-implied default probability. 
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When the explanatory variables themselves are non-Gaussian, we do not have an 
obvious solution to the problem of correlating them. If we wish to use the Gaussian 
copula, the simplest way of expressing this is to say that the joint distribution of 
appropriately transformed explanatory variables is multivariate Gaussian. In doing so we 
go from the simple model 
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where the purpose of the transformation ))((1
ii ZF Φ−  is to transform a standard Normal 

variable into one with the same distribution as iZ~  (Fi is the cumulative distribution 

function of iZ~ ). All this can be rolled into one, which returns us to the original model (ℵ) 
with a different transfer function: 
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So having non-Gaussian explanatory variables with a Gaussian copula does not actually 
constitute a generalization of the basic model (ℵ). The model only becomes more 
general when one moves away from Gaussian copulas. 

 

Conclusions 
We have shown that the problem of modeling asset return distributions in a multivariate 
context is best tackled not by working with the asset distributions themselves, and trying 
to correlate the assets, but rather by modeling the assets as functions of explanatory 
variables and correlating the explanatory variables. This is a flexible approach that is 
easily extended to model other asset classes. 
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4 
Demystifying copulas 
So far we have discussed the basics of portfolio modeling and introduced the 
concepts of systematic and unsystematic risk, bringing in the notion of factor 
models and conditional independence for modeling these risks. We have stated 
that this framework greatly facilitates computation of portfolio risk in simple 
cases, and that it is very flexible, but that it is too flexible for practical use 
without some �structural enhancement�. One such structure is the Gaussian 
factor model, which we discussed while alluding to copulas. In this chapter we 
discuss copulas in more depth and show that the copula method is not 
fundamentally different from the conditional independence approach. We also 
discuss the concept of tail dependence and present some rather counter-
intuitive results about its effect on the loss distribution in practice. 

Modeling multivariate distributions 
To answer questions about the loss distribution of a portfolio we have to model the 
behavior of the individual assets. Before beginning any analysis, a probability must be 
assigned to every possible outcome, i.e. every possible combination of asset 
movements bearing in mind that movements are correlated. In its fullest generality such 
a specification is large and complicated. As we said in Chapter 2, there are two 
approaches to solving the problem: 

• (Bottom-up) Model each asset individually, identifying the distribution of each. 
Then work out how to model the correlation, i.e. how to glue the distributions 
together to obtain a statistical description of the probabilities of all possible 
combinations of movements of the assets, rather than just an expression for 
each asset in isolation from the others.  

• (Top-down) Identify the factors by which asset movements depend and specify 
the distribution of each asset conditionally on those factors. Conditional on the 
factors, the asset values or movements are assumed to be independent, which 
means that their joint distribution is then easily determined. 

Provided that there is only one factor, and that unsystematic risk can be ignored, the 
top-down approach allows portfolio computations to be easily done �on the back of an 
envelope� (or, at least, on an Excel spreadsheet). The advantage of this is clear: one 
can draw conclusions about the loss distribution without requiring any fancy 
mathematical techniques or Monte Carlo simulation. The reason why the top-down 
approach works is that portfolio problems are about sums. The top-down approach says 
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that the portfolio loss of a large portfolio is its expected loss conditionally on the latent 
factor, and this is obtained simply by adding the conditional expected losses of the 
individual assets. The distribution of loss is then built up by computing the expected loss 
for each value that the latent factor takes, and then invoking the probability distribution 
of the latent factor. On the other hand, one has to do quite a lot of work to specify a 
factor model: one needs to specify the distribution of the factor(s) and the distribution of 
each asset conditionally on every possible value of these factors. Without any particular 
structure there is no guidance on how to do this, so the framework is too �floppy� to be 
useful and requires structure to be imposed. In the previous chapters we introduced the 
Gaussian model as a way of imposing the needed structure. 

We have not discussed the bottom-up approach, beyond saying that it has the attraction 
of modeling the marginal distribution of each asset (i.e. the distribution of the asset 
without reference to what the others do), but that one then has the problem of gluing the 
distributions together. To see why this is not easy, consider the following: 

• It is not sufficient to specify correlations between each pair of assets. Worse, 
specifying �3-wise�, �4-wise� and higher correlations is impractical. 

• Specifying the joint distribution of pairs of assets is difficult because, in general, 
there are many ways in which it can be done. 

We shall now explore these issues in more depth. For the first point, take as an example 
a simple default/no-default model. By specifying pairwise correlations we would know 
the probabilities of pairs of assets defaulting, but we would not know the probabilities of 
three, four, and so on. Hence the full loss distribution would not be completely specified. 
But to specify the probabilities of every single outcome (e.g. assets 1, 3, 7, 8, ... default, 
assets 2, 4, 5, 6, 9, ... do not) would be a huge undertaking. If there are n assets then 
there are 2n different outcomes. For n=100, this number is about 
1,000,000,000,000,000,000,000,000,000,000.  

The second point is best explored by way of an example. Starting with two random 
variables X and Y, we know the distribution of X in isolation from Y, and we know the 
distribution of Y in isolation from X. How then do we come up with a joint distribution? 
Let us take the discrete case, where X takes five values (�-�) and Y four (�-�) with 
the �marginal� probabilities shown in the table. (Hence the term marginal distribution: the 
sums are written on the top and left margins of the table.) The problem is how to fill in 
the grid so that the rows and columns add up to the correct totals (see Fig. 4.1). 
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 Figure 4.1. Correlating two discrete variables. (Top left) the basic problem; (top right) independence; 
(bottom left) �strong dependence�; (bottom right) other! 
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 Source: Credit Suisse First Boston  

 

In the top right-hand figure the numbers have been constructed so as to make X and Y 
independent, and are obtained by multiplying the relevant marginal probabilities. One 
can recognize independence very easily: each row is just a multiple of the top (marginal) 
row, and each column is a multiple of the left (marginal) column. So the distribution of X, 
conditionally on Y, does not depend on what value Y happens to take�and vice versa. 

There is only one way to make random variables independent. But there are many 
ways of making them dependent, as seen for example in the bottom two tables in 
Fig.1. (In the left-hand table, the probability masses have been arranged on or near the 
leading diagonal of the table. In the right-hand table the construction is arbitrary.) 

This is beginning to look tricky. First, there are inconveniently many specifications for a 
pair of discretely distributed assets. Even when we have sorted that out, we must tackle 
larger numbers of assets. Then, we must be able to deal with continuously distributed 
variables: in a portfolio valuation problem, for example, there is a continuous spectrum 
of values the portfolio can take, not a countable set of values23. 

                                                                                 
23 To elaborate on the problem of continuously distributed variables, we can formulate the problem as follows. 
Find a bivariate density function g satisfying: 
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dimensions it is even more difficult: one must now arrange for 

33321321

22231321

11132321

 each for)(),,(

 each for)(),,(

 each for)(),,(

xxfdxdxxxxg

xxfdxdxxxxg

xxfdxdxxxxg

=

=

=

� �

� �

� �

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−  



 

 The Quantitative Credit Strategist
Demystifying copulas

  

 

 44 29 October 2004

We now introduce copulas as a solution to the problem. 

Copulas 
A copula is a method for correlating any two random variables together, irrespective of 
their marginal distributions. The idea behind copulas is to separate marginal 
distribution from correlation. The �removal� of the marginal distributions is effected by 
transforming each variable so that it becomes uniformly distributed. For continuous 
distributions there is a well-known trick for doing this. Let F denote the cumulative 
distribution function of the random variable X, i.e. 

F(x) = P(X<x). 

Then it is easily shown that the variable U=F(X) is uniformly distributed. Let u be a 
number between 0 and 1; then 

P(U<u) = P(F(X)<u) = P(X< F−1(u)) = F(F−1(u)) = u 

Here F−1 denotes the transformation that �undoes� F. The statement P(U<u)=u is 
equivalent to saying that U follows a uniform distribution. This trick is more often used 
the other way round: given F, we can generate observations that have the same 
distribution as X by simulating uniform random variables24 and then transforming them 
using F−1. 

Consequently, if we are able to glue together (i.e. correlate) uniform distributions, then 
we have solved the problem. In fact we have arrived at the definition of a copula: 

A copula is the distribution function of a multivariate random variable with 
uniform marginals. 

This is not the mathematical definition, but it is close enough. Symbolically the copula is 
defined by C where 

C(u1, ..., un) = P(U1<u1, ..., Un<un). 
 
At this point one might reasonably frown and say, �Well, this is not a solution to the 
problem, is it? All you�ve done is thought of a new word and then use that for the 
answer.� There is some truth in this. In fact, much of the theory behind copulas boils 
down to using mathematical trickery to come up with new copulas, which can then be 
labelled and placed in a display cabinet like rare butterflies. That said, there are some 
important results, one of which is the concept of tail dependence, which we shall come 
to later. It is also worth bearing in mind that we have considerably reduced the problem 
by transforming each random variable so that its marginal distribution is uniform. 

                                                                                                                                                             

which looks even harder. 
24 e.g. RAND() in MS Excel. So to simulate Normal variables, use NORMSINV(RAND()). 
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Examples of copulas  
Independence copula 
This is the easiest one to deal with. There is only one way of correctly specifying the 
probability of multiple events if they are independent: that is, multiply the probabilities 
together. Hence 

C(u1, ..., un) = P(U1<u1, ..., Un<un) = P(U1<u1) P(U2<u2) ... P(Un<un) =  u1 u2 � un. 
 
Gaussian copula  
We introduced the Gaussian copula in Chapter 2 (but derived it through a different and 
rather more natural route, without the need for copulas). Having transformed our 
random variables so that their marginal distributions are uniformly distributed, we now 
transform them again so that they become Normally distributed using the inverse 
Normal probability function. The joint distribution of these Normal variables is then 
assumed to be multivariate Normal, with a given correlation matrix Σ. Writing ΦΣ for the 
probability P(Z1<z1, ..., Zn<zn), where the Z�s are multivariate Normal with correlation 
matrix Σ, we have 

C(u1, ..., un) = ΦΣ(Φ−1(u1), ..., Φ−1(un)) . 
 
We can apply this to a default/no-default model as follows. Assign to the i�th obligor a 
uniformly distributed random variable Ui. Default occurs when Ui<pi, where pi is the 
(marginal) default probability of that asset (P(Ui<pi) is just pi because Ui is uniformly 
distributed). The probability of any combination of defaulting events can then be 
obtained from the copula. For example, the probability that assets 1,2,5 default in a 
portfolio of size 7 is 

 C(p1,p2,1,1,p5,1,1) (*) 
 
(Note that this is the probability of those three assets defaulting, not the probability that 
only those assets default: the other four may or may not.) 

One thing worth noting about the Gaussian copula is that it is uniquely specified by 
pairwise correlations. We said previously that to specify a joint distribution one had to 
specify the higher correlations as well. The point is that the Gaussian copula �fills in� this 
remaining structure from the pairwise correlations. So the number of parameters needed 
to specify the full distribution, rather than growing exponentially with the number of 
assets (2n in our previous discussion), instead grows quadratically (n(n−1)/2 correlation 
numbers and n default probabilities). 

There is a problem, however. Although we have written down a neat expression (*) for a 
multiple default probability, it is not obvious how we calculate it. This lack of 
transparency is due to the fact that calculation of ΦΣ requires a multidimensional integral 
to be evaluated: 
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If Σ is reasonably large and has no particular structure then this is very hard and one 
has to resort to Monte Carlo simulation, which is not ideal. Are there any structures that 
do allow efficient computation?  

It turns out that we have already found the answer to this question through the use of 
factor models, which was the way we derived the Gaussian model. Suppose that the 
correlation matrix Σ can be expressed in factor form: 

iimimimii
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UccVcVcZ
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]E[

22
111 ++−+++=

=Σ

��

 

 
Here we have transformed the uniform variables Ui to Gaussians Zi, i.e. Zi=Φ-1(Ui), and 
re-expressed the correlation matrix in terms of the Z�s. (This puts us on the same course 
as we were on in Chapter 225.) Then we have performed factor analysis (principal 
components analysis) on the Z�s in the usual way, identifying a set of independent factor 
variables (V�s) and residuals (U�s) that are also Normally distributed. For the one-factor 
model the correlation matrix is given as 

)( jicc jiij ≠=Σ . 

 
To evaluate the required multivariate probabilities we invoke the �conditioning trick�: 
conditionally on the V�s the Z�s are independent, and then all we have to do is integrate 
out the V�s, which involves a much lower dimension of integration. For a one-factor 
model only a single integral has to be done, regardless of the size of the portfolio. Of 
course this turns a virtually intractable problem into a simple one. 

We have arrived at the conclusion that in the Gaussian case the copula framework does 
not give us anything that the factor approach doesn�t. In fact all �workable� copulas have 
this property. 

Student-t copula 
The Student-t copula is best understood as a generalization of the Gaussian copula, so 
we assume that we already have the Gaussian model set up: ),0(~ ΣNZi  with Σ denoting 
the correlation matrix. To get from this to a Student-t model we allow the volatility 
(standard deviation) of Z, which at present is 1, to be stochastic. To be precise, the 
reciprocal of the variance is assumed to follow a chi-squared distribution with ν degrees of 
freedom, divided by ν. This recipe makes the variable )//(~ ν= WZZ ii . Student-t 
distributed with ν degrees of freedom. In the limit ν→∞ we end up with the Gaussian 
model again, because the volatility becomes deterministic. The effect of the variable W, 
which is chi-squared distributed, is to introduce stochastic volatility and it is fairly clear that 
this has an appealing financial interpretation. Asset returns tend to exhibit �bursty� behavior 
in which there are periods where returns are highly volatile, and other periods where the 
volatility is low. The variable W affects all asset returns equally by scaling their volatilities. 
To obtain an expression for the copula, we take uniformly distributed variables and 
transform them so that they become Student-t distributed: 
                                                                                 
25 The reason the Gaussian copula came up is that it is natural to assume the existence of �asset returns� that 
are Normally distributed, with default events occurring when the asset return is below a certain threshold. The 
natural choice of multivariate distribution for these asset returns is multivariate Normal. The copula approach 
is less elegant because it involves going via a uniform distribution, which is an extra step. 
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with Tν denoting the cumulative distribution function of the univariate Student-t 
distribution and Tν,Σ denoting the cumulative distribution function of the multivariate 
Student-t distribution. Calculation of this latter function is not always straightforward, and 
it may be easier to do it from the multivariate Normal instead: 
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with the last line being done by numerical integration (over the distribution of W). 

We can also write the Student-t model in factor form. Here we must remember that there 
are two factors: the common part(s) of the asset returns (previously called V), and the 
scaling variable W. Thus 
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We can then make this into a default/no-default model by thresholding: default occurs 
when iiZ ξ<~ , with )(1

ii pT −
ν=ξ .  

There are two �advantages� that the Student-t model has over the Gaussian: 

• The Student-t copula exhibits tail dependence, which we shall discuss shortly. 

• If we are modeling a phenomenon that closely relates to �asset returns� (credit risk 
being a good example) then the Student-t model is a natural one to choose 
because it incorporates stochastic volatility, which is seen in real life. 

In arguing these we have been careful to distinguish a copula from a model. The second 
point is somewhat delicate and we shall return to it later (see �Copulas vs. fundamental 
models�). 

It is also worth noting a disadvantage of the Student-t approach, which is the extra level 
of computational complexity. 

Archimedean copulas 
Archimedean copulas are at the moment regarded as more of a mathematical curiosity 
and the Gaussian copula has become a de facto standard. However, they do offer a 
completely different approach to modeling correlation and are worth discussing for that 
reason alone. 

Their construction arises directly from a factor model. In other words one specifies the 
factor variable and the distribution of each asset conditionally on it. That means that the 
Archimedean copulas fit very easily into the top-down approach, which we discussed at 
the outset.  
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The construction involves Laplace transforms. Let V be a strictly positive random 
variable (always takes values >0) and define the function 

)]E[exp()( sVs −=ϕ    (the Laplace transform). 

 
It is not difficult to show that, regardless of the distribution of V, the function ϕ decreases 
as s increases, with ϕ(0)=1 and ϕ(+∞)=0. Then we define the conditional distribution of 
an (unconditionally) uniform variable U to be 

))(exp()|P( 1 VuVuU −ϕ−=<  

 
To show that this prescription does indeed give rise to uniform marginals, we compute 

uuVuuU =ϕϕ=ϕ−=< −− ))(()])(E[exp()P( 11  

which gives us what we want. By conditional independence we have the full distribution 
conditionally on V: 
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and taking the expectation over V gives 
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It is convenient if ϕ-1 can be computed in closed form26, though not essential if ϕ is 
known, as root-finding can always be used. Here are some examples. 

   

 Name Distribution of V Param Laplace transform, ϕ Inverse function
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 Source: Credit Suisse First Boston  

 

It is quite easy to relate this construction to default/no-default models. Each obligor is 
assigned a uniform random variable Ui and default occurs when Ui<pi, with pi being as 
usual the average default rate (marginal default probability). We can now use 
conditional independence: the conditional default probability is 

))(exp()|P( 1 VpVpU iii
−ϕ−=< . 

                                                                                 
26 Note: ϕ-1 is not the �inverse Laplace transform�. 
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Looking back over this construction, where is the correlation coefficient? What 
distinguishes the Archimedean copulas from the Gaussian and Student-t is that in 
Archimedean copulas the correlation, and hence the full distribution, is specified by the 
distribution of the latent variable. This is therefore quite a strange construction. In 
particular, it means that one cannot have some assets more strongly correlated than 
others. Consequently one cannot make assets have the same mean default rate but 
different default rate volatilities. In other words it is a sort of �one size fits all� setup. To 
an extent this can be relaxed by introducing more factor variables, but the constructions 
are rather difficult. This has made them less attractive than the standard Gaussian 
copula, which uses a correlation matrix and therefore has a certain familiarity. 

Properties of copulas 
In this section we are going to talk about general properties of copulas and discuss 
implementation and modeling issues. 

Factor representation 
We taken pains to emphasize that copulas are best understood in the conditional 
independence framework. This means that we specify the conditional distribution given 
the latent factor(s) of a uniform variable U that unconditionally has a uniform distribution. 
The construction makes sure that the unconditional distribution of U is indeed uniform. 
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 Source: Credit Suisse First Boston  

 

To apply these in a default/no-default context, simply substitute the average default rate 
(unconditional default probability) for u; the expression for � )|( factorsuUP < � is now 
simply the conditional default probability. 

Implementation of a Monte Carlo simulator is now very easy: 

1. Draw the random variable V having the right distribution. 

2. For each asset in the portfolio, decide whether it defaults or not: 

• compute the conditional default probability 
• draw a uniform random variable; default occurs if it is lower than the conditional 

default probability. (As losses are conditionally independent, the draws are also 
independent and can be done sequentially.)  

3. Add up the losses and record the result (portfolio loss). 

4. Repeat many times! 
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Archimedean copulas are asymmetrical 
We said that to model defaults we can just threshold a uniform variable, by making 
default occur when U<p. However we could set it up differently, so that default occurs 
when U>1−p. Either way the unconditional default probability will still be p. For the 
Gaussian and Student-t copulas there is a symmetry, which in the notation we have 
been using can be written Z→−Z or U→1−U. So it does not matter whether the 
threshold of default is placed in the upper or lower tail. For Archimedean copulas this is 
not so and one obtains a different model by using the upper tail from the lower tail. In 
particular this means that the coefficients of upper and lower tail dependence are 
different (see next). 

Tail dependence 
Tail dependence measures how likely it is that extreme (tail) events occur together. This 
is distinct from correlation, which refers to the whole distribution. The formal definition of 
the coefficient of tail dependence is 

)|P(lim
0 ppp

xXyYh <<=
→−     (lower tail dependence) 

)|P(lim
1 ppp

xXyYh >>=
→+     (upper tail dependence). 

Here xp denotes the lower p-quantile of X: that is, P(X<xp)=p. Similarly P(Y<yp)=p. 

Suppose first that X and Y are �perfectly correlated�, in the sense that X and Y �move up 
and down together�. (More formally they are said to be comonotonic.) Then they take 
extreme values together, so whenever X is less than xp, Y is also less than yp. Hence 
h−=1, and by the same argument h+=1 also. (See top diagram of Figure 4.2a.) 

When X and Y are independent the coefficients of tail dependence are zero. This is 
because pyYxXyY ppp =<=<< )P()|P(  which vanishes as p→0. (See Figure 4.2b.) 

If X and Y are correlated then there may or may not be tail dependence. The next two 
figures show the difference. In the third, the extreme events do not seem to be clustered 
together and the tail dependence is zero or close to zero, whereas in the last figure they 
do seem to be clustered. For example if p=0.01 and the proportion of points in the 
bottom-left quadrant is 0.0004, then there is dependence (if not, the proportion would be 
0.01²=0.0001), but the probability of X and Y both taking extreme values given that one 
does is 0.0004/0.01=0.04. The coefficient of tail dependence is taken as the limit of this 
quantity in the limit p→0, so although no precise deduction can be made on the basis of 
this information, it seems reasonable to suppose that there is very little evidence of tail 
dependence. But if the proportion of points in the bottom left-hand quadrant is 0.005, 
then now the probability of two extreme events given one is 0.005/0.01=0.5, so there is 
evidence of tail dependence. 

By construction, this measure of tail dependence does not depend on the marginal 
distributions of X and Y, and is instead a property only of the copula. This means that it 
can be expressed in terms of the copula function C: 
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It is also important to understand that it is possible for variables to be correlated but 
not have tail dependence. The most celebrated example is the Gaussian copula. To 
give an illustration, let the copula correlation be 30% (recalling the construction of the 
Gaussian copula, each variable is associated with a Normally distributed variable, and 
these are then correlated; we are saying that the correlation between them is 30%). Let 
p=0.01; then the probability of two extreme events is 

Φ2(-2.326,-2.326;0.3) = 0.000556 

(this computation requires the bivariate Normal integral, for which standard routines are 
available). So the probability of two extreme events given one is quite low 
(0.000556/0.01 = 0.0556) and in fact this quantity will vanish as p is made smaller. This 
effect is seen regardless of the correlation coefficient (unless it is 1), so even with 90% 
correlation there is no tail dependence. 

The Student-t copula has positive tail dependence whenever the correlation is positive. 
The coefficients of upper and lower tail dependence are equal, by symmetry. 

The Clayton copula has positive lower tail dependence (2−1/θ) but no upper tail 
dependence. 

The Gumbel copula has positive upper tail dependence (2−2−1/θ), but no lower tail 
dependence. 
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 Figure 4.2(a) X and Y comonotonic. Tail dependence = 1  
    

100p% of   
points lie  
in this  
quadrant   

100p% of points lie 
to the left of this line   

100 p %  of points 
lie  below  th is line

X   

Y 

No points 
lie in this 
quadrant

No points 
lie in this 
quadrant

100(1-p)%
of points 
lie in this 
quadrant

 
 Source: Credit Suisse First Boston  

 Figure 4.2(b) X and Y independent. Tail dependence = 0  
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 Figure 4.2(c) X and Y correlated but with little or no tail dependence  
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 Figure 4.2(d) Positive tail dependence  
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Copulas vs. fundamental models 
We said a little while ago that the Student-t model, rather than the copula, has an 
advantage over the Gaussian because, at least in situations where asset returns are 
involved, the Student-t distribution is more realistic. In saying this we have to be careful. 

Remember that the copula approach starts by separating the marginal distribution from 
the correlation structure. So if we observe that the marginal distributions of asset returns 
happen to be Student-t distributed rather than Normally distributed, a purist would argue 
that we cannot say that that justifies the use of a Student-t copula�the choice of copula 
has nothing to do with the marginal distributions. Hence the purist would argue that we 
can model the asset returns marginally as being Student-t distributed, and then correlate 
them using a Gaussian copula, or Clayton copula, or whatever. But by doing that the 
purist is not attempting to come up with a model for what is causing the observed 
behavior. Let us argue as follows. A natural model for asset returns is that they are 
Normally distributed27, and the multivariate analogue of it gives a multivariate Normal 
model. In observing that returns are non-Normal, and in seeing that volatility appears to 
be stochastic28, we are led to modify the basic model. One way to do this is to scale the 
volatility in a random way: if a reciprocal-Gamma distribution is used for the variance 
then we end up with a Student-t model. But doing this affects both the marginals and the 
correlation, so not only do the marginals become Student-t, but so does the multivariate 
distribution, so that we naturally end up with a Student-t copula. 

So an approach that involves fundamental modeling is most unlikely to treat the 
marginal distribution separately from the correlation structure. The purist might be right 
at a purely mathematical level, but he is not producing a natural model. The unnatural 
aspect of the copula approach is the distortion of each component to turn its marginal 
distribution into a uniform distribution. There is unlikely to be any physical mechanism 
that would effect such a change. 

Portfolio analysis with different copulas 
Owing to the relative inflexibility of the Archimedean copulas, it is fairly difficult to 
construct realistic examples of how they may be compared with the Gaussian copula 
�on an equal footing�. However, after a mainly theoretical exposition we need to give 
some demonstration. We therefore take a very simple test case29 in which we assume 
that the portfolio is large and homogeneous, consisting of defaultable bonds with default 
probability 5%. We also set the pairwise default probability to be 0.00725, which 
corresponds to a default event correlation of 10%. This allows us to see what the 
various copulas have to say about the higher-order correlations, and therefore the 
probabilities of multiple events occurring. From the point of view of the loss distribution, 
the various copulas will produce loss distributions with the same mean and variance, but 
will differ in their tail shapes. In particular, Value-at-Risk (VaR) will not be the same for 
them all. This implies the following calibration: 

                                                                                 
27 Namely that each asset experiences a large number of independent shocks very rapidly, and by the Central 
Limit Theorem the distribution of the sum of those shocks is roughly Normal. We shall soon find out that the 
CLT does not work very well in practice, but that is another matter! 
28 The basis of GARCH modeling (Engle et al.) 
29 This test is identical to one carried out by Philipp Schonbucher (�Taken to the limit: simple and not-so-simple 
loan loss distributions�, Working paper, Bonn University, 2002), though we do the Student-t as well. 
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Gaussian: pairwise default probability is C(p,p) = Φ2(Φ−1(p),Φ−1(p);ρ) which requires 
ρ=30.55% (this must be obtained numerically via the bivariate Normal integral). 

• Student-t with ν=4 degrees of freedom: pairwise default probability is C(p,p) 
= [ ]));(/),(/( 11

2 ρννΦ −
ν

−
ν pTWpTWE , where W follows a Gamma distribution with 

mean ν and variance 2ν. This has to be evaluated by numerical integration, 
integrating the bivariate Normal integral over a Gamma distribution30. For ν=4, we 
require ρ=5.91%. Note how much lower the correlation is in this example as it 
was in the Gaussian copula, where it had to be 30%. This can be attributed to the 
high level of tail dependence in the Student t4-copula. 

• Clayton: pairwise default probability is C(p,p) = (1+2(p−θ−1))−1/θ which requires 
θ=0.1817 (this must be obtained numerically). 

• Gumbel: pairwise default probability is C(p,p) = p^(21/θ) which requires θ=1.393 
(this can be obtained directly).  

Now that we have calibrated the models, it is a question of finding the loss distribution of 
a large portfolio. As we are considering a homogeneous portfolio it is sufficient to work 
out the distribution of the proportion of defaults in the portfolio. If there were no 
correlation, the proportion of defaults would always be 5%, because that is the mean 
default rate we are using.  

In Chapter 2 we used the fact that the portfolio loss is just the conditional expected loss 
given the risk factor, and is therefore a simple transformation of it. The transformation is 
given for each type of copula in the table of factor representations earlier. For the 
Gaussian and Clayton copulas everything is easy. The Gumbel presents a 
computational difficulty because the factor does not have a closed form expression for 
its density or tail probability31. The Student-t causes a different type of problem because 
it is a two-factor model: it is not possible to ascribe a particular level of loss to one 
particular value of the latent factor: there are many different combinations of factor 
values that give rise to the same conditional expected loss. This problem can be tackled 
by calculating the loss distribution for many different values of W and integrating, in the 
same way that the other Student-t calculations have been done. 

The results are shown in Figure 4.3. What is very odd at first sight is that the copulas 
with tail dependence give lower VaR at (say) 99%-99.9% confidence (excluding the 
Gumbel, which gives a rather strange-looking distribution). Indeed at 99.5% the 
Gaussian gives the highest VaR, and it has no tail dependence! The main reason for 
this is the comparison in Figure 4.3 assumes equal pairwise default probability from 
model to model. For the Gaussian copula, there is no tail dependence, so to get a high 
level of pairwise default probability it is necessary to put in a high correlation parameter; 
but that causes the probability of large numbers of default events to significantly 
increase too. Had Student t and Gaussian been compared with equal correlation 
parameters, the Student t would obviously have had a fatter tail. The subject is quite a 
trappy one. 

                                                                                 
30 TINV in MS Excel takes the two-tail probability as its argument, so to find T4

-1(0.05) we need to do 
x = -TINV(0.10) (minus sign because the lower tail is required). The integration was done by 20-point Gauss-
Laguerre quadrature. 
31 These must be calculated by inversion of the Laplace transform, which is done by the Fast Fourier transform 
algorithm. 
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 Figure 4.3. Loan Portfolio Tests for Four Different Copulas  
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 Source: Credit Suisse First Boston  

Conclusions 
We have discussed copulas, related them to conditional independence models and 
discussed tail dependence in some detail, showing by way of one example that the 
effects of introducing a tail-dependent copula to model the correlation may be hard to 
�predict�. 

In the next chapter we shall talk about unsystematic risk and how to analyze 
concentration risk in portfolios. 
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5 
Thinking unsystematically 
In the previous chapters we have discussed the modeling of systematic risk and 
shown how the various approaches fit into one and the same framework. We 
have shown that if a one-factor model is used, and unsystematic risk can be 
ignored, then the portfolio loss is a simple transformation of the factor variable: 
this allows its distribution to be easily calculated. In reality, however, 
unsystematic risk cannot be ignored, as discussed in the following pages. 

Résumé 
In Chapter 2 we talked around Figure 5.1a that illustrates the loss distribution of a credit 
portfolio using the following simple model: 

• One discrete risk factor is needed to model systematic risk, and it takes five 
discrete values ����� (see top of diagram);  

• At the time horizon in question, each obligor is either in default or not, and the 
loss per unit exposure is 1 or 0 respectively, with the result that asset 
distributions are completely specified by the conditional default probabilities 
(next row); 

• Conditional on the factor the defaults are independent. 

Figure 5.1a shows the conditional loss distributions of some of the assets and the loss 
distributions of three different portfolios. We have argued that for a large enough 
portfolio the loss is entirely driven by the value of the latent factor, and is equal to the 
conditional expected loss (first portfolio). 

In the next two pictures we see the situation for increasing amounts of unsystematic 
risk. Now there is some uncertainty in portfolio loss even when we know the state of the 
world. So each of the spikes in the infinitely fine-grained case becomes fattened, though 
its mean position is the same. The objective of the next few chapters will be to show 
how each of these conditional distributions can be analyzed, or, more loosely, to 
quantify the �fattening�. 
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Figure 5.1a. Systematic and unsystematic risk, default/no-default model with discrete latent factor 
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Source: CSFB 

 

Figure 5.1b. Systematic and unsystematic risk, general case for continuous latent factor 
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To take a slightly different view of the same problem, Figure 5.1b shows the picture 
when the distribution of the factor variable is continuous; models of this sort are more 
common than the discrete-variable ones, but they are not fundamentally different. 
(Recall the example of the Gaussian copula, or quasi-Merton model, which we 
considered before: the underlying factor is Normally distributed (possibly multivariate) 
and the expected loss of any asset conditional on the factor is given by a transformation 
involving the cumulative Normal distribution function, representing the probability of a 
firm�s assets being insufficient to repay its debt at maturity.) 
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In the top picture we have the distribution of the infinitely fine-grained portfolio, which we 
have already shown how to obtain32. In the lower picture we have replotted the infinitely 
granular distribution (dashed) and shown as a solid line the distribution of a real portfolio 
that does have unsystematic risk. The tail of the distribution is fattened (there is a 
greater chance of big losses), however, the means of the two distributions are the same: 
unsystematic risk does not alter the expected loss. 

As with the lower two graphs in Figure 5.1a, we have not described how to construct the 
solid line in Figure 5.1b. To do so requires several techniques. First, we must learn how 
to analyze the unsystematic risk distribution, i.e. the extra risk that remains even when 
we have conditioned on the factor variable; then, we must work out how to combine this 
with the systematic risk model. In this chapter, we begin on the first of these tasks, 
avoiding a mathematical construction, but illustrating with some examples and showing 
how mean and variance may be calculated. 

 

Independent random variables, pictorially 
In the examples below, we shall investigate the subdivision of a position in one asset 
into smaller positions in similarly distributed independent assets: commonly known as 
diversification. In the first two examples, which were chosen for ease of analysis, we 
show that, as the degree of subdivision is increased, the risk reduces to zero and the 
distribution contracts around the mean loss. However, there is a surprise in store, in the 
shape of the third example. 
 

Binomial distribution 
Figure 5.2a shows the picture for a Binomial distribution. This would be the situation for 
a default/no-default model of a loan portfolio. For the sake of argument, we set the 
default probability to 5% and, for different portfolio sizes, plot the distribution of the 
proportion of defaults in the portfolio33. For increasing portfolio size, the tail of the 
distribution reduces and the distribution becomes more symmetrical, resembling a 
Normal distribution by the time the size reaches about 200. In fact, it can be shown that 
the limiting distribution is indeed Normal in this case. By the time the size exceeds a few 
thousand, there is little uncertainty in the loss rate of the portfolio, which tends towards 
5%. In Chapter 2, we said that it was exactly this property that allowed us to define the 
term default probability (default rate) in the first place, viz. the expected proportion of 
losses in a large portfolio of �similar� assets.  

 

 

 

                                                                                 
32 In the one-factor case only it is considerably more difficult in multifactor models (i.e. where the factor is 
multivariate), though in Chapter 12  we mentioned the Student-t model, where there is more than one factor.  
33 In the top picture no probability is plotted for proportions of 0.01, 0.02, 0.03, 0.05, ..., and similarly in the 
second none is plotted for a proportion of 0.01, 0.03, ... . This is because (taking the top example) in a portfolio 
of 25 assets the number of defaults must be a whole number, and so the proportion must be a multiple of 
0.04. 
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Gamma distribution 
Figure 5.2b shows the picture for a Gamma distribution. The basic asset is assumed to 
have a loss that follows a Gamma distribution with mean 1 and variance 10 (shape 
parameter 0.1 and size parameter 10: see note34). The loss distribution from one asset 
is extremely long-tailed (not shown). This sort of distribution would be a reasonable 
model for the loss in value of a bond at some particular horizon: the value cannot 
increase very much, but it can downgrade all the way to zero, so the losses are more 
extreme than the gains. In the figure, the results are shown for portfolios of 10 assets of 
1/10 the size, 50 assets of 1/50 the size, and so on. Again the loss distribution starts to 
become more Normal-looking and contracts around the mean loss, which we have 
maintained at 1. In fact this example is fairly easy to construct because each portfolio 
has a Gamma distribution. More precisely, the sum of independent Gamma-distributed 
variables, that have the same size parameter, is also Gamma distributed35. Again, it can 
also be shown that the limiting distribution is indeed Normal in this case. 

 

Does this always work? 
More formally we are asking the following. 

Suppose that (Xi) follow some distribution and are independent; does the distribution of 
)( 1

1
nn XX ++� , that is, the average of n of them, converge around its mean as n→∞? 

The answer to this is: Not always. Some distributions are so fat-tailed that this 
subdivision, or averaging, process, fails to attenuate the extreme moves. The simplest 
example is the Cauchy distribution, which is in the family of t-distributions and also in the 
family of α-stable distributions. Its density function is )]1(/[1 2x+π . Remarkably, 
averaging Cauchy distributions has no effect at all! Regardless of n, the distribution is 
exactly the same36. See Figure 5.2b. If in the financial world everything was Cauchy 
distributed, there would be no point in trying to diversify! 

                                                                                 
34 The shape (α) and size (β) parameters of a Gamma distribution are related to the mean (µ) and variance 
(σ²) by µ=αβ and σ²=αβ². The (α,β) parametrization is used in Excel. 
35 If the shape and size parameters for X1 are α1 and β then those for λX1 are λα1 and β. Now let X2 also be 
Gamma distributed, with shape α2 and size β. Then the shape and size parameters for (X1+X2) are (α1+α2) and 
β.  Combining these results, we find the parameters for (X1+X2)/2 are (α1+α2) and β/2. The same result holds 
however many variables we add or average, provided that the size parameters are all the same. Most 
statistical distributions do not have an additive property like this. 
36 In essence, this is what the α-stable property is. 
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Figure 5.2a. Proportion of defaults in homogeneous portfolios of �loans� of default probability 0.05.  
The portfolio sizes are 25, 50, 200, 1000, 5000. Notice the �contraction� of the distribution around   
the mean (0.05) as the portfolio size increases. 
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Figure 5.2b. Loss density function of portfolios of Gamma-distributed assets, with increasing size 
(10, 50, 200, 1000, 5000) and hence increasing degrees of averaging (granulation). As before, 
notice the contraction of the distribution around the mean loss (1.0). 
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Figure 5.2c. Loss density function for portfolios of Cauchy-distributed assets. Unlike in the 
previous examples, diversification shows no effect. The risk does not decrease as the degree of 
averaging is increased. Fortunately this case �does not occur in practice�. 
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Independent random variables, mean-variance 
As a starting point for the mathematical analysis it is reasonable to consider the mean 
and variance of a sum or average of independent random variables. The mean is easily 
dealt with: the mean of the sum is the sum of the means, and the mean of the average 
is the average of the means, regardless of whether the random variables are 
independent or not. What this implies, of course, is that the mean (expected loss) is of 
no use in trying to quantify diversification. 

The variance is more interesting. The variance of the sum of random variables is only 
equal to the sum of their variances when they are uncorrelated. Independence, which 
we are assuming, implies uncorrelatedness, so letting V denote variance we may 
deduce 
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with σ² denoting the variance of one asset. Hence the variance of the average is 
inversely proportional to portfolio size. Considering instead the standard deviation, we 
conclude that the standard deviation is inversely proportional to the square root of the 
portfolio size. To reduce unsystematic risk (as measured by standard deviation) by a 
factor of two, we must subdivide each asset by a factor of four, i.e. chop each asset into 
four independent assets, thereby ending up with four times the number of different 
obligors as we had before. This means that, in a theoretical and in a practical sense, 
unsystematic risk decreases only slowly with portfolio size. (Incidentally the exact 
same argument explains why Monte Carlo estimates converge slowly as the number of 
simulations is increased.) 

From Figure 5.2b one can see by eye that in increasing the number of assets from 200 
to 1000 to 5000 the �width� of the distribution (as some sort of proxy for the standard 
deviation) is reduced by a little more than a factor of 2 each time. Of course, the 
reduction in standard deviation is exactly √5 ≈ 2.24.) In Figure 5.2a a similar argument 
applies but it is harder to measure by eye. 

One might enquire why in Figure 5.2c the distribution is the same regardless of the 
number of assets, when we have just argued that the variance is supposed to be 
decreasing as the number of assets increases. The answer is that the Cauchy 
distribution has infinite variance. Hence the mean-variance analysis does not apply: or, 
if you like, half infinity is still infinity. 

Conclusions 
We have begun to address the issue of unsystematic (diversifiable) risk in portfolios and 
have shown, somewhat loosely and without recourse to mathematical techniques, what 
happens when independent losses are added. In particular, we have observed that 
when we diversify a portfolio by chopping up the exposure into small pieces and 
distributing these across independent risks, the standard deviation of the loss 
distribution decreases as the square root of the number of pieces. 

To be able to develop this subject matter in greater depth, and with greater applicability 
beyond the elementary examples that we have considered, we will need to introduce a 
variety of pieces of mathematical machinery. In particular we shall show a neat 
approximation, known as the granularity adjustment, for performing the calculation 
implied in Figure 1b. 
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6 
Characteristically elegant 
In the first three chapters we discussed the modeling of systematic risk and 
demonstrated how the various approaches fit into the same framework. Since 
then we have moved on to unsystematic risk, for which we gave an informal 
discussion of what happens when independent risks are added or averaged. In 
the next few chapters, we will look at some of the machinery that can be used to 
give quantitative answers to this question.  

Résumé 
We began this primer by describing a framework in which the existence of explanatory 
variables or factors is supposed, and conditionally where the values of assets are 
independent. This means that we must work out how to find the distribution of the sum 
of independent risks. It is this question that we will address in this and the next couple of 
issues. We will introduce some mathematical techniques for solving the problem and 
show them in action. 

Whenever we talk about a default probability we are assuming that we have already 
conditioned on the latent factors; hence, we are talking about conditional default 
probabilities. 

The characteristic function (Fourier transform) 
Much of the theory that we will develop in our later work is based on properties of the 
characteristic function. As it will become apparent, the characteristic function is very 
suitable for analyzing sums of independent random variables. One can use this function 
to obtain numerical and analytical approximations that would be almost impossible by 
any other means. 

Definition and properties 
There are many similar conventions in the definition of the Fourier Transform but they all 
boil down to the following definition of the characteristic function of a random variable X by 

�
∞

∞−

ωω ==ω dxxfeeEC xX
X )(][)( ii  

where f is its probability density function, E denotes expectation, and i is the square root 
of �1 (we need to use complex numbers). Any random variable has a characteristic 
function. 
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Here are its most important properties: 

• Uniqueness. It is not possible for two different distributions to have the same 
characteristic function. Hence the characteristic function contains all the 
information about the distribution. Moreover, there is an inversion formula which 
looks very much like the Fourier Transform itself: 

�
∞

∞−

ω− ωω
π

= dCexf X
x )(

2
1)( i . 

• Linear transformation. If we know the characteristic function of X then we can 
find the characteristic function of aX+b (if a, b are constants) without any extra 
work. This means that we can easily deal with scaling a risk by some factor a 
(e.g. an asset allocation) or adding on some constant amount b (which in our 
situations would be a risk-free cash flow): 

)(][][)( i))i(i)(i ω===ω ωωω+ω
+ aCeeEeeEC X

bXabbaX
baX  

• Multiplication rule. If X and Y are two independent random variables then the 
characteristic function of X+Y is the product of the characteristic function of X 
and the characteristic function of Y. One of the steps requires independence 
(marked �ind�): 

)()(][][][][)( ii
ind

ii)(i ωω====ω ωωωω+ω
+ YX

YXYXYX
YX CCeEeEeeEeEC . 

It is fairly obvious that this is going to be quite a useful tool for portfolio problems, 
because we can deal with weighted sums of independent random variables. The basic 
strategy is: 

• Find the characteristic function of each asset�s distribution. 

• Multiply to get the portfolio characteristic function. 

• Invert the characteristic function to obtain the portfolio distribution. 

The middle step is trivial so we will deal with the first and last in more detail. 

Examples of characteristic functions 
For many well-known distributions the characteristic function can be expressed in closed 
form. Here are some examples of distributions that we have already encountered, with 
their corresponding characteristic functions: 

   

 Name Distribution Function Characteristic Function

 Binomial 1 (prob p), 0 (prob 1−−−−p) ω+− i1 pep
 Poisson k with prob !/ ke kµµ− , k=0,1,2,... )1( i −µ ωee
 Normal Density πσσµ−− 2/

22 2/)(xe 2/i 22ωσ−µωe
 Gamma Density )(//1 αΓβ β−α−−α xex , x>0 α−βω− )i1(
 Cauchy Density )])/(1(/[1 2θ+πθ x ||ωθ−e

 Source: Credit Suisse First Boston  
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Most of these results are easily derived by integration. For the Binomial the easiest 
route is to use the fact that the characteristic function is an expectation: 1−p of the time 
X is 0 and p of the time it is 1, so the characteristic function is 

ω×ω×ω +−=+− i1i0 1)1( peppeep i . 

Families 
By a family of distributions we mean a collection of distributions that are all 
mathematically similar. For example, all Normal distributions could reasonably be 
described as belonging to a family, and similarly, all Gamma distributions could be as 
well. Often the construction of families is done with reference to scaling and addition. By 
this we mean that 

• if X is in the family, then aX is in the family (a = constant). 

• if X1 and X2 are in the family and are independent then X1+X2 is in the family 
(sometimes restrictions have to be imposed). 

As it is easy to write down the characteristic function of X+Y, construction of families is 
more easily done using characteristic functions. Some examples: 

• Normal distribution. If X1 ~ N(µ1,σ1
2) and X2 ~ N(µ2,σ2

2) then their characteristic 

functions are 2/i 22
11 ωσ−ωµe  and 2/i 22

22 ωσ−ωµe  and the product of these is of the 

same form: 2/)()i( 22
2

2
121 ωσ+σ−ωµ+µe . This can be recognized as the 

characteristic function of the Normal distribution with mean µ1+µ2 and variance 
σ1

2+σ2
2, as expected. It is important to note that it is the variances that we must 

add, not the standard deviations. 

• Gamma distribution. If X1 ~ Ga(α1,β1) and X2 ~ Ga(α2,β2) then their 
characteristic functions are 1)i1( 1

α−ωβ−  and 2)i1( 2
α−ωβ− . Now the product of 

these is only of the same form when β1=β2=β (i.e. the scale parameters are 
equal). Then the product of the characteristic functions is )( 21)i1( α+α−βω−  
which is the characteristic function of a variable with distribution Ga(α1+α2,β). So 
the Gamma family is �partly closed under addition�. 

• Poisson distribution. As is also well known, f X1 ~ Poi(µ1) and X2 ~ Poi(µ2) then 

their characteristic functions are )1( i
1 −µ ωee  and )1( i

2 −µ ωee  and the product of 

these is of the same form: )1)(( i
21 −µ+µ ωee . So X1+X2 ~ Poi(µ1+µ2). 

• Cauchy distribution. If X1 ~ Cau(θ1) and X2 ~ Cau(θ2) then their characteristic 
functions are ||1 ωθ−e  and ||2 ωθ−e  and the product of these is of the same form: 

||)( 21 ωθ+θ−e . So X1+X2 ~ Cau(θ 1+θ 2). 
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In fact, all the examples we have shown 
have the same �shape�: the dependence of 
the characteristic function is exponential in 
the relevant parameters, and so the 
parameters are added when the 
characteristic functions are multiplied (or 
the random variables are added). The 
families that are thereby generated are 
called exponential families. 

It is worth extending the argument a little for the Normal and Cauchy distributions to 
illustrate an important difference. Suppose that Y=(X1+…+Xn)/n. Now: 

• If all the Xi ~ N(0,1) then Y ~ N(0,1/n),   BUT 

• If all the Xi ~ Cau(1) then Y ~ Cau(1), not Cau(1/n). 

In other words, diversification smoothes out the extreme variations for Normally 
distributed variables, but has no effect if they are Cauchy distributed (when extreme 
events are much more common owing to the fat-tailed nature of the distribution). To give 
a technical reason for this effect, it is easiest by far to look at the characteristic function. 
For the Normal distribution the form is 

exp(parameter × ω²) 

whereas for the Cauchy it is 

exp(parameter × ω¹). 

Adding n independent identically distributed random variables causes the parameter to 
be multiplied by n (multiplication rule). Dividing by n to get the average causes ω to be 
replaced by ω/n (linear transformation rule). In the Normal case the net effect is to divide 
the term in the exponential by n, which is synonymous with reducing the variance by a 
factor of n (the usual diversification law). In the Cauchy case the net effect is to do 
nothing: hence the lack of a diversifying effect. There is a range of intermediate cases 
too, and they are called �α-stable� distributions. Only the Normal and Cauchy cases 
have a closed form expression for the density function. 

Inversion: some first thoughts 
Once the portfolio characteristic function has been obtained, it is necessary to �invert� it 
to obtain the density function. In the examples of exponential families, we were able to 
identify the portfolio density function by inspection because its characteristic function 
was in a recognizable form. In practice, though, this is too restrictive an approach. We 
cannot expect to recognize the density function in, for example, the following situations: 

• Adding Normal and Poisson variables 

• Adding two Gamma variables whose scale parameters (β) are different 

• ... the list is endless. 

So we need to think of a better approach to inversion. One possibility that has some 
attraction is the Central Limit Theorem, which we turn to next. 

 
Name Parameters that generate the 

exponential family  

Poisson µ
Normal µ , σ² (not σ)
Gamma α (not β)
Cauchy θ

 Source: Credit Suisse First Boston  
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Central Limit Theorem 
The Central Limit Theorem states that, under appropriate conditions, the distribution of 
the sum (or average) of a large number of independent random variables is roughly 
Normally distributed. This is clearly quite a remarkable result as it makes no assumption 
about the precise nature of the distributions being added. We will not go into too many 
of the technicalities but we will sketch the underlying ideas. First we recall last chapter�s 
�experiment� in which large numbers of independent identically distributed variables 
were averaged (reproduced in Fig 6.1a, 6.1b later on).  

It is worth being a little more precise about what we mean by �is roughly Normally 
distributed�. For one thing, we have to remember that (again assuming the unstated 
�appropriate conditions�) the variance of the average tends to zero as the number of 
variables is made large. We do not want a theorem that just states that the distribution 
of the average tends towards a �spike� of probability mass located at the distribution�s 
mean: that does not give us enough information. Consequently we standardize the 
distribution by subtracting its mean and dividing by the square root of its variance. The 
standardized distribution, therefore, has mean 0 and variance 1. In detail, when we 
standardize the sum we consider 

2
1

σ

µ−� =

n

nXn
j j

 

whereas, when we standardize the average we consider 

n

X
n

n
j j

/

1

2

1

σ

µ−� =  

which is identical. Hence it no longer matters whether we talk about the sum or the 
average. Here we have assumed that the Xj�s are identically distributed; if they are not, 

we substitute � = µn
j jn 1

1  for µ and � = σn
j jn 1

21  for σ², where µj and σj² are the mean and 

variance of Xj.  

 

Now let us compute the characteristic function of 

2
1

σ

µ−
=
� =

n

nX
Y

n
j j

n . 

We hope to find that it will look like the characteristic function of the Normal distribution 
when n is large, under appropriate conditions. Following the same working as 
previously, the characteristic function of Yn (assuming that the Xj�s are identically 
distributed) is: 

2/i
2

)( σωµ−
�
�

�

�

�
�

�

�

σ
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n

CC
n

. 



 

 The Quantitative Credit Strategist
Characteristically elegant

  

 

 70 29 October 2004

As n→∞, 0/ 2 →σω n , and so we need to understand how CX(z) behaves when z is 
small. If (and this requires justification) log CX(z) can be expanded in a Taylor series, 

 ( ))(exp)( 22 ω+ω+ω=ω obaCX  (*) 

where o(ω²) means a term smaller than ω² when ω is small, then it can be shown that: 

2/i 2
XX ba σ−=µ= . 

This is an important consequence that we will exploit in later work: the moments of the 
distribution are related to the behavior of C(ω) for small ω. 

Substituting, we find 

 
( )

22

22

2 /i
/12/i

)( σωµ−�
�

�

�

�
�

�

�
+

σ
σω

−
σ

ωµ

=ω n
no

nn
n

Y eeC
n

 (**) 

and letting n→∞ we arrive at: 

2

2

)(
ω−

→ω eC
nY  

which is the characteristic function of the Normal distribution of mean 0 and variance 1. 
This is what we set out to show. The crucial step is (*), and it is not always possible to 
perform the Taylor series expansion. A reasonable rule of thumb is that if the distribution 
has finite variance then expansion is possible. For the Cauchy distribution it is not 
possible because exp(−|ω|) misbehaves at the origin (it is not smooth) and indeed the 
variance is not finite in that case. 

We have therefore established the Central Limit Theorem for independent identically 
distributed variables. For non-identical variables the analysis of (**) is a little more 
complicated: essentially one has to derive a condition that ensures that the term marked 
�o(1/n)� does disappear faster than 1/n in the limit n→∞.  

The Central Limit Theorem is a simple result and its use depends only on being able to 
work out mean and variance. However it is quite a poor approximation in practice, 
particularly for credit loss distributions, which are by their nature asymmetric (downside 
much more severe than upside). One can see this from Both Fig 6.1a and Fig 6.1b, 
where the number of assets needs to be fairly large (>50) before the distribution starts 
to look symmetrical. 

In fact, the Central Limit Theorem is particularly bad at estimating the tail of the 
distribution, that is, the region of high losses. However, the graphs in Figure 6.1 do not 
show this very well because one cannot see the shape of the tail. We have therefore 
redrawn some of these figures in Figure 6.2, with the following modifications: we plot the 
tail probability rather than the probability density, and we make the vertical axis 
logarithmic. Figure 6.2 shows that the discrepancy can be quite significant: the CLT 
underestimates the tail probability by over a factor of ten in the top figure (25 defaultable 
bonds, conditional default probability 5%). The error is smaller for a larger portfolio (200 
assets). On the other hand, reducing the conditional default probability to 0.5% causes 
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the error to increase again. Even for a portfolio of 200 assets the error is quite 
substantial, and for only 25 assets the approximation is of little use. (Admittedly much of 
the error arises from trying to approximate a discrete distribution by a continuous one, 
but even so the CLT gives a very poor result.) 

Note again that Figures 6.1 and 6.2 are not �real� loss distributions (unless by some 
stroke of luck the losses happen to be uncorrelated): they are the conditional loss 
distributions for one particular value of the risk factor. In large, well-balanced, or highly 
correlated portfolios there is not much unsystematic risk anyway, so underestimating it 
is unlikely to be serious, but in small or unbalanced portfolios, or where the correlations 
are low, underestimating the unsystematic risk will have a much more severe impact. 
We will reintroduce correlation in Chapter 8. 
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Fig. 6.1a. Proportion of defaults in homogeneous portfolios of �loans� of default probability 0.05. 
The portfolio sizes are 25, 50, 200, 1000, 5000. Notice the �contraction� of the distribution around 
the mean (0.05) as the portfolio size increases.   Source: CSFB 
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Fig. 6.1b. Loss density function of portfolios of Gamma-distributed assets, with increasing size 
(10, 50, 200, 1000, 5000) and hence increasing degrees of averaging (granulation). As before, 
notice the contraction of the distribution around the mean loss (1.0).  Source: CSFB 
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Fig. 6.2. Following Fig. 6.1a, this shows that the Central Limit Theorem (Normal approximation) 
underestimates the tail risk, though the error decreases with increasing portfolio size. The first two 
graphs reproduce two of the cases shown in Fig. 6.1a. The bottom two are for a lower default 
probability:  the error is much bigger, as the distribution is more skewed then.  Source: CSFB 
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Numerical inversion 
Having found the Central Limit Theorem to be rather disappointing in credit portfolio 
applications, we have two options: develop the analytics further (which we shall do in 
the next chapter) or try to invert the Fourier Transform (characteristic function) 
numerically. 

When approximating an integral, a natural idea is to try and represent it as a finite 
(discrete) sum. This is the basis of the Discrete Fourier Transform. Recalling that the 
continuous formulation is: 

�
∞

∞−

ω=ω dxxfeC x
X )()( i ,       �

∞

∞−

ω− ωω
π

= dCexf X
x )(

2
1)( i  

it is natural (by discretising x and ω) to make the discrete analogue: 
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with Nxe /))(i( ∆ω∆=ζ  (∆x and ∆ω denoting the discretization steps in x- and ω-space). We 
will not pursue the technical details further, but suffice it so say that ∆x and ∆ω are 
related37 by ∆x.∆ω=2π). We have then arrived at the conventional definition of the 
Discrete Fourier Transform (DFT). This is an ideal tool for analyzing the distribution of 
random variables that only take values on a discrete grid of points (spaced by ∆x). To 
find the distribution of the sum of several independent random variables, one performs 
the following sequence of operations: 

• DFT the distribution of each 
• Multiply the DFTs together 
• Invert the DFT 

At a first glance it appears that the DFT could be quite computationally intensive 
because the calculation of each of the N Cj�s requires an N-length summation to be 
performed, which would mean a computational load of order N². Fortunately the DFT 
has the remarkable property that it can be computed much more rapidly if N can be 
factorized. The algorithm (known as the Fast Fourier Transform Algorithm) works fastest 
when N is an exact power of 2, and then the computational load is roughly Nlog2N, 
which is much less than N² (e.g. for N=1024, compare 10,240 with 1,048,576). Hence 
the three-stage scheme described above is quite satisfactory in practice, provided that 
one chooses ∆x (and hence ∆ω) correctly and takes enough points. 

To give an illustration of how this works in 
practice, we consider a portfolio of 5 
defaultable loans with the following 
characteristics (recovery is supposed to be 
zero): 

 

 

                                                                                 
37 This is known as time-frequency reciprocity and is fundamental in the theory of signal processing. 

   

Exposure Default prob

4 5%
5 2%
3 10%
6 2%
2 4%

 Source: Credit Suisse First Boston  
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The loss distribution is as follows: 

Figure 6.3. Loss distribution for test portfolio, obtained numerically 
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Source: CSFB 

This could have been obtained long-hand, by working out each possible combination of 
defaults. While this is practicable for very small portfolios, it is impracticable for large 
ones because when the exposures are different there are 2n different loss combinations. 

This technique is particularly well-suited to the analysis of distributions that are discrete. 
One situation in which these often arise is in the pricing of synthetic CDOs and baskets 
where it is desired to find the distribution of the number of default events. The 
implementation is more fiddly when the distribution is continuous; this situation arises 
when recovery rates are made stochastic or because it is mark-to-market risk that is 
being modeled rather than just default/no-default. 

 

Conclusions 
We have introduced the characteristic function and derived some useful results from it: 
the Central Limit Theorem, which is a Normal approximation to the distribution of a large 
uncorrelated portfolio, and a discrete form which gives a numerical expression for the 
distribution via the Discrete Fourier Transform. We have seen that the Central Limit 
Theorem is of limited applicability in credit unless the portfolio is large (more than a few 
hundred), because of the asymmetric nature of the risk. In the next chapter we shall 
develop a more sophisticated analytical approximation, the saddle-point approximation, 
that works better on smaller portfolios. 
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7 
Posing on the saddle: the cowboys of portfolio theory 
One of the techniques that we think gives CSFB a significant advantage is the 
saddle-point method. This technique was introduced a few years ago to 
quantitative finance, but it is not particularly well understood. To give a complete 
exposition would be quite technical and there are also several different ways of 
using saddle-point methods, which give rise to essentially different types of 
approximation. The purpose of this chapter is to explain some of the basic ideas 
and issues and to give a few simple examples. 

Résumé 
In this chapter we pick up from the last one. The issue is the derivation of an analytical 
approximation to a sum of independent random variables. We have already found that: 

• For �most� distributions, if many of them are averaged (and if they are 
independent), then the so-called �law of large numbers� applies and the 
variability becomes progressively less (diversifies) as the portfolio size 
increases. In the limit, only the conditional expected loss remains; 

• For many distributions, the Central Limit Theorem says that if enough 
independent variables are added then their sum is roughly Normally distributed; 

• But in practice the Central Limit Theorem does not always work very well, and it 
underestimates the probability of large losses (losses that are several standard 
deviations from the mean). 

Obviously the last point is a cause for concern. But how much? We can give a 
qualitative answer to this question immediately. The extra risk that occurs even when 
the values of the risk factors are known is unsystematic (or specific) risk, and it is 
significant when any or all of the following occur: 

• The portfolio is small; 

• The correlations are low (high correlation means that most of the risk comes 
from variation of the risk factors); 

• The distributions are highly skewed, as tail risk diversifies quite slowly.
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The moment-generating function (MGF) 
When we discussed the Central Limit Theorem in the last chapter we made 
considerable use of a device called the characteristic function, which for a random 
variable X is defined as 

�
∞

∞−

ωω ==ω dxxfeeEC xX
X )(][)( ii  

where f is its probability density function, E denotes expectation, and i is the square root 
of �1. For the purposes of this discussion, we slightly modify the discussion by defining 
instead the moment generating function (MGF), 

�
∞

∞−

== dxxfeeEsM sxsX
X )(][)( . 

Although the difference between these may seem trivial, there is an important 
distinction. Whereas every distribution has a characteristic function, it is not always the 
case that the moment-generating function will exist for all real values of the variable s: 
and it is real values that we will be most interested in. This is because the exponential 
function sxe  increases rapidly (unlike the function xe ωi , which never gets bigger than 1 
in absolute value, and simply oscillates), and so the integral does not necessarily 
converge. This makes the MGF a more specialized tool than the characteristic function, 
but when it exists, more powerful results can be derived. 

Here are examples of MGFs: 

   

 Name Distribution function MGF

 Binomial 1 (prob p), 0 (prob 1−−−−p) spep +−1
 Poisson k with prob !/ ke kµµ− , k=0,1,2,... )1( −µ see
 Normal Density πσσµ−− 2/

22 2/)(xe 2/22sse σ+µ

 Gamma Density )(//1 αΓβ β−α−−α xex , x>0 α−β− )1( s   )/1( β<s
 Cauchy Density )])/(1(/[1 2θ+πθ x Does not exist

 Source: Credit Suisse First Boston  

 

As the Gamma density decays only at an exponential rate, the MGF �blows up� if s is 
too large, hence the restriction )/1( β<s . The Cauchy distribution is so fat-tailed that the 
integral always �blows up.� 
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All the properties of the characteristic function carry over to the MGF, so we repeat 
them: 

• Uniqueness. It is not possible for two different distributions to have the same 
MGF. Hence, the MGF contains all the information about the distribution. The 
inversion formula is similar to that for the characteristic function and it requires 
M(s) to be evaluated for purely imaginary s: 

�
∞
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π
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i

)(
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1)( dssMexf X
sx . 

• Linear transformation. If the MGF of X is known, then the MGF of aX+b (if a, b 
are constants) can be found without any extra work. This means that we can 
deal with the following transformations: scaling a risk by some factor a (e.g., an 
asset allocation), and adding on some constant amount b (which, in our 
situations, would be a risk-free cash flow): 

)(][][)( ))()( asMeeEeeEsM X
bsXasbsbaXs

baX === +
+ . 

• Multiplication rule. If X and Y are two independent random variables then the 
MGF of X+Y is the product of the MGF of X and the MGF of Y. One of the steps 
requires independence (marked �ind�): 

)()(][][][][)(
ind)( sMsMeEeEeeEeEsM YX

sYsXsYsXYXs
YX ==== +

+ . 

So far we have not in effect done anything beyond the theory of characteristic functions. 
The following properties are therefore deeper and exploit the fact that M(s) is assumed 
to exist for real s: 

• Differentiability. The moment-generating function is a complex-differentiable 
(analytic) function, and this endows it with a variety of useful properties. One of 
these is given below, and a more far-reaching consequence will be discussed 
later. 

• Extraction of moments. Courtesy of the differentiability property, M possesses a 
Taylor series expansion around the origin (s=0) and the moments equate to the 
derivatives of M there (hence the name moment-generating function): 
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• Cumulant-generating function. It is convenient to define the cumulant-
generating function by the log of the MGF, and this is also analytic. When 
independent random variables are added, their cumulant-generating functions 
add: 

)(log)( sMsK =  

)()()( sKsKsK YXYX +=+      (X, Y independent) 
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• Cumulants. The cumulants are the derivatives of K evaluated at the origin, in 
the same way that the moments are the derivatives of M evaluated at the origin. 

�
∞

=

κ=
1 !

)(
r

r
r

X r
ssK   so  )0()(r

Xr K=κ . 

The two are closely related, but 
the cumulants are generally more 
useful. Their interpretation is as 
follows: 

The 3rd and higher cumulants 
vanish for Normal distributions, so 
they can be regarded as a 
measure of non-Normality, with κ3 
giving a measure of asymmetry 
and κ4 a measure of tail fatness. There is no zeroth cumulant because K(0) is 
always 0. 

• Convexity. Of crucial importance to the development of the theory, K is 
convex38: 

0)( >′′ sK . 

Review of Central Limit Theorem 
We recall that the Central Limit Theorem (CLT) states that, under appropriate 
conditions, the distribution of the sum (or average) of a large number of independent 
random variables is roughly Normally distributed. The proof of this depends on 
investigating the characteristic function of such a sum, in the limit of infinitely many 
variables being added, i.e., an infinitely large portfolio. Provided certain technical 
conditions are met, that characteristic function converges to the characteristic function of 
the Normal distribution. When those technical conditions are not met, as we saw in fact 
for the Cauchy distribution, other limiting distributions are possible, but we shall not 
explore any further in that direction. 

What is of most importance to us at the moment is that the CLT does not always work 
very well in practice. This is because a limit theorem just says, �for a large enough 
portfolio it will work�, but doesn�t tell us whether the portfolio is large enough. In fact, 
there couldn�t be a result that just gave a simple statement such as �it works well for 
portfolios >100 in size�, because logically the underlying distributions must have some 
influence on the rate of convergence. We saw this in our earlier discussion of the CLT, 
and we shall reproduce some of the results for convenience (please refer forward to 
Figures 7.2 and 7.3). Figure 7.2 is an example of a default/no-default model (such as 
might be used for analyzing a CDO, or an accrual-accounting model of a loan portfolio). 
If the default probabilities are assumed to be 5%, the CLT becomes reasonably 
accurate once >200 assets are added, but if they are 0.5%, then the accuracy is not 
very good, even for that number. The reason for this is that the events that are being 
                                                                                 
38 There are a large number of convexity results that surround this, and they all stem from the following basic 
idea. Define Q(t) = E[(X+t)2esX]. Then Q(t)>0 for all t, because it is the expectation of something positive. 
Hence its minimum is also positive, and that can be found by �completing the square�. This when rearranged 
states that M��(s)M(s) > M�(s)2, or K��(s)>0, as required.  

   

Cumulant Interpretation

κ1 mean, E[X]
κ2 variance, E[X 2] −−−− E[X] 2

κ3 skewness is κκκκ3/κκκκ23/2

κ4 (excess) kurtosis is κκκκ4/κκκκ22

 Source: Credit Suisse First Boston  
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added are highly asymmetric: the downside is very rare and large, and the upside is 
minimal (here, the upside is that there is no downside!). The position is even worse if the 
exposure amounts are not all the same, because in that case there is concentration risk 
to diversify away and this requires an even larger portfolio size. 

Looking at Figure 7.1, it seems reasonable to hypothesize that the CLT is doing better 
near the mean, or in the �middle of the distribution�, where the tail probability is around 
0.5, than in the right-hand tail (tail probability <1%, say). This is an important 
observation, because the first derivation of the saddle-point approximation that we are 
going to show makes explicit use of this idea. In fact, it is sufficiently important that we 
are going to garner some more evidence in its favor. 

What makes Figure 7.1 a little awkward to deal with is that the true portfolio distribution 
is discrete, as opposed to a continuum of possible outcomes: the true distributions are 
�steppy�, whereas the CLT approximations are smooth. So part of the error simply 
comes from the approximation of a discrete distribution by a continuous one, and this is 
not really a comment on the substance of the CLT. Accordingly, it might be a good idea 
to try the CLT out on a continuous distribution, where this discrete-vs.-continuous issue 
does not arise. A useful test is to look at Gamma distributions (which we also 
considered previously). Recall that Gamma distributions form a family, which means that 
when independent Gamma-variables are added39, the result is another Gamma-
variable: this is useful because we know what the exact answer is. (If we did not know 
the exact answer, we would have to find some other technique for testing our analytical 
approximations, which would probably be Monte Carlo simulation. There is nothing 
wrong with this, but it introduces unwelcome distractions, such as what the Monte Carlo 
error is.) In fact, the Gamma distribution is not chosen as a purely academic exercise. In 
the structural model of credit risk, the credit risk in a bond is a put option on the 
underlying firm�s assets, and so the price difference between a risky and risk-free bond 
of the same maturity is the price of this embedded put option. Options are nonlinear 
instruments, so the distribution of the value of a put option is non-Gaussian: indeed, 
common sense tells us it must be, as a short put position has a small upside (spread 
tightens) and a big downside (spread widens all the way out to default). It turns out�
though we ask the reader to take this on trust�that the Gamma distribution is a 
reasonable approximation to this, though there are better ones. 

A test for Gamma distributions is shown in Figure 7.2. By plotting the results on both 
linear and logarithmic vertical scales, we get a good appreciation of the general shape 
(from the former) and the tail (from the latter). We see that indeed the CLT is much 
better in the middle than it is in the tail. 

This characteristic is known as �non-uniform convergence�. The purpose of saddle-point 
approximations is to make the convergence more uniform, and we can now introduce 
them. 

                                                                                 
39 Scale parameters must be equal. See Chapter 6 for details. 
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Enter the saddle 
The following derivation of the saddle-point approximation is quite daring in its 
simplicity. Suppose that the mean (expected loss) is $10M and we are interested in 
losses around the $70M mark. Noting that the CLT works quite well in the middle of the 
distribution, try this idea: 

�I shall deform the distributions of all my loss variables in such a way that the 
total mean loss is now $70M, and then apply the CLT, and because the CLT 
works well near the mean, I shall get a good answer.� 

What does �deform� mean? For our purposes, the most analytically convenient way of 
deforming a distribution is to multiply its density by an exponential �tilting� function40. 

First, let us see what happens when we do this to the portfolio loss variable �= j jXY  

directly: then we shall see what has to be done to the distributions of the individual loss 
variables Xj to achieve this. 

If we change the density of Y by multiplying by eλy, we get a new density 
y

YY eyfyf λ∝ )()(~ . 

The effect of this operation is to shift the bulk of the density over to the right if λ>0, or 
the left if λ<0. We have written �proportional to� because the tilted density does not 
integrate to 1, and we now fix that problem by dividing by the integral of the RHS, which 
is just the MGF of Y evaluated at λ:  

 
)(

)()(~
λ

=
λ

Y

y
Y

Y M
eyfyf . (1) 

lt is not difficult to show that using the tilted probability distribution, the mean of Y is now 
K′(λ) and the variance is K″(λ), where K denotes the log of the MGF (as introduced 
earlier) and ′ denotes differentiation. More substantially, the MGF of Y using the tilted 
distribution is 

 
)(

)()(~
λ

λ+=
Y

Y
Y M

sMsM . (1*) 

We choose λ so that the �tilted mean� is the loss level in which we are interested�say 
y* (= $70M in our discussion just now): 

 *)(* λ′= YKy . (2) 

As K″(λ)>0 (which we said earlier was most important), for each y there is only one λ that 
will do this. If y is equal to the mean, E[Y], then λ=0, which means that no tilting is being 
done. 

So we now have a new probability distribution that has the desired mean loss. However, 
we need to do a bit more than this: the distributions of the individual loss variables Xj 
need to be altered to make sure that their sum does indeed follow this new distribution. 

                                                                                 
40 This, the �Esscher tilt�, is also used in importance sampling. Like the CLT, but for completely different 
reasons, Monte Carlo estimates best in the middle of the distribution. 
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In other words, we cannot just pluck a distribution for Y out of thin air. To do this, we 
make the tilted density of Xj  

*)(

)(
)(~

*

λ
=

λ

j

j
j

X

x
X

X M

exf
xf ; 

then the moment-generating function of each Xj under the new measure is 

*)(

*)(
)(~

λ

λ+
=

j

j
j

X

X
X M

sM
sM  

and the MGF of the portfolio loss is obtained by multiplying them together (they are still 
independent): 

*)(
*)()(~

λ
λ+=

Y

Y
Y M

sMsM , 

which is what it is supposed to be (see (1*)). 

Now the CLT, applied in the new measure, states that the distribution of Y is roughly 
Normal and it is likely to be a good approximation near the mean, which we have made 

equal to y*. And the density of any Normal distribution at its mean is given by 22/1 πσ  
(where σ2 is the variance), so in the tilted measure we must have 

*)(2
1*)(~

λ′′π
≈

K
yf  

and �un-tilting�  by (1) gives us the basic saddle-point approximation 

 
*)(2

*)(
***)(

λ′′π
≈

λ−λ

K
eyf

yK
. (3) 

In evaluating this, we must remember that y* and λ* are linked by equation (2). 

Demonstration 
Figures 7.1 and 7.2 also show the saddle-point results. Figure 7.2a, which shows the 
density, uses equation (3). Figures 7.1 and 7.2b, rather than integrating (3) to get the 
tail probability (which would work quite well), instead use a better and more convenient 
result. We shall talk about that later, as we want to discuss the test results, keeping the 
focus on examples rather than theory. The figures provide an easy comparison of the 
true distribution, CLT and saddle-point approximation. Clearly the results are very good. 

What is quite remarkable is that the saddle-point approximation works well even on 
distributions that are not at all Normal�and yet the derivation we have given makes the 
saddle-point approximation look like a variant of the CLT. The top graph in Figure 7.3a 
shows a very good approximation to an exponential distribution (10 independent assets 
with Gamma (0.1,10) distribution, when added, give an exponential distribution). The 
true probability of the loss exceeding 4 is about 0.018, the saddle-point approximation is 
almost exact, but the CLT makes it 0.00135, which is a factor of >10 too small. 
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Figure 7.1. Risk aggregation of Binomial assets (single default events, as in a simple model of a loan portfolio or 
CDO). Here the true loss distribution is shown as the solid, stepped line: the distribution is discrete because a whole 
number of events must occur. If one imagines smoothing out the true distribution, it is apparent that the CLT 
underestimates the probability of large losses, and the saddle-point approximation does a reasonable job of �following 
a median path�. The CLT performs worst for a small portfolio with low default probabilities, as that combination 
produces the highest skew (deviation from non-Normality). 
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Source: Credit Suisse First Boston 
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Figure 7.2a. Risk aggregation of Gamma-distributed assets using CLT (dotted line) and saddle-
point approximation (dashed line), compared with the correct distribution (solid line). Here the 
density is being shown. The CLT underestimates the probability of large losses and the saddle-
point method does very well, even on the smallest portfolio where the distribution is highly non-
Normal. 
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Figure 7.2b. As Figure 7.2a, but showing the tail probability on a logarithmic scale, to �amplify� the 
tail. As is apparent, the saddle-point approximation is indistinguishable from the true result, while 

the CLT underestimates the tail risk. 
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Uniform approximation property 
A general rule of saddle-point approximations when applied to a sum of independent 
random variables is that they generally exhibit uniform approximation in the limit of a 
large portfolio. By uniform we mean that the relative error is roughly the same across 
the distribution. So, for example, if the true density at one point is 0.57 and the 
approximation is 0.62, and at some other point the true density is 0.0071 and the 
approximation is 0.0075, we say that the relative error is roughly the same (a few 
percent), even though the absolute error is much larger in the middle (0.05 cf. 0.0004). 
The relative error tends to be more important than the absolute. 

 
Second derivation of the saddle-point method 
An alternative, and considerably more flexible, derivation of the saddle-point method 
consists in returning to the original Fourier inversion formula for the density: 
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Assume that Y arose as a sum of n independent identically distributed random variables, 
each of which has cumulant-generating function KX. Then )()( snKsK XY =  and we arrive at 
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where y  is short for y/n (and hence is the average rather than the total loss). 

The question to resolve now is what happens when n is made large. The basic idea with 
integrals of this sort is that in this limit the integrand becomes �concentrated� around one 
or more points and negligible elsewhere: so the integral is approximated by adding 
together the contributions from these points. On account of the fact that KX is convex, 
the term in the exponential is �bowl-shaped�, as s varies and is real, and assumes its 
minimum at the value of s satisfying41 

ysK X =′ )(   (equivalently, ysKY =′ )( ). 

In the orthogonal direction (as the imaginary part of s varies), the term in the 
exponential has instead a local maximum42. But there is a minor problem: that point 
does not lie on the path of integration! (The saddle-point is a real value of s, whereas 
the path of integration is over imaginary values.) It is at this point that we can wheel out 
an important result from analytic function theory, which states that it is OK to deform the 
path of integration so that it passes through the saddle-point, and the value of the 
integral will be unaffected43. This can only be invoked because the MGF is an analytic 
function, which is the �far-reaching consequence� we alluded to earlier when introducing 
the MGF. 

                                                                                 
41 differentiate w.r.t. s and set the derivative to zero 
42 This is where the term saddle-point comes from: analytic functions are not permitted to have local maxima, 
in the way that many real functions do. For a complex function, both the real and the imaginary parts can be 
altered, and an analytic function must have �a local maximum in one direction and a local minimum in the 
other�. 
43 (provided there are no singularities to negotiate) � Cauchy�s theorem. 
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By expanding the integrand in a Taylor series as far as the quadratic term, and doing 
the integration, one ends up with 

)�(2
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′′π
≈

−
 

which is (3). 

This method draws a neat comparison with the CLT. Both can be viewed as ways of 
approximating the integral above: but whereas the CLT always expands around the 
origin (s=0), the saddle-point method gets its information about KY(s) from around the 
saddle-point, which is where the dominant contribution to the integral is (note again that 
its position depends on the point on the loss distribution at which one is seeking to find 
the density). This is probably the cleanest explanation of why saddle-point methods 
work well. 

We mentioned earlier that in approximating the tail probability there are better methods 
available than just integrating the density. The upper tail probability is given by 
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in which the notation (0+) indicates that a �certain avoidance� has to be taken owing to 
the fact that the integrand �blows up� at the origin. In fact, this singular behavior causes 
some delicate problems and the most satisfactory approach (best discussed by Daniels 
(1987)44) is the method of Lugannani & Rice. This consists in splitting out the singular 
part of the integral into one that can be done exactly and approximating the rest using 
the saddle-point method. The first (singular) part is fiddled with so that the term in the 
exponential becomes exactly quadratic as opposed to only approximately so. This is 
done by changing the variable to z given by 
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so that when s=0, z=0, and also when ss �= , zz �= . The development is then 
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and the first part is recognizable as )�( z−Φ , while the second is approximated as 
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44 H E Daniels, �Tail Probability Approximations�, International Statistical Review 55(1):37-48 (1987). 
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which is known as the Lugannani-Rice formula. PR+2 uses a variant of this and also 
has an analogous formula for the CVaR, which requires the treatment of the following 
integral: 
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This completes our introduction to the �classical� saddle-point method, which is 
employed by PR+2. We finish with a discussion of other implementations of the saddle-
point method that have been used in related applications. 

Alternative uses of saddle-point approximations 
The line of argument we have pursued here�using the saddle-point method to 
approximate the sum of independent random variables�is the basis of the PR+2 
methodology. It also corresponds very closely to the classical development of the 
subject (for which see, for example, Jensen (1995)45 or Daniels (loc. cit.)). However, it is 
not the way in which the subject was introduced into finance. That approach took the 
view that the saddle-point method often works well when applied to all sorts of 
distributions, not just those that arise from sums of independent random variables46. It is 
important to bear in mind that when used like this the uniform approximation property is 
no longer guaranteed. Hence, the results may not be very good. 

Examples include: 

• Feuerverger & Wong (2000)47 used it to approximate the distribution of a 
quadratically transformed multivariate Gaussian variable, which they used as a 
general model for market risk. Here the idea is that there are a variety of 
underlyings, all Normally distributed (e.g., FX rates, interest rate tenors, etc.) 
and the values of the instruments indexed on them (options, etc.) are roughly 
quadratic. In option-pricing parlance, this is referred to as the delta-gamma 
approximation. The resulting model has the desirable property of having a 
moment-generating function that is known in closed form. The saddle-point 
method can then be used to obtain the density and tail probability. 

• Gordy (1998)48 used it to approximate the loss distribution from CSFB�s 
CreditRisk+ model of credit portfolios. As one of the main planks of CreditRisk+ 
is that the portfolio MGF be known in closed form, the saddle-point inversion is 
particularly easy to implement. 

• Martin (1998)49 applied it to a reliability problem, which can also be applied in 
insurance: losses of random severity arrive as a Poisson process, and it is 
desired to find the distribution of total loss in some time period. Again the model 
was chosen so that the MGF could be calculated in closed form (coincidentally, 
it bears a strong resemblance to CreditRisk+). 

                                                                                 
45 J L Jensen, �Saddlepoint Approximations�, Oxford (Clarendon Press), 1995. 
46 R J Martin et al, �Taking to the saddle�, RISK 14(6):91-94 (2001). 
47 A Feuerverger and A C M Wong, Computation of VaR for nonlinear portfolios, J of Risk 3(1):37-55 (2000). 
Beware that there are a fair number of minor errors in this paper, particularly in the equations. 
48 M B Gordy, �Saddlepoint approximation to CreditRisk+�, J. of Banking and Finance 26(7):1337-1355 (1998). 
49 Jensen (1995) has a good discussion on this sort of thing. Martin�s original paper is hard to get. 
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The point about these examples is that they were all implemented with the �direct 
method�, as described next. 

Direct method 

• Find the unconditional moment-generating function. If the model is a 
conditional-independence model (Credit Risk+ very obviously is, for example), 
find the conditional portfolio moment generating function E[esY|V] for each value 
of the risk factor V, and then integrate over V to get E[esY]. 

• Apply the saddle-point method to E[esY]. 

But the approach we are using in PR+2 is different, and we call it the �indirect method�: 

Indirect method 

• Condition on the risk factor V. 

• For each value that V takes, find the conditional portfolio moment-generating 
function E[esY|V] and apply the saddle-point method to that, to get the 
probability density, tail probability or whatever. 

• �Integrate out� over V: this usually has to be done numerically by finding a 
representative set of �states� (see earlier chapter50) and averaging over these.) 

What makes these two methods analytically distinct is that for the indirect method to 
work it is only necessary that the saddle-point method be a satisfactory approximator for 
a sum of independent random variables (it is being applied to the conditional MGF, for 
each value of V). For the direct method, one is using the saddle-point method as a black 
box (once, to approximate the unconditional MGF). In the examples listed above, there 
are technical reasons why the direct method is likely to work very well51. However, there 
is no general result that says that it must, and one can easily find examples in which is 
does not work very well at all52: on these, the indirect method is much better. 
Unfortunately, the indirect method is more difficult to implement, but the problems are 
not insuperable and indeed they have been overcome in PR+2. 

Conclusions 
We have discussed the basics of the saddle-point method and have shown how and 
why it is an improvement over the Central Limit Theorem. 

Incidentally, it is an important consequence of the saddle-point theory that the risk 
contributions, i.e., sensitivities of VaR and CVaR to asset allocations, can be calculated 
analytically at the same time. This makes for an efficient implementation of a significant 
amount of portfolio analysis.  

 

                                                                                 
50 �Getting the full picture�, Chapter 8. 
51 The distributions involved are Poisson and Gamma, and both are very close to their saddle-point 
approximations, at least for reasonable values of the parameters. 
52 One of the most common models in credit portfolio analysis, the case of default/no-default models using a  
Gaussian copula, is a good example of this. Results on this will be published shortly. 
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8 
Getting the full picture 
In the previous chapters we have discussed the modeling of systematic risk and 
showed how the various approaches fit into a risk-factor framework. We then 
proceeded to show what happens when independent variables are added as a 
route to understanding idiosyncratic (unsystematic) risk. It is now time to put 
these two concepts together to build up the whole picture of a loss distribution. 

Résumé 
In our previous chapters on credit portfolio modeling, we built up the following picture: 

• In the case where a single risk factor drives the systematic risk, and when the 
portfolio is very large so that unsystematic risk can be ignored, the portfolio loss 
distribution can easily be obtained. To work out Value-at-Risk (VaR) is very 
easy: we take the appropriate percentile of the factor distribution, and work out 
the expected loss of the portfolio when the factor takes that particular value53.  

• An example of such a model, for defaultable bonds that either default (loss=1) 
or do not default (loss=0), a model can be constructed by assuming that default 
occurs when the (unobserved) value of an obligor�s assets falls below the level 
of its liabilities. Assume that the obligor�s assets are after simple transformation 
Normally distributed, and perform a linear regression to correlate all firms� 
assets to a single factor V. The expression for the conditional default 
probability, and hence the conditional expected loss of a particular obligor, is 
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Here jζ  and jc  are parameters that respectively describe the credit quality (the 
average default probability is )( jζΦ ) and the level of correlation of the obligor. 

As a matter of fact, this model is used by Basel II Regulatory Capital Proposals. 
If a more complicated model than default/no-default is required, the same 
arguments apply, but formula (1) has to be modified. 

                                                                                 
53 There is a technicality: the relation between the factor and the portfolio expected loss must be �one-to-one�, 
i.e., either the expected loss always increases as the value of the factor increases, or the expected loss 
always increases as the value of the factor decreases. But if two different values of the factor give rise to the 
same expected loss, then we have a problem. 
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• We have thus obtained the distribution of the �infinitely granular� portfolio (see 
dotted distribution in Chart 8.1). The effect of unsystematic risk, which arises 
because the portfolio is only of finite size and may not be very homogeneous, is 
to increase the risk and cause the loss distribution to �spread out� (solid 
distribution in Chart 8.1). 

• We have considered how this �spreading-out� works in theory, by arguing as 
follows. When a large number of independent54 random variables are added, 
the distribution of their sum (i.e., the portfolio distribution) can be approximated 
as Normal55, with standard deviation proportional to 1/√n, where n is the 
portfolio size. Under more restrictive assumptions we can invoke the saddle-
point approximation, which as we have seen does a better job. 

 Figure 8.1:  Systematic and unsystematic risk, general case for continuous risk factor  
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 Source: Credit Suisse First Boston  

 

In this chapter, we combine the elements of systematic and unsystematic risk. In other 
words, we are going to construct the solid line in Chart 8.1. We can do this in at least 
two ways. One is an explicit construction that needs implementing in a computer 
program. The other seeks to make an analytical approximation of the VaR of the solid 
distribution given the VaR of the dotted one, i.e., it is an adjustment to the infinitely 
granular portfolio. It is known as the �granularity adjustment� and is a useful technique 
that is a current area of research.  

 

 
 

                                                                                 
54 They are independent because we are considering their distribution conditionally on the systematic factors. 
55 Subject to technical conditions that we shall assume are met. 
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Combining systematic and unsystematic risk 
We assume that conditionally on the risk factor, which we denote V, the distribution of 
portfolio loss is Normally distributed with mean µ(V) and variance σ2(V); the latter of 
these will be quite small when the portfolio is large and diversified. Then the probability 
of the loss exceeding y is obtained by integrating over V: 
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with fV(v) the density function of V. Hence all we have to do is perform the integration by 
some numerical method. If the distribution of V is something quite simple, such as a 
Normal distribution (as we have been dealing with), then the method of Gaussian 
quadratures can be used. This seeks to write the integral as a weighted sum of samples 
taken at discrete points. The Gauss-Hermite formula is for integrals of the 

form �
∞

∞−

φ dvvvg )()( , where π=φ − 2/)( 2/2xev  is the density of the Normal distribution; 

the formula is 
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where m is known as the order, (hk) the 
weights and (vk) the abscissas. These are 
chosen in such a way that the formula is 
exact if g is a polynomial of degree less 
than or equal to 2m, and there are 
standard ways of determining them. For 
example, the formula of order 11 is shown 
in Table 8.1. Incidentally, the abscissas 
are spaced roughly by π/√m; this property 
is particular to the Normal distribution (i.e., 
the Gaussian quadrature formulae for 
other distributions do not have this 
property). 

In statistical language, we have replaced 
the continuous distribution of V with a 
discrete one. Monte Carlo simulation also 
does this, but by choosing random points 
instead of deterministic ones. The 
Gaussian quadrature formula has the convenient property of matching the first, second 
and so on up to the (2m−1)th moments of the distribution. Provided g is quite smooth 
(and hence can be approximated quite well by a polynomial), the method works well. 
Note that we don�t have to work out what the polynomial approximation is to perform the 
integral, though if it were required, it could be found fairly easily. 

 Table 8.1 Abscissas and weights of the 
11-point Gauss-Hermite quadrature 
formula 

 

Abscissa Weight (%) 

5.188 8.12E-07 
3.936 1.96E-04 
2.865 0.0067 
1.876 0.0661 
0.929 0.2422 
0.000 0.3694 
-0.929 0.2422 
-1.876 0.0661 
-2.865 0.0067 
-3.936 1.96E-04 
-5.188 8.12E-07 

 Source: Credit Suisse First Boston  
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 Chart 8.2a Normal distribution  
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 Source: Credit Suisse First Boston  

 Chart 8.2b 11-point Gauss-Hermite quadrature rule (outermost two points not shown)  
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To return to the problem at hand, we can use the Gaussian quadrature formula without 
any further ado, because we just recognize that 
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which not too difficult to implement, for example in Excel. 
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This describes the method for single-factor models. When the number of factors is 
large, this kind of scheme is inefficient because of the large number of points that would 
be required. We have implemented methods that combine analytical integration, Monte 
Carlo integration and Gaussian quadrature for this purpose, but the details are outside 
the scope of this chapter. 

Example: Gaussian copula model 
For the Gaussian copula model in a default/no-default framework, the conditional 
expected loss is 
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(as previously shown) and the conditional variance is 
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because for a single loss event with probability p and loss a, the variance is a2p(1−p), 
and for independent losses one adds the variances. [Here Φ  denotes the upper tail 
probability of the Normal distribution: )()(1)( xxx −Φ=Φ−=Φ .] These expressions can 
then be substituted into (3). 

Granularity adjustment 
An alternative treatment avoids the use of numerical integration by assuming that the 
conditional variance is small and using an analytical approximation. The objective is to 
argue that a small amount of unsystematic risk causes the VaR to increase by a small 
amount, and find the first-order sensitivity. Its advantage is that it can be calculated 
easily, and is simpler to implement than a numerical method. This is an interesting and 
active area of current research. The result is 

[ ])(*)(
)(2

1 2 yfv
yyf

VaR σ
∂
∂−≈∆  

where f(y) is the density function of the infinitely granular portfolio�s loss, and *)(2 vσ  is 
the variance of unsystematic risk for the value of the risk factor (v*) that corresponds to 
a portfolio loss of y (in the infinitely granular portfolio). 

The proof is technical and given in the Appendix. 

Numerical example 1 
We consider the following hypothetical example of a portfolio of defaultable loans, the 
details of which are presented in Table 8.2. 
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 Table 8.2 Test portfolio  
 

Exposure
Default 

prob Correl Exposure
Default 

prob Correl
1 2.27 0.0044 0.43 26 0.23 0.0169 0.35
2 1.19 0.0081 0.42 27 0.42 0.0037 0.57
3 0.10 0.0095 0.33 28 1.02 0.0247 0.39
4 0.28 0.0075 0.39 29 2.73 0.0032 0.34
5 0.49 0.0068 0.52 30 0.61 0.0002 0.32
6 0.18 0.0108 0.46 31 1.10 0.0237 0.50
7 0.75 0.0121 0.58 32 5.85 0.0003 0.59
8 0.54 0.0014 0.56 33 0.50 0.0517 0.41
9 0.00 0.0051 0.53 34 0.60 0.0011 0.33

10 3.91 0.0013 0.31 35 0.93 0.0015 0.46
11 0.10 0.0258 0.48 36 0.77 0.0089 0.52
12 3.01 0.0092 0.36 37 0.70 0.0300 0.47
13 3.00 0.0010 0.56 38 0.13 0.0114 0.52
14 0.77 0.0050 0.32 39 0.36 0.0313 0.58
15 0.57 0.0047 0.32 40 1.08 0.0402 0.58
16 0.76 0.0042 0.34 41 2.06 0.0115 0.50
17 1.17 0.0059 0.46 42 1.26 0.0048 0.43
18 2.16 0.0062 0.51 43 0.13 0.0017 0.46
19 0.99 0.0070 0.52 44 0.21 0.0071 0.34
20 3.17 0.0000 0.45 45 0.62 0.0094 0.45
21 0.82 0.0053 0.54 46 0.28 0.0032 0.36
22 0.30 0.0094 0.58 47 0.14 0.0022 0.42
23 1.39 0.0020 0.54 48 1.62 0.0094 0.54
24 0.43 0.0012 0.33 49 3.20 0.0090 0.32
25 0.88 0.0005 0.54 50 0.82 0.0157 0.32  

 Source: Credit Suisse First Boston  

 

The exposures were chosen by randomly drawing from an exponential distribution with 
mean 1 (see note56), the default probabilities ( )( jζΦ ) by randomly drawing from a 

exponential distribution with mean 0.01, and the correlations (cj) by drawing from a 
uniform distribution between 0.3 and 0.6. The recovery rates are assumed to be zero.  

We are going to analyze the portfolio in several different ways: 

• Monte Carlo simulation. This consists in simulating the factor (V), then 
simulating independent defaults conditionally upon it, and repeating many 
times. This shows the �true� loss distribution, but no particular insight is gained 
from it. 

Infinitely granular portfolio. This is the graph of VaR against tail probability, 
obtained by plotting the conditional expected loss µ(V) as a function of the 
factor V. (We showed this in Chapter 2 for a similar test portfolio.) Specifically, 
µ(V) is plotted on the horizontal axis and Φ(V) on the vertical axis, because the 
tail probability is just Φ(V). Note that more losses occur when V is negative, so it 
is the lower tail of V that is associated with the upper tail of the loss distribution. 

• Introducing unsystematic risk by assuming that conditionally on V the portfolio 
loss is Normally distributed, and integrating over V as described earlier. 

• Using the granularity adjustment method. 

                                                                                 
56 Excel: =-LN(RAND()). 
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 Chart 8.3 Loss distributions estimated by various methods  
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 Source: Credit Suisse First Boston  

 

The infinitely granular approximation and Central Limit Theorem both underestimate the 
true risk. 

In discussion of these results: 

• The infinitely granular distribution shows the least risk. This is because no 
unsystematic risk is taken into account. 

• The Central Limit Theorem underestimates the true risk (Monte Carlo) because 
the Normal approximation does not capture the skewness (asymmetry): the 
downside is much bigger than the upside. We saw this in our previous 
discussions of unsystematic risk: when the default probabilities are low, a large 
number of independent losses need to be added before the distribution 
becomes close to normal. 

• The granularity adjustment produces a very good approximation to the true 
distribution, but this is due to two canceling errors. The method is supposed to 
approximate the Central Limit Theorem result, but it overestimates. On the 
other hand, the Central Limit Theorem underestimates the true risk. As can be 
seen from this example, the errors almost exactly cancel. 

By graphing the true loss distribution and the infinitely granular loss distribution, one 
obtains a measure of the proportion of systematic and unsystematic risk in a portfolio. 
For example, if we use VaR(99%) as a risk measure, then we have the true risk at 
about 4.4M$ but the systematic-only risk at about 2.9M$. So about two-thirds of the risk 
is systematic. The point about this is that the unsystematic risk is diversifiable. If the 
single-name risk is concentrated in a few names, as seems likely (though we haven�t 
yet talked about how to analyze that), we can surmise that a couple of well-chosen 
trades might be able to reduce the portfolio risk while keeping the return about the 
same. 
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Numerical example 2 
This is a second example of a default/no-default model with the Gaussian copula model 
for correlation. The rough details of the portfolio are shown in the table in Figure 8.4. 
The correlation model is the PR+ 18-sector correlation model described in Chapter 11. 

 As is apparent, using the Central Limit Theorem to approximate the unsystematic risk 
causes the tail risk to be underestimated. Using the saddle-point method removes 
nearly all the error, though there is a slight overestimation of risk in the $0-10M loss 
region. This can be ascribed to an appreciable probability of no loss, which causes a 
spike of probability at the origin: the saddle-point method cannot pick this up57 and so it 
tries to smooth the distribution out, causing the overestimation near the origin. In 
practice this is not something to worry about. 

Conclusions 
We have shown how to combine systematic and unsystematic risk to build up the full 
portfolio loss distribution. The previous few chapters have raised a few issues: 

• Can we improve on the Central Limit Theorem? 

• How can we break down the pie chart in Chart 8.4 further and show risk 
contributions of individual obligors? 

We shall begin to address these questions in the next chapters. 

                                                                                 
57 At least, the version described here. Improvements that take this into account can be made. 
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Figure 8.4. Test portfolio contents and results. Top graph shows the effect of using Central Limit 
Theorem to approximate the unsystematic risk; the bottom figure shows the saddle-point 
approximation, which is seen to be substantially better and indeed is roughly uniformly accurate 
across the distribution. 

   

 Portfolio size 50

 Asset-sector correlation 0.4 - 0.6
 Average default probability (EDF) 0.3% - 2%
 Exposure Average 3M, with a few very much higher exposures (10M - 20M) 

to better-grade credits 
 Source: Credit Suisse First Boston  
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Appendix: derivation of the granularity adjustment 
 

We have 
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and seek an approximation when )(2 vσ  is small. To this end, expand the Φ() term as a 
Taylor series58: 
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where we have adopted the following notation. H(x) is the step function (0 if x<0, 1 if 
x>0). When there is no unsystematic risk, only this term comes into play because the 
portfolio loss is exactly µ(V): hence it exceeds y if and only if µ(V) does. In the other part 
we have written U for )(2 vσ . Tidying-up we have 
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The next step is to notice that Φ(...) is a solution of the diffusion equation: 
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If we now integrate by parts the derivative gets transferred to the undifferentiated part of 
the integrand: 
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58 This step is a little dubious because of the misbehavior when σ=0. 
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The derivative of Φ() can be expressed in terms of the Normal density (which is the 
density function of the portfolio loss conditional on V): 
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Note that we must assume a single risk factor model, so that there is a one-to-one 
correspondence between factor values V and expected losses µ(V): without this 
assumption, many different values of V correspond to one particular level of loss, and 
the argument fails. We now let σ(v)→0, and the left-hand part pulls out the contribution 
from y=µ(v): this is again because in that limit there is no difference between Y and 
µ(V). Also, we can identify )(/)( vvfV µ′  as the density of the infinitely granular portfolio�s 
loss distribution, and write it f∞(y) (this follows from the transformation formula for a 
density function, i.e., what is the density of µ(V), given the density of V). We have 
arrived at 
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which is one form of the granularity adjustment. Here v* is the value of V that 
�corresponds to� the VaR, i.e. yv =µ *)( .  

 

We now let σ(v)→0, and the left-hand part pulls out the contribution from y=µ(v): this is 
again because in that limit there is no difference between Y and µ(V). We have arrived at 
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which is one form of the granularity adjustment. Here v* is the value of V that 
�corresponds to� the VaR, i.e. yv =µ *)( . Note that we must assume a single risk factor 
model: without this assumption, many different values of V correspond to one particular 
level of loss, and the argument fails. 

The more common form is to express it in terms of Value at Risk rather than tail 
probability, which requires another step. Write )()( yYPyF >= for the upper tail 
probability of Y, and Qp for the VaR for tail probability p (�Q� for quantile). Then 

pQF p =)( . If some parameter θ say (here the level of unsystematic risk) is allowed to 

vary while keeping the tail probability constant, then by the chain rule of differentiation 
we have 

0)( =
θ
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d
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QFF p
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The first term is the sensitivity of the tail probability; the second is the product of (minus 
the density) and the sensitivity of the VaR. In other words: 

∆(VaR) = ∆(Upper tail prob) ÷ Density. 

 



 

 The Quantitative Credit Strategist
Getting the full picture

  

 

 102 29 October 2004

So the adjustment in VaR is  

[ ]
VaRvy

yfv
yyf

VQ
=µ=

∞
∞

σ
∂
∂−≈µ−

)(

2 )()(
)(2

1*)(  

with Q denoting the VaR of the real portfolio and *)(Vµ  the VaR of the infinitely granular 
portfolio. 

A better and more versatile proof uses characteristic functions. 

The granularity adjustment method can also be used in a more general context where a 
small perturbation is made to a distribution. For example, one may be in the situation 
where there is more than one risk factor in a model but a one-factor approximation 
works fairly well. In that case, the contributions from the remaining factors can be 
analyzed approximately using the method. 
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9 
Risk measures: how long is a risky piece of string? 
In the previous chapters we have described most of the machinery necessary 
for the construction of the loss distribution for a portfolio of correlated credit-risky 
instruments. We are now going describe some of the calculations that can be 
performed once the distribution has been constructed. We begin by looking at a 
problem that is actively discussed in the risk management community: risk 
measures, or how to ascribe a single �risk figure� to a distribution. We conclude, 
on the basis of our tests of a few common risk measures, that �conditional Value 
at Risk�, or CVaR, also known as Tail VaR and Expected Shortfall, is the only 
method with all the right properties. 

Why think about risk measures? 
The basic problem is this. When we model a risky security, or a portfolio of such 
securities, we do not know what the value will be at the horizon in question and 
therefore construct a distribution that shows the probability of any possible gain or loss. 
Of course, a distribution contains a vast amount of information, for example: 

• mean (expected) loss, 

• standard deviation of loss, 

• probability of losing more than $A, 

• probability of losing between $A and $B, 

• expected payout in a layer of insurance (e.g., a CDO tranche) where the 
attachment and exhaustion points are $A and $B, 

and so it cannot be represented as a single number. But at the end of the day one 
needs to come up with some �dollar measure� of an uncertain outcome as a method of 
communicating riskiness to regulators, senior management, investors, the press, or 
whoever. So, given that we are to come up with a single figure: 

• What are the desirable properties that such a measure should have? 

• Do the simple well-known measures satisfy these? 

• Are there any better measures? 
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Examples of risk measures 
We list below some of the commonly adopted methods of measuring risk.  
 

Note: In what follows, X, Y and so on denote the gain or loss (�P&L�). We adopt the 
convention that losses are negative. Hence one thinks of the distribution (density 
function) as looking like this: 

 

 

 

 

 

In the previous chapters we have concentrated on loss, and most of the graphs of loss 
distributions have the horizontal axis transposed. On the other hand we �generally� want 
risk to be positive, and to become more positive when the possibilities of downside loss 
increase, so there will be a few minus signs in the equations to effect this conversion. 

• mean (expected) loss. 

• standard deviation of loss. 

• VaR (Value at Risk). We find the value Q such that P(X<Q) = p, for some given 
tail probability (such as 0.1% or 1%). The VaR (risk) is then −Q. 

• CVaR (Conditional VaR; also known as Tail VaR and Expected Shortfall). As 
with VaR this requires a tail probability to be specified. One first finds the VaR 
(Q, say); then the CVaR is the expectation conditional on the loss exceeding Q, 
again with a minus sign put in: CVaR = −E[X | X < Q]. It is fairly clear that CVaR 
> VaR because all the events that give worse outcomes than a loss of Q are 
being averaged when the CVaR is computed. 

 

Artzner�s theory 
In a ground-breaking paper59, P. Artzner and co-authors came up with several axioms 
that, they stated, a sensible, or �coherent�, measure of risk should satisfy. These are 
listed below. We have added an extended discussion of convexity and what seems to 
be a new notion of risk sensitivity (which is not in Artzner�s paper, and is marked �). 

Homogeneity 
If the distribution is scaled by some multiple θ (assumed positive), then the risk is also 
scaled in proportion. In other words, 

 Risk(θX) = θ × Risk(X). (1) 

Virtually �any sensible� construction satisfies this, but notice that the variance does not: 
it multiplies by θ², not θ. 

                                                                                 
59 P Artzner, F Delbaen, J-M Eber and D Heath (1999), "Coherent Measures of Risk," Mathematical Finance, 
9, 203-228. See also article �Thinking coherently�, RISK 10(11):68-71 (1997). 

Loss Profit
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Translation 
If a riskless gain or loss is added to the portfolio, thereby shifting the distribution to the 
left or right but not altering its shape, then the risk shifts by the same amount. In other 
words, 

 Risk(X+A) = Risk(X) − A      (A constant). (2) 

To some extent this is at variance (unintentional pun) with a notion of risk: risk is about 
uncertainty, so why does the equation not read 

 Risk(X+A) = Risk(X)   ? (2?) 

The reason is that the original Artzner paper was about capital and capital allocation, 
which is more a measure of �downside� than risk per se. In any case the distinction is 
not very important: one can go from (2) to (2?) and back again by adding or subtracting 
the mean loss. 

 

Monotonicity 
If X and Y are such that X ≥ Y in all states of the world then Risk(X) ≤ Risk(Y). Again, we 
really have to think of risk as �downside�, rather than uncertainty. One can easily 
construct theoretical examples (see later) in which X always outperforms Y, but is 
nevertheless much more volatile. 

 

Subadditivity 
For any two distributions X, Y, which we do NOT assume to be independent, the risk 
satisfies the inequality  Risk(X+Y) ≤ Risk(X) + Risk(Y). This means that the risk of a 
portfolio is always less risky than the sum of the risks of its constituents. From the 
regulatory or risk management perspective this is important because a subadditive 
measure makes it impossible to �hide� risk by disaggregating it. 

Much importance has been attached to this property, and many similar examples have 
been given showing that VaR does not satisfy the relation. For large, correlated 
portfolios the problem is unlikely to occur. 

A corollary of subadditivity is convexity. The idea here is that the risk of a portfolio 
should be a convex function of asset allocation. This is the picture to bear in mind: 

 

 

 

 

 

 

 

 

 

Chord always 
lies above 
curve 

Convex 

Portfolio 
risk 

Asset 
allocation 



 

 The Quantitative Credit Strategist
Risk measures: how long is a risky piece of string?

  

 

 106 29 October 2004

 

 

 

 

 

 

 

The graphs shown are for one particular asset allocation. Of course there are many 
assets to allocate in practice. For a subadditive risk measure we will have 

 Risk(θX + (1−θ)Y) ≤ θRisk(X) + (1−θ)Risk(Y) (3) 

If, as is often the case, the risk is a smooth function of the asset allocations, then the 
convexity condition can be written alternatively as a condition on the matrix of second 
partial derivatives of risk with respect to asset allocations60. This is usually the easiest 
way to show convexity. 

The reason that convexity is important is that eq.(3) tells us that it is beneficial to 
diversify: a weighted sum of two portfolios is less risky than the weighted sum of their 
risks. It is then apparent that there is a unique optimal portfolio. To see this, suppose 
that there are two optimal portfolios X, and Y and consider their weighted average, (θX + 
(1−θ)Y. Now the risk of that portfolio is given by (3), and the return is just the weighted 
average of the returns: 

 Return(θX + (1−θ)Y) = θReturn(X) + (1−θ)Return(Y) 

So 

]Risk[
]Return[

]Risk[
]Return[

]Risk[)1(]Risk[
]Return[)1(]Return[

])1(Risk[
])1(Return[

Y
Y

X
X

YX
YX

YX
YX ==

θ−+θ
θ−+θ≥

θ−+θ
θ−+θ , 

the last equalities follow from the presumed optimality of X and Y. But then the return on 
risk of the diversified portfolio is higher than that of either X or Y, which is a 
contradiction. So there can only be one optimal portfolio. It also follows that for a 
subadditive risk measure the graph of Risk and against Return must be convex: 

 

 

 

 

 

The green line is known as the efficient frontier, and (loosely speaking) all portfolios lie 
on or below it. The main thrust behind portfolio optimization is to find this frontier, which 
is why portfolio analytics are so important. 

 
                                                                                 
60 The matrix must be positive semidefinite. 
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� Risk Sensitivity 
The notion of risk sensitivity comes from the conditional independence framework we 
have constructed in the previous chapters. Suppose that, conditionally on some factor V 
(say) the distribution of P&L has mean µ(V) and variance σ²(V). The variation in µ(V) as 
V varies is the systematic risk, and σ²(V) is the unsystematic risk. We would like the risk 
measure to be an increasing function of both of these risks, i.e., decreasing in µ(V) 
(remember µ<0 means loss) and increasing in σ(V). If we write the change in portfolio 
risk consequent on a small change in µ(V) and σ(V) as 

 d(Risk) = S(V) dµ(V) + U(V) dσ(V) (4) 

then we say that the risk measure is risk-sensitive if 

 S(V) < 0 and U(V) > 0. 

We shall discuss more fully which measures are risk-sensitive and which are not, mainly 
with the aid of diagrams. Fig. 9.1 shows what we have in mind, with V discrete and 
taking four states (but the principle does not rely on V being discrete, so it could for 
example be multivariate Normal, as in the Gaussian models that we have already talked 
about). In essence we want the risk to increase if any of the conditional distributions are 
shifted to the left (µ dependence) or stretched out (σ dependence). There are some 
surprises in store! 

Fig. 9.1. Diagram of loss distribution for discussion of risk sensitivity. 
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Summary table 
 

The table shows which of the common risk 
measures satisfy which properties. 

Notes (Subadditivity and Risk sensitivity 
are discussed in detail later) 

• The standard deviation is 
unaltered by the addition of a risk-
free asset, but as we said before 
this can be fixed by adding the 
expected (mean) loss. 

• Fig. 9.2 below gives an example in 
which X always gives a more 
favorable result than Y, but is 
more risky. This is not a very important issue, though: in practice most 
distributions are �centered,� then it is not possible to construct an example in 
which X always outperforms Y. 

• The mean is linear in the asset allocation, from which subadditivity follows. But 
the convexity is never strict (i.e., one always has equality in equation (3)), and 
hence it is useless for risk-return optimization. 

Fig. 9.2. X is always more favorable than Y, but a �mean loss + some number of standard 
deviations� measure may say that X is riskier. This is not a very important point. 
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Mean ���� ���� ���� ����3 ����

Std dev ���� (����)1 ����2 ���� ����

VaR ���� ���� ���� ���� ����

CVaR ���� ���� ���� ���� ����

 Source: Credit Suisse First Boston  
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Subadditivity, convexity and risk sensitivity in more depth 
In this section we explain the assertions in the table. 

Standard deviation is subadditive 

To show YXYX σ+σ≤σ + , square both sides, then use YXYXYX σρσ+σ+σ=σ + 2222  
and the fact that ρ (the correlation) cannot exceed 1. 

VaR is not subadditive 
Let X1 and X2 be single-asset portfolios in which the asset is a defaultable bond of 
notional $1M and default probability 0.75%. Assume that default events are independent 
and consider only a default/no-default model. Assess VaR at 99% confidence (tail 
probability 1%). For either of the portfolios the VaR is zero because the VaR does not 
look at the loss beyond the 1% level, whereas if the two portfolios are combined into one 
the VaR is equal to $1M (the probability of two defaults is too unlikely, and the 
probability of one or more defaults is roughly 2×0.75% > 1%). There is therefore a 
temptation to disaggregate the risk, i.e., rather than go for a diversified portfolio, to just 
have a large exposure to a single asset. Other examples can be constructed on the 
same principle, but for large correlated portfolios it is much more difficult to construct 
realistic examples in which subadditivity fails. 

 
CVaR is subadditive 
The proof of subadditivity of CVaR is a little fiddly, in our opinion, so we shall omit it. 
However, a different perspective is obtained by concentrating on convexity. The second 
derivative of portfolio CVaR with respect to asset allocations is given as the covariance 
of the assets given that the portfolio loss is equal to the VaR: 

]|,Cov[/2 VaRYXXaaCVaR jiji ==∂∂∂ , where �= ii XaY . Convexity then follows 

directly. This is quite a powerful result. 

 
Mean is not risk-sensitive 
The mean is simply the weighted average (using the state probabilities of V as weights) 
of the conditional means. Hence it exhibits the correct sensitivity to µ(V). However it 
does not depend on σ(V). So it is insensitive to unsystematic risk, and therefore 
insensitive to concentration risk. This is a very serious objection. 

 
Standard deviation is not risk-sensitive 
Standard deviation has the opposite problem. If we write the variance of the portfolio 
through the ANOVA (Analysis of Variance) formula we have 

)]([)]([][ 2 VVY σ+µ= EVV  

(V denotes variance, V is the systematic risk factor). So clearly the portfolio variance 
increases with increasing unsystematic risk (σ(V)). But reducing µ(V) does not 
necessarily increase the variance: in Fig.9.1, if we shift conditional distribution #4 to the 
left then the portfolio variance increases because the distributions are more spread out, 
whereas if we shift conditional distribution #1 to the left then the portfolio variance 
decreases because the distributions are more bunched up. 
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VaR is not risk-sensitive 
VaR has the right sensitivity to µ(V), as it is fairly clear that shifting any distribution to the 
left will cause the VaR to increase (fix the tail probability; then the associated level of 
P&L moves to the left). But increasing σ(V) may reduce the VaR, depending on the 
threshold. Referring to Fig. 9.3, we can see that, for a fixed tail probability, if the 
threshold is at A, fattening conditional distribution #4 will push the threshold to the left 
(so the VaR increases, as desired) but if it is at B then the threshold will be pushed to 
the right (so the VaR decreases). 

1

2
3

4

Loss Profit A B

1

2
3

4

Loss Profit A B  

Fig. 9.3. �Proof� that VaR is not risk-sensitive. 

  

CVaR is risk-sensitive 
To our knowledge this is a new result and the proof is rather awkward, so we ask the 
reader to take it on trust. It is worth considering why CVaR is an improvement over VaR, 
however: when the threshold is at B, as just discussed, the VaR reduces (point B moves 
to the right) when conditional distribution #4 is fattened, but the mass of the distribution 
to the left of B increases much more. It is then a matter of proving that the increasing 
mass does indeed have a bigger effect, causing the CVaR to increase even though the 
VaR decreases. 

 

Conclusion 
We have discussed the various properties that a risk measure ought to have and found 
that the traditional mean-variance framework, as well as the VaR framework, have 
shortcomings. However it can be shown that CVaR (expected shortfall) overcomes all of 
these. That is not to say, of course, that it has its own problems that we have not yet 
identified, or that there are other coherent alternatives to CVaR. However, its properties 
make it an excellent risk measure. 
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10 
Portfolio optimization: the importance of convexity 
In this chapter on portfolio modeling, we embark on a study of risk contributions. 
The risk contribution of an asset in a portfolio is fundamental, because without it, 
one cannot perform portfolio optimization. The classical mean-variance theory 
was developed by Markowitz in the 1950s, and we shall consider this first before 
moving on to the quantile-based risk measures, such as VaR and expected 
shortfall, which are more suitable for the skewed loss distributions that arise in 
credit risk. The chapter on risk measures was slanted towards portfolio 
optimization, and we shall pick up there. 

Risk and reward: the traditional view 
It is generally appreciated that a well-
diversified portfolio is, in a sense, �better� 
than an ill-diversified one because it offers 
�the same expected return for less risk.� 
To make this a bit more precise, we need 
to be a bit careful about how we measure 
risk. Take the following hypothetical 
example of equities: 

To simplify matters, we shall assume that the equities are normally distributed and that 
their correlation is 25%. Now look at three different portfolios: 

   

 

Portfolio 

Allocation 
ABC

Allocation 
DEF

Value 
today

Expected 
return

Risk 
(stdev) Return ÷ Risk

 1 $20M 0 $20M $1.6M $4M 0.4
 2 0 $20M $20M $5.0M $10M 0.5
 3 $10M $10M $20M $3.3M $5.8M 0.57

 Source: Credit Suisse First Boston  

   

Asset 

Expected 
return 

Standard 
deviation

ABC Inc. 8% 20%
DEF Inc. 25% 50%

 Source: Credit Suisse First Boston  
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By construction, all three portfolios have the same price. The expected returns are easy 
to calculate � e.g., for portfolio 3: 

 5M x $2 x 8% + 10M x $1 x 25% = $3.3M. 

The risk is a little harder. When correlated assets are added, their standard deviations 
add according to the following rule: 

YXXYYXYX σσρ+σ+σ=σ + 222  

with ρ denoting correlation. It is apparent that Portfolio 2 has the highest expected 
return, but Portfolio 1 is safest (lower risk). Meanwhile, Portfolio 3 offers the highest 
return on risk: its return is the weighted-average return of Portfolios 1 and 2, but its risk 
is less than the average risk because of diversification. 

By plotting risk against each other for different portfolios (all of which have the same present 
value), we obtain a well-known graph. The three portfolios given above are shown: 
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Inefficient - same risk 
as 3 but less return

Minimum risk

More desirable

 
As can be seen, there is a minimum level of risk (about 20%, with a return of about 9%). 
This portfolio contains mainly ABC (the less risky equity), with only a small amount of 
DEF. To increase the expected return requires more risk to be taken on. If (as seems 
reasonable) we increase the allocation in DEF, we move upwards and to the right, with 
a riskier but better-rewarded portfolio. If, by contrast, we take a short position in DEF, 
we move down the lower branch of the curve and end up with a portfolio that is riskier 
and has a worse expected return. 

Let us introduce risk-free borrowing and lending. The investment possibilities for a 
combination of a risk-free and a risky asset lie along a line connecting the two assets. In 
our figure, the frontier of most desirable investment possibilities is defined by the most 
�northwest� (highest expected return in relation to risk) investment opportunities that are 
achievable. That frontier is outlined by the most �northwest� line that connects the risk-
free rate to the risky investment set. So, to find the portfolio with the highest return on 
risk, we draw a straight line from the vertical axis (intersecting at the risk-free rate) that 
touches the curve. The slope (gradient) gives the ratio of excess return to risk; this is 
also known as the Sharpe ratio. The point of tangency indicates the portfolio of risky 
assets that has the highest return to risk. For convenience, we shall call this the Sharpe 
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portfolio. By mixing this optimal portfolio with risk-free asset in different proportions, one 
ends up with a choice of portfolios with the same Sharpe ratio, and all are optimal in the 
sense that they dominate61 all other achievable portfolios. 
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The higher the risk-free rate, the higher the proportion invested in the riskier asset (or, in 
more general situations, assets), because the assets with less return become relatively 
less attractive as the risk-free rate increases. 

Does this work with other risk measures? 
The construction that we have made works so nicely because of the convexity of the 
region on the risk-return plot occupied by all portfolios that contain only risky assets and 
have equal value. This is equivalent to saying that the upper part of its boundary, which 
is known as the efficient frontier of the set of risky assets, is convex. By a convex region 
or boundary, we mean that any tangent to it lies wholly on one side (the �outside�) 

 

Convex Not ConvexConvex Not Convex  
or equivalently any chord lies on the �inside�. 

Convex Not ConvexConvex Not Convex  
                                                                                 
61 Have lower risk for given return, or higher return for given risk. 
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Convexity is important for two reasons: 

• Lack of convexity implies more than one Sharpe portfolio, which is a nuisance 
from the point of view of computation. 

• Lack of convexity implies that the risk measure is not subadditive (as per last 
chapter�s discussion), which in turn means that the investor�s view of risk is not 
necessarily logical. 

To see the second point, study the diagram below. If the risk measure is subadditive, 
then a portfolio consisting of some weighted combination of A and B (e.g., 25% A and 
75% B) must have less risk than the weighted average of A�s risk and B�s risk, so it lies 
to the left of the chord A-B. This gives the required convexity and uniqueness of the 
optimal portfolio. 

 

 

 

 

 

 

   

As we have seen before, VaR does not satisfy the subadditivity property, but expected 
shortfall (ESF, CVaR) does. Hence it is quite in order to use expected shortfall as a risk 
measure for optimization. That does not mean that using VaR will always cause 
problems: for example, if the joint distribution of the assets is multivariate normal, then 
VaR, standard deviation and ESF give the same results. However, VaR is not 
recommended in general. 

 

Risk contributions 
A further desirable property of risk measures, as indicated in Chapter 9, is 1-
homogeneity. This means that if all the allocations are scaled, then the portfolio risk R is 
scaled by the same factor. In other words, 

),,(),,( 11 nn aaRaaR �� θ=θθ . 

By taking the total differential with respect to θ and setting θ=1, we deduce 
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. 

It is fairly clear that in order to optimize a portfolio, one must know the sensitivity of risk 
to asset allocation: hence, the first derivative is necessary. What the above equation 
shows is that the sensitivities of risk to allocation (we call these the deltas), when 
multiplied by the asset allocations, give quantities (that we call risk contributions) that 
add up to the portfolio risk. This is nice because it gives a way of attributing the risk to 
the assets �without any risk going missing.�  
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Now let us denote by R the risk of a portfolio, aj the allocation to the jth asset and rj the 
expected return of the jth asset. Then the Sharpe ratio is 

R

ran
j jj� =1 . 

If we differentiate with respect to aj and set the derivative equal to zero62, we obtain 
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(stars denote optimal allocation). The first of these equations states that the returns of 
the assets in the optimal portfolio are in equal proportion to their deltas. The second 
says, equivalently, that each asset�s contribution to risk (the left-hand side) is equal to 
the proportion of the return that it generates (right-hand side). So, for the optimal 
portfolio, each asset �pulls its weight� by generating enough return to compensate its 
risk. 

In fact, the risk contributions of the optimal portfolio must add up to the portfolio risk 
whether or not the risk measure is homogeneous. This is seen by summing the second 
equation over all assets: 
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Convexity 
However, the picture is nowhere near complete. Suppose that we wish to try and 
optimize a portfolio knowing only the first-order sensitivities. We begin by writing the 
expected return (or gain, G) as a function of the asset allocations: 
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We do the same for the risk, although risk is not generally linear and so we can only 
approximate: 

j

n

j
jcurrent a

RaRR
∂
∂∆+≈ �

=1
 

Now, we try to maximize G/R. Let us just concentrate on maximizing with respect to one 
variable. We immediately find, as G/R is of the form (linear ÷ linear) in ja∆ , that it 

cannot have a maximum. This is because a function 
dcx
baxy

+
+=  typically looks like this: 

 

                                                                                 
62 We assume that this finds the maximum rather than the minimum Sharpe ratio! 
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So no maximum exists, and we cannot even make a sensible guess as to what the 
optimal allocations are. In fact, all that the first-order sensitivities tell us is which assets 
should be increased and which reduced. They do not say how much to adjust the 
allocations. To cure this problem, we have to expand the risk to a higher order. The 
quadratic approximation would be 
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but rather than going through the algebra, let us consider what happens when we 
confine ourselves to varying one asset only. By recognizing the curvature of the risk, we 
obtain a more reasonable picture of what is going on: 

 

risk contribution 
of asset #j

Reduction in risk by 
removing asset #j

Risk (e.g. stdev)
of portfolio

allocation to asset #j present allocation
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When the returns are brought into play, the Sharpe ratio can then be analyzed. Suppose 
that the present allocation to asset j is too high (in relation to its return). Then the 
situation is seen to be something like this: 

 

 

x 

y 

x 

y 

or



 

 The Quantitative Credit Strategist
Portfolio optimization: the importance of convexity

  

 

 29 October 2004 117

 

 

 

 

 

 

 

 

 

Without the second derivative 22 / jaR ∂∂ , the line marked �portfolio return on risk� cannot 

have a local maximum, which is why the previous analysis failed. 

Even the second derivative of portfolio risk with respect to each asset allocation is not 
the complete picture. First, the variation of risk with allocation is not quadratic (even in 
the mean-variance framework63). Second, there are many assets to be adjusted, and so 
the full matrix of partial derivatives ji aaR ∂∂∂ /2  is required. This is necessary if we are 

to understand what happens when several assets are adjusted at the same time. (As we 
shall see in later work, the effects are not always easy to predict.) 

 

An example of linear (non-convex) optimization 
If we use expected loss as a risk measure, then the efficient frontier is straight rather 
than curved. This is because expected loss does not take diversification into account; 
the expected loss of a portfolio can be computed without regard to the correlations 
between the assets. Consequently, an optimal portfolio in the sense of return on risk 
cannot exist. 

That said, there are some interesting 
problems that arise from use of expected 
loss as a risk measure, and they give rise 
to a fundamentally different type of 
optimization. Although it is possible to 
demonstrate one of these for an equity 
portfolio, a rather more natural 
construction is a default-only model of a 
loan or bond portfolio. 

 

 

                                                                                 
63 The risk measure is the standard deviation, not the variance. So although the variance is exactly quadratic, 
the standard deviation isn�t. 

   

Asset 

Credit 
rating 

One-year 
expected 

default rate 
Spread to 

LIBOR

ABC Inc. High 20bp 50bp
DEF Inc. Low 100bp 300bp

 Source: Credit Suisse First Boston  
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present allocation optimal allocation 

portfolio return on risk 

portfolio risk 



 

 The Quantitative Credit Strategist
Portfolio optimization: the importance of convexity

  

 

 118 29 October 2004

We shall not need to bother with correlations here (the analysis is purely based on 
expected loss). Consider again some portfolios: 

   

 Portfolio Allocation 
ABC

Allocation 
DEF

Value 
today

Expected 
return

Risk 
(EDF) 

Return ÷ Risk

 1 $20M 0 $20M $60K $40K 1.5
 2 0 $20M $20M $400K $200K 2.0
 3 $10M $10M $20M $230K $120K 1.92

 Source: Credit Suisse First Boston  

 

Zero recovery rate is assumed. By expected return, we mean spread return minus 
expected loss. Hence, for ABC, the expected return is 30bp. By risk, we now just mean 
expected loss (expected default frequency) times asset allocation. 

As before, Portfolio 1 has a lower risk and return than Portfolio 2. But Portfolio 3, despite 
being intermediate in terms of risk and return, does not offer the best return on risk: 
Portfolio 2 does that. Furthermore, we can get better and better return on risk as follows: 
long $30M DEF and short $10M ABC gives a return on risk of $570K/$280K=2.04, and 
lengthening the position in DEF while shorting ABC causes this figure to increase 
without limit. There is no penalty for concentration risk! To make sense, these types of 
optimization must be constrained. If we stipulate that shorting is not allowed and that the 
total amount for investment is <$20M, then we have the following picture: 

 

 

 

 

 

 

 

 

 

 

Notice that the solution is at a corner: this is always the case for this kind of linear 
optimization. It is also very important to notice that the solution is not stable to small 
variations in the model parameters. Suppose that the expected loss of ABC is adjusted 
to 16bp. Now, the return on risk for Portfolio 1 is 2.125, Portfolio 2�s remains  2 and 
Portfolio 3 is still in between. So now, Portfolio 1 is the optimal allocation, and the 
optimal solution has jumped to the other corner. What has happened (referring to 
previous and next diagrams) is that the arrow indicating the �preferred direction� has 
rotated clockwise a little. 

 

Optimal
Direction of most rapid 
increase in return on risk 

DEF

ABC 

Portfolios that satisfy 
no-shorting constraints 
and funding constraint 
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One therefore has to be rather careful, as the optimal portfolios produced can have 
strange properties. They are called �corner solutions.� 

 

Conclusions 
We have discussed essentially by means of diagrams what happens when a portfolio is 
optimized and shown that it is important to be able to obtain the first- and second-order 
derivatives of risk with respect to asset allocation.  

One of the most important recent developments in portfolio theory has been the 
derivation of these sensitivities in frameworks other than the traditional mean-variance 
framework. However, we shall keep things simple for the moment, and in the next 
chapters, we shall begin with the mean-variance framework, in more mathematical 
depth than the discussion we have made here. 
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increase in return on risk 

DEF

ABC 



 

 The Quantitative Credit Strategist
Portfolio optimization: the importance of convexity

  

 

 120 29 October 2004

THIS PAGE IS INTENTIONALLY LEFT BLANK 



 

 The Quantitative Credit Strategist
An advanced approach to correlation

  

 

 29 October 2004 121

11 
An advanced approach to correlation 
In this chapter we shall discuss methods of measuring and estimating 
correlation between variables. We begin with the simple Pearson correlation 
coefficient and show some of its deficiencies before moving on to describe more 
robust methods that are suitable for use on data that are non-Gaussian, noisy, 
or both. Next we show how to apply these techniques, combined with Bayesian 
inference, to the calibration of correlations in the structural (CUSP) model. We 
finish off with examples from back-testing this new methodology. 
 

Correlations between pairs of random variables 
Linear correlation coefficient 
The traditional measure of dependence is the Pearson linear correlation coefficient. In 
this, the correlation between two random variables X and Y is given by 

]V[]V[
]E[]E[]E[

YX
YXXY −=ρ . 

The linear correlation is the natural one to use for Gaussian data. This is because if the 
joint distribution of (X,Y) is bivariate Normal then its density is given by 
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with ρ defined as above. When this is the case, Y and X are linearly related in the sense 
that 

UXY

XY
+

σ
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σ
   (U uncorrelated with X) 

and reciprocally 
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σ
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   (U* uncorrelated with Y). 

With both these expressions the variance of U (or U*) vanishes as the correlation is 
made stronger (closer to ±1). 

In more general applications there are several disadvantages of the linear correlation 
coefficient. These are: 
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• It is not generally true that the correlation between X and Y is the same as that 
between f(X) and g(Y), where f and g are some functions64. In other words, 
linear correlations are altered by distortion. This is because the distortion 
destroys linearity. 

• The correlation does not exist if X or Y have infinite variance. Hence, it is not 
suitable for very fat-tailed distributions. Although this on its own would not be a 
particularly good reason to reject the linear correlation entirely, the fact that it 
involves squaring of the data points causes problems if there is even a small 
amount of contamination: outliers are greatly amplified65. 

The theory of robust statistics seeks to redress the latter problem, and there are other 
types of correlation measure that redress both. Essentially, techniques can be divided 
into two categories, as follows. 

 
Parametric approaches 
These seek to write down an alternative model for the density than the bivariate Normal. 
To start off, let us rework the Normal case. The density of the bivariate Normal 
distribution can be written 
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in which C is the covariance matrix. In estimating the covariance matrix from sample 
data N

iii yx 1),( = , the log-likelihood function (i.e. logarithm of the probability of observing 
the data given C) is 
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which simplifies to 
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By differentiating with respect to C and setting the derivative to zero we find the 
covariance matrix that �most likely� fits the observed data, and this is given by the 
�expected� result: 
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64 This point will be seen to be particularly relevant later, in the discussion of equity, debt and firm value 
returns, which are nonlinearly related. Similarly, if one models default risk by assuming that default occurs 
when the firm value falls below some threshold, one finds that the correlation between the firm values is 
unequal to the correlation between the default events. This is because the default indicator variable is a 
nonlinear transformation of the firm value return. 
65 See �Linear Correlation Estimation�, F. Lindskog: www.math.ethz.ch/~lindskog. We demonstrate this in a 
moment. 
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As we said before it is the squaring that causes problems when the data are non-
Gaussian. From the point of view of statistical theory, a large deviation in a Gaussian 
model is so unlikely that it forces the estimator to �sit up and take notice�, thereby 
throwing the estimation away from the true result. 

It follows that one remedy is to choose a more fat-tailed distribution than the Gaussian, 
as this will be more tolerant to outliers (it says that they are not so unlikely). An obvious 
candidate is the Student t distribution, which has density 
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Here ν is the number of �degrees of freedom� (in the limit ν→∞ the Gaussian distribution 
is recovered). The log-likelihood function is now 
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and on setting the derivative to zero we find the maximum likelihood estimate to be 
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This equation is awkward to solve because C (the solution) appears on both sides. 
However it can be solved by iteration. Although we cannot write down an explicit 
answer, we can see the effect of outlying contaminating points: they occur on both the 
bottom of the fraction as well as the top, and hence their effect is attenuated. The 
attenuation is strongest for small ν, which is not surprising since that is when the 
distribution is most fat-tailed. When ν→∞ we are back with the Gaussian result. 

This method is known as M-estimation. 

 

Non-parametric approaches 
These seek to make robust correlation estimates without having to specify a distribution. 
The first possibility that we shall discuss is to use the Spearman�s rank correlation 
coefficient. The idea behind this is that rather than working with the raw data we put 
them in rank order and then correlate the ranking numbers66. The obvious attraction of 
doing this is that the correlation measure remains invariant under distortion. Provided 
that the transformations f and g are strictly increasing functions, they do not affect the 
rankings. This transformation-independence is common in nonparametric techniques. 

Another idea is known as Kendall�s tau. This is defined as 

]0))([(]0))([( <′−′−−>′−′− YYXXPYYXXP  

                                                                                 
66 It is possible to boil this down to a simple expression that just uses the squared differences in ranking 
numbers. See e.g. Press et al, �Numerical Recipes in C++�, CUP, which discusses Kendall�s tau as well. 
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in which (X′,Y′) is an independent copy of (X,Y). In other words this compares pairs of 

points on a scatter-plot. If two points are in this orientation �
�

�
�
�

�

•
•  then they contribute to 

the first term in the above expression and not to the second, whereas the converse is 

true if they are orientated �
�

�
�
�

�

•
• . So the difference measures on average how aligned in 

a top-right-to-bottom-left sense they are. The range of tau is −1 to 1. Again it is clear that 
tau is transformation-independent because it does not alter relative position. 

The Spearman�s rank correlation is equal to the linear correlation when the data are 
uniformly distributed (essentially because the ranking operation has no effect on the 
distribution). Neither measure is equal to the linear correlation for bivariate Gaussian 
data though, as for Spearman we have 
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(though the difference between ρS and ρ is never substantial) while Kendall�s tau is 
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As an example we start with some clean Gaussian data67 (Figure 11.1a) taken from a 
bivariate Normal distribution in which both margins are Normally distributed with mean 
zero and variance 1, and the correlation is 0.71. From 25 data points the estimation 
using the standard estimator is quite reasonable (0.77). Spearman�s rank is ρS=0.70, 
which on transformation to an equivalent linear Gaussian correlation is 2sin(πρS/6)=0.72. 
Kendall�s tau comes out as 0.55, which on transformation to an equivalent linear 
Gaussian correlation is sin(πτ/2)=0.76. 

So all three methods come out roughly the same on clean data. Let us now consider 
what happens when we contaminate the data by corrupting the fourth data point, moving 
it to (2.9,−2.9). The effect on the standard estimator is quite pronounced, taking the 
estimate down to 0.34. The Spearman�s rank correlation, on the other hand, is altered 
by a smaller amount, 0.55 (linear Gaussian correlation of 0.57), and the Kendall�s tau 
changes still less (to 0.47, or a linear Gaussian correlation of 0.67). Because the non-
parametric methods compare the relative sizes of the data points rather than their 
absolute values, they are considerably more robust to contamination. See Figure 11.1b. 

The non-parametric approaches are considerably easier to implement and we shall 
therefore use them in practice. 

 

 

 

                                                                                 
67 Generated using a random number generator. 
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Fig. 11.1a. Gaussian data (true correlation 0.71) before corruption. 

Estimators: Standard ρ=0.77; Spearman ρS=0.70, ρ=0.72; Kendall τ=0.55, ρ=0.76. 

  
X Y X rank Y rank

1 2.484 1.826 1 3
2 -0.882 -1.183 24 24
3 -0.812 -0.515 22 22
4 0.202 -1.056 11 23
5 -0.458 -0.303 17 18
6 -0.682 -0.449 20 21
7 0.318 1.835 9 2
8 -1.915 -1.376 25 25
9 1.909 1.609 2 4

10 0.288 -0.441 10 20
11 -0.663 -0.341 19 19
12 1.412 1.424 5 6
13 1.728 0.646 4 8
14 -0.092 0.223 16 10
15 0.704 -0.141 7 16
16 1.158 2.070 6 1
17 0.068 1.075 12 7
18 -0.628 -0.149 18 17
19 0.435 -0.139 8 15
20 0.035 0.044 13 12
21 -0.834 0.040 23 13
22 -0.730 0.045 21 11
23 -0.046 -0.114 14 14
24 -0.061 0.428 15 9
25 1.745 1.499 3 5       

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

 

Source: CSFB 

Fig. 11.1b. Gaussian data (true correlation 0.71) after corruption. 

Estimators: Standard ρ=0.34; Spearman ρS=0.55, ρ=0.57; Kendall τ=0.47, ρ=0.67. 

 
X Y X rank Y rank

1 2.484 1.826 2 3
2 -0.882 -1.183 24 23
3 -0.812 -0.515 22 22
4 2.900 -2.900 1 25
5 -0.458 -0.303 17 18
6 -0.682 -0.449 20 21
7 0.318 1.835 10 2
8 -1.915 -1.376 25 24
9 1.909 1.609 3 4

10 0.288 -0.441 11 20
11 -0.663 -0.341 19 19
12 1.412 1.424 6 6
13 1.728 0.646 5 8
14 -0.092 0.223 16 10
15 0.704 -0.141 8 16
16 1.158 2.070 7 1
17 0.068 1.075 12 7
18 -0.628 -0.149 18 17
19 0.435 -0.139 9 15
20 0.035 0.044 13 12
21 -0.834 0.040 23 13
22 -0.730 0.045 21 11
23 -0.046 -0.114 14 14
24 -0.061 0.428 15 9
25 1.745 1.499 4 5       

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

 

Source: CSFB 
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Time series and the differencing problem 
 

Now that we have investigated methods of correlating time series together we need to 
understand correlation of time series. Consider a pair of time series X(t) and Y(t). By 
saying that they are correlated, what we actually are considering is the correlations 
between their returns, i.e. 

( ))()(),()(Corr tYttYtXttX −∆+−∆+  

or, similarly, the correlation between their log-returns, i.e. 

( ))(ln)(ln),(ln)(lnCorr tYttYtXttX −∆+−∆+ . 

The first thing to decide is what the differencing interval ∆t should be. While it is  
common to talk about daily returns, we find the use of these is not always the best 
approach. First, if any data points are missing then a pair of daily returns is corrupted. 
Hence, a small amount of contamination greatly reduces the number of returns that are 
available. This would be also true of longer returns (such as weekly or monthly) but the 
effect is not so bad because some work-arounds are possible, e.g. if we are computing 
weekly returns and Tuesday 15th March�s data is not available then we can always use 
Wednesday 16th instead, or the average of Monday 14th and Wednesday 16th. The error 
in doing this is likely to be fairly small compared with the true return. By similar 
reasoning, small amounts of contamination in each data point should produce smaller 
relative errors in the differences if the difference is taken over a longer time interval. 
Also by using a longer differencing interval, one substantially reduces the problem that 
prices quoted in different markets are not synchronous if they are on different time 
zones. Incidentally another advantage of using weekly (or some multiple of weekly) 
returns is that one does not have to worry about weekends: is Friday-Monday 
statistically different from Monday-Tuesday? 

There is also another objection to the use of daily returns for our purposes. We are 
trying to evaluate the loss distribution at three-month horizon, not one day. It is not 
necessarily true that the one-day correlations are the same as the three-month ones 
(even if noise in the data could be discounted). An example of this is the autoregressive 
model of time series (we assume that the time step is 1), which is commonly used to 
model financial time series:  

)()1()( tetaXtX +−=  

This models a time series that slowly de-correlates over time and reverts to X=0 (though 
some other mean level could be used instead), provided that |a|<1. The process e(t) is 
uncorrelated, i.e. each e(t) is independent of previous values. Let Y follow the same 
process, 

)()1()( tftbYtY +−=  

and let the increments be correlated according to 
ρ=))(),(Corr( tfte . 

A little work shows that the k-period returns are correlated as follows: 

( )
)1/()1()1/()1(
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If a=b then this is just ρ, regardless of k, but in general there is k-dependence. In fact 

the k-period correlation is smaller than ρ when k>1, and declines to ρ<ρ −
−−

1
)1)(1( 22

ab
ba  

as k→∞. This is an example of declining correlation. 

 

 

 

 

 

 

 

But if we return to the subject of contamination, the opposite effect can be observed. Let 
X(t) and Y(t) be Brownian motions. We do not observe them but instead see )(~ tX  and 

)(~ tY  which are assumed to arise from the addition of uncorrelated observation noise: 

)(~)()(~
)()1()(

tetXtX

tetXtX
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          )(~)()(~
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tftYtY

tftYtY

+=
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Here e(t), f(t) play a significantly different roles from )(~),(~ tfte : the former represent the 
effect of new information on the market (and ignoring them makes the model pointless), 
whereas the latter are observation noise. We can only measure the correlations 
between the returns of )(~ tX  and )(~ tY .  It is easy to show that 

( ) ρ<
σ+σσ+σ

σσρ=−+−+
2
~

22
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2
)(~)(~),(~)(~Corr

ffee

fe

kk

ktYktYtXktX  

which starts less than ρ but approaches it as k→∞. 

 

 

 

 

 

 

 

 

In consequence, if we want to know correlations at 3-month horizon we should use a 
differencing interval close to 3 months, rather than 1 day. On the other hand, this 
approach is not ideal either. If one has say 6 months or 1 year of data, then there is 
considerable uncertainty in estimating correlations between 3-month returns, simply 
because of the lack of data. For example, if 1 year�s worth of data are used, there are 

Correlation

Differencing interval 

Correlation

Differencing interval 

Underestimation is due to 

contaminating noise 

Longer-period differences 

are higher and dominate 

the observation noise  

True level ρ 

Correlation of instantaneous 

returns is ρ 
Correlation of longer-term 

returns is less than ρ 
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about 250 independent one-day returns. Now consider weekly returns. By differencing 
Jan1-Jan8, Jan2-Jan9, Jan3-Jan10 and so on one has again about 250 data points but 
they are no longer independent: the Jan1-Jan8 return is strongly correlated with the 
Jan2-Jan9 one, and so on. So the effective number of returns is considerably lower than 
250: it is higher than 50, as the Jan1-Jan8 return is independent of the Jan8-Jan15 one, 
and so on, giving 50 weeks� worth, but the others (Jan2-Jan9, Jan9-Jan16 etc.) do not 
provide much more information. With three-month returns the problem is considerably 
worse. 

Our approach is to use 1-monthly returns taken on weekly averaged data. That is, we 
average68 the variable in question (equity, spread, or the like) each week, and then take 
the 4-week returns. This is schematically shown below. The idea is to have a 
differencing interval as close to 3 months as possible, while still having enough 
independent data points to work with. 

Fig. 11.2. Each dot represents a weekly observation, and each arrow a 4-week return. 

 

 

 

 

 

Issues in credit-equity correlation 
 

There has been a certain amount of discussion about correlations in the credit and 
equity markets and we think it is worth discussing these now. 

In the Merton framework the debt and equity are both modeled as contingent claims on 
some underlying firm value that follows a geometric Brownian motion. In the standard 
option-pricing terminology we therefore have 

Firm value: ttttt dWSdtSrdS σ+=  

Equity: ttttt dWS
S
EdtErdE σ

∂
∂+=  

Debt: ttttt dWS
S
DdtDrdD σ

∂
∂+=  

This model unrealistically assumes amongst other things that the volatility is constant. 
Accordingly, all three variables move together and their instantaneous correlations are 
100%. Now suppose we have two issuers, tS1  and tS2 , and let their returns be 
correlated through their Brownian motions by dtdWdW tt ρ=21 . Then the correlation 
between tS1  and tS2  is just ρ, and the same for tE1  and tE2 , and tD1  and tD2 . 

                                                                                 
68 A robust method of averaging is to remove the highest and lowest and take the mean of the middle three. 
This is similar to the way LIBOR is calculated. Or one could take the median. These are more robust to 
outliers than a straight arithmetic mean.  
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This is just for the instantaneous returns, though. In reality when we consider weekly, 
monthly or three-monthly returns, the position becomes more difficult because we 
cannot assume that anything is Normally distributed any more. (The log of the firm value 
is, but that is not observable.)  

It is here that the work of the first part of this chapter comes into play. The relationships 
between debt price, debt spread and equity are all nonlinear, and we cannot be certain 
what they are. (Of course CUSP� goes a long way in assisting with this, because in 
simple models the Black-Scholes formulae can be used to transform from one to the 
other, but it is convenient if we can separate the correlation issues from the equity-credit 
model.) By using non-parametric estimators we can in principle end up with robust 
correlation estimates that do not depend on whether we use equity data, debt spread 
data or, inasmuch as it is observable, firm value data69. 

In practice, however, there are several flies in the ointment: 

• There may be market regimes in which spread correlations are higher than 
equity correlations on account of supply and demand, liquidity, and the like. 
(Incidentally one would expect the use of weekly or monthly returns to be less 
susceptible to this problem than the use of daily returns.) So for debt-only 
portfolios one ought to use spread correlations, and for equity-only portfolios 
one ought to use equity correlations. However, one consistent set of 
correlations is necessary if the portfolio contains both equity and debt.  

• Debt and equity have the same position (long) in the firm value, they take 
opposite positions in volatility (debt is short vol, equity is long). If the volatility is 
negatively correlated with the underlying (there is good evidence to support this 
in the equity market, to the extent that equity implied vol is negatively correlated 
with equity price), this causes the debt and equity correlations between two 
issuers to be different. 

• Default-rate-implied asset correlations70. By these we mean the asset-asset 
correlations that are used in the risk management of loan portfolios where the 
emphasis is on default risk rather than spread risk. The higher the correlation, 
the higher the default rate volatility, so the question is what sort of figure 
corresponds to observed patterns of default in historical data. The Basel II 
Capital Accord uses 20%. This is lower than market-implied values, which is 
reasonable given that regulatory capital is supposed to be a lower bound for a 
portfolio�s risk rather than an accurate estimate. 

• Default-implied asset correlations. When pricing a credit basket or CDO one 
needs to know the joint default probabilities and although the Gaussian copula 
is the standard pricing model, the correlations that are really needed for the 
pricing are correlations between default times. However, there is a similarity 
between firm-value-based models and default-time models and it is not 
unreasonable (though not correct either) to use firm value correlations as a 
substitute for default-time correlations.  

 

                                                                                 
69 The firm value is not directly observed in the market but it can be imputed from debt and equity data if one 
assumes the assumption that the arbitrage relationship Debt + Equity = Firm Value always holds. However, 
this becomes complicated when there are multiple claims on the firm. 
70 This does not mean the same as default event correlations, which are quite a different thing (see Chapter ). 
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The table below summarises the �typical� correlations used in various situations.  

   

 Type of correlation Instrument Purpose 
Imputed asset-asset 

correlation

 Historical Loans Credit risk mgt, e.g., Basel II 
Capital Accord 

Roughly 20%

 Market-implied CDS Pricing CDOs/baskets 20-40% (higher in senior 
tranches)

 Market-implied Equities Pricing baskets 40-50%
 Historical Equities Risk management 40-50%

 Source: Credit Suisse First Boston  

 

Before moving on, we need to make some further comment on debt and equity moving 
together (or not). It is clearly unreasonable to say that debt and equity must always 
move together, and there is a small amount of published work on this71. In this chapter 
we are only testing the use of debt data to calibrate the factor correlation model. We 
shall consider the use of equity data, as an alternative, later on. 

 
PR+2 Methodology � Part I 
Bearing in mind all of the above discussions, we now explain the methodology used for 
estimating the PR+2 model. The basic idea is to use two layers of correlation: issuers to 
their individual sectors, and the sectors to each other. It is important to understand that a 
�sector� here does not mean a weighted average of issuers, as it does in index products; 
rather, it means a risk factor whose presence is inferred from the tendency of issuers in 
the same industrial environment to move up and down together. We use the notation 

iiiSii UcVcZ 2
)( 1−+=∆  

for linking the standardized log-return ∆Zi of the ith issuer�s firm (asset) value to its 
corresponding sector risk factor VS(i) (S(i) is the sector in which the ith asset resides) and 
an issuer-specific part Ui. All of ∆Z, V, U are Normal with mean 0 and variance 1. Hence 
the asset-asset correlation for two issuers i,j in the same sector is cicj. Between sectors 
we shall for the moment use the notation ρ. Then the correlation between issuers in 
different sectors is cicjρS(i)S(j). From the above discussion on rough correlation numbers it 
appears that we want ci to be around 0.6-0.7 (remember that this has to be squared to 
get the asset-asset correlation). 

By asset, we mean here the firm (asset) value. The debt price, which is the observed 
data, is a transformation of it: 

))(()( tZftD i
D
ii =  

where gD  is obtainable from the Black-Scholes formulae. 

                                                                                 
71 �A robust test of Merton�s structural model for credit risk�, R. Jarrow et al., www.defaultrisk.com . This 
chapter uses a crude version of the �sign� approach that we are using. See also our own group�s report �Debt 
or Equity: The Chicken or the Egg?� released at the end of 2003. 
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The next stage represents a departure from �normal� practice and is designed to get 
around two problems: 

• Returns are not Normally distributed and may be contaminated; 

• Equity and debt are nonlinear transformations of the underlying asset and it is 
convenient to have a method that works on both. 

We use the ideas behind the non-parametric estimation techniques described earlier 
and, in the spirit of Kendall�s tau, consider only the signs of the changes in D(t), not the 
absolute values. In other words, an increase is represented as +1 and a decrease as 
−1. This has an important consequence: because we are assuming that debt and firm 
value always move in line, we must always have 

))()(sgn())()(sgn( ttZtZttDtD iiii ∆−−=∆−−  

and we do not need to know about gD and gE.  

We are now ready to embark on the parameter estimation, and concentrate first on one 
particular sector (so we estimate the c�s). Suppose for the moment that only one return 
is given for each issuer in that sector, and we call its sign γit, where i is the issuer and t 
is the time point at which the return is taken. So if the equity or debt of the ith issuer 
increased in value, γit=+1, and if it decreased in value, γit=−1, and if it stayed the same to 
within some small tolerance level, γit=0 (see note72). Following the conditional 
independence approach we condition on V (the sectorial risk factor) and then integrate 
out. Conditionally on V, the distribution of the ith asset return Zi is )1,( 2
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Multiplying up (as the issuers are conditionally independent) and integrating V out gives 
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which is the probability of observing the data set given the (as yet unknown) parameters 
c. Now we have to deal with the fact that we have more than one time point for each 
issuer. If the returns were taken over non-overlapping time intervals (e.g. Jan1-Jan8, 
Jan8-Jan15, etc) they would be independent and we would have 

∏ � ∏
=

−
∞

∞− = �
�
�

�

�

�
�
�

�

�

π�
�
�

�

	








�

�

−

γΦ=γ
)(

)1(

2/

1 21)()1(,1 21
),,|(

2Nt

tt

v
n

i i

iit
nNttn

dve
c

vcccp �

��

 

                                                                                 
72 If we use spreads, then obviously the spread changes in opposite direction to the value, so all the signs are 
reversed. This does not affect anything. 
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But (see Fig. 11.2) we are using overlapping intervals, so independence no longer 
holds. To take this into account we raise to the power of an �overlap-factor� which for 4-
week returns taken at 1-week steps is κ=¼. This gives: 
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which can be readily computed (the integration is done by Gaussian quadrature). We 
can now maximize this expression with respect to the c�s to get the maximum likelihood 
estimate, i.e. the set of c�s from which the data are most likely to have come. (In fact if 
we choose to do just this then we do not need to bother with κ.) 

However this approach is not as good as it could be and tends to produce estimates that 
wander about too much over time. To counteract this we introduce the final ingredient 
into the estimation process: the concept of a prior. 

The approach described above is known as maximum likelihood (ML), or classical 
statistical inference. A philosophical objection to it is that it maximizes the probability of 
observing the data given the parameters; but what is more natural is surely to consider 
instead the probability distribution of the parameters given the data. This idea requires 
swapping the conditioning around and is known as Bayesian inference. 

Suppose that we wish to find the distribution of some parameter θ given data x (this is 
the standard notation used in the literature). Bayesian inference asserts that unknown 
parameters have distributions. First we have the prior distribution which is the 
distribution put on θ before any data are observed. This is denoted p(θ) and its selection 
is largely a matter of subjective judgment. Suppose now that data are observed and we 
know the likelihood function p(x|θ), i.e. the probability of observing the data given the 
parameters. Then the posterior distribution of θ given x is obtained by Bayes� theorem: 

)(
)()|()|(

xp
pxpxp θθ=θ  

What is commonly done is to maximize the posterior probability p(θ|x). This is known as 
the MAP (maximum a posteriori) estimate. To summarise: 

• ML    : maximize p(x|θ) w.r.t. θ; 

• MAP  : maximize p(θ|x) w.r.t. θ. 

In finding the MAP estimate we can ignore the p(x) in the denominator (as it doesn�t 
depend on θ). 

To relate this to our problem, the comparison of the �standard� notation with the notation 
we have been using above is: 

 Prior  p(θ) p(c) 
 Likelihood fn p(x|θ) ),,|( 1)()1(,1 nNttn ccp �

��

γ  

 Posterior p(θ|x) )|,,( )()1(,11 Nttnnccp
��

� γ  
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Turning now to the formulation of the prior we wish to choose a distribution that 
represents our view that the correlation parameter c is around 0.6 with some degree of 
uncertainty. We should choose a distribution that vanishes for c>1 as such a correlation 
is impossible. A reasonable idea is to use the expression73 
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(the normalization coefficient need not be computed). The graph of this function is 
shown in Fig. 11.3 below (µ=0.6 and σ=0.5). It is apparent that this is the right sort of 
shape. In the absence of any data at all(!!) a MAP estimate using this prior would give a 
correlation estimate of 0.6. 

Fig. 11.3. Example prior (µ=0.6, σ=0.5) 
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Source: CSFB 

The lower the value of σ, the narrower the distribution and the greater the penalty 
placed on correlations differing from the �modal� value of 0.6. 

The maximization is done using standard numerical procedures, e.g. the Excel Solver or 
other commercial packages e.g. NAG. This allows us to calibrate our database of 
issuers sector by sector. 

The next question is how to solve for the sector-to-sector correlations. There are various 
ways of trying to do this, which include: 

• Aggregating spread data within each sector to give an �industry sector spread�, 
and then correlating those together. This is the traditional approach. 

• Forming a likelihood function for the entire set of issuer data and using this to 
estimate the sector-sector correlations.  

We shall discuss these later. Meanwhile we now show how well our new issuer-sector 
method works in practice. 
                                                                                 
73 This loosely says that the inverse hyperbolic tangent of the correlation coefficient is assumed Normally 
distributed. The shape of the prior is the important thing, not the mathematical precision of its derivation. 
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Back-testing of issuer-sector correlation 
We have backtested the methodology on credit spread data from a wide range of high-
grade issuers over the last year and now present an overview of the backtesting 
procedure and results. 

For each month we took the historical spread data available on that date (i.e. the 
previous 6 or 12 months) and performed three analyzes: 

1. Calculation of issuer-sector correlation by the existing PR+1.5 method (use 
daily returns over 6 months and aggregate issuers within a sector; then 
correlate the issuers with that aggregate to produce an estimate of the 
correlation74)�in the graphs this is called Old method; 

2. As Method 1 but using monthly returns over a 12-month period, rather than daily 
returns�in the graphs this is called Monthly returns; 

3. Using the PR+2 method as described in this chapter (Bayesian with signed 
monthly returns over a 12-month period)�in the graphs this is called New 
method. 

Analysis 2 is in a sense mid-way between the current and new methods: like the new 
method it uses monthly returns, but like the current method it uses the raw spread 
returns rather than the signed returns coupled with a prior. Incidentally it is possible to 
run portfolios in PR+1.5 using the PR+2 correlation estimator and vice versa, because 
the analytical engines use the same correlation model. 

In general, we find that the new correlation method produces considerably more stable 
estimates, which vary only a small amount from month to month. It also appears that the 
use of monthly returns gives more stable results than daily ones, and this is consistent 
with our earlier suggestions. 

To give an illustration, we show typical results for several well-known issuers. 

                                                                                 
74 In the old method a lower threshold of 20% was applied too. This is not necessary in the new method. 
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Source: CSFB 
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ALL US (Insurance) 
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PR+2 Methodology � Part II 
The starting-point for the estimation of issuer-sector correlations was the joint likelihood 
function 
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where γit is the sign of the return of the i�th issuer at time point t, and ncc ,,1 �  are the 
issuer-sector correlation parameters (correlation between firm value return of the issuer 
with the relevant sectorial risk factor). When combining data from many time points one 
can just multiply them, but if the time intervals are overlapping an adjustment needs to 
be made as the returns are no longer independent. This gives 
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where for 4-week returns taken at 1-week steps we have κ=¼. The form of the prior is 
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which expresses our prior opinion that the correlation parameters are independently 
distributed and that each is �not far from µ�, with σ controlling how tightly bound to µ they 
are. We then maximize the a posteriori probability with respect to the c�s, sector by sector. 

Having obtained the issuer-sector parameters, we now turn to the sector-sector 
modeling. The first point that we want to emphasize is that the PR+2 calculator allows 
an arbitrary correlation matrix for sectors to be specified. Therefore one possibility is to 
aggregate spread data, sector by sector, and correlate the time series of �sector-
average spread�. However, this is not consistent with our issuer-sector approach, where 
the sector is simply a risk factor. One could try and estimate a time series for each factor 
and then correlate the factors together. However, we are investigating an approach that 
is completely consistent with the methodology we used for the issuer-sector analysis: 
we try and estimate the correlations directly from the signed issuer returns. To do this 
we shall assume a simplified correlation structure for the sectors. This substantially 
reduces the number of parameters to be estimated, as we shall now show. 
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The picture that we have in mind is this: 

 

Fig. 11.4. �Graphical� model of correlation. 

Issuers 

Sectors 

Market factor(s) 

 
 

Lines indicate direct dependence. Each issuer relates to (only) one sector and the 
sector factors are themselves correlated. As before the issuer return is written 
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If the sectors are correlated through a single risk factor VMKT, each having a residual 
component SCTR

SU , then the sector risk factors are decomposed as  
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so that the correlation between two different sector factors S1, S2 is 
2121 SSSS bb=ρ . 

Thus the correlation between issuers in the same sector is 
21 ii cc , and in different 

sectors is 
21212121 SSiiSSii bbcccc =ρ . Note that this representation is parsimonious: for 

example if there are 20 sectors then the number of correlation parameters is only 20 for 
the one-factor approach, as compared with 20x19/2=380 for a full correlation matrix. It is 
also very simple to ensure positive-definiteness: we just need to ensure that all the b�s 
lie between �1 and 1. In fact, our preconception about them is a bit more restrictive than 
that: loosely, a range of 0.5-0.8 seems reasonable, so that sector-sector correlations are 
about 30%-60%. This means that we think that issuers in different sectors are about half 
as correlated as issuers in the same sector, on average75. 

If we adopt this one-factor correlation model of sectors, we can write the issuer return in 
the following form: 
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75 This is partly based on experience with KMV PortfolioManager� and with CDO pricing. 
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To analyze the data at sector level we write down the likelihood function, i.e. probability 
of observing the data (=signed returns) given the parameters. To do this we proceed as 
before. First we condition on the market factor VMKT, and call its value w. Now for each 
sector, let the value of the sector-specific factor be uS. Then within one particular sector, 
the issuer return has distribution 
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and the probability of its return being positive or negative is 
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By conditional independence the probability of observing a given set of signs for all the 
issuers in one particular sector is 
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where tSi ,,γ  denotes the signed return of the ith issuer in sector S (the issuers in that 
sector are labelled i=1,...nS). Now the sectors are independent conditionally on the 
market factor, so we can now combine them. The probability of observing the set of 
signs across all issuers and sectors (but still at one time point) is 
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We now combine results from all time points as before and insert the �overlap-factor� to get 
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It is important that we keep the estimates of the c�s that we derived before, and as a 
result the above expression is only to be viewed as a function of the sector correlation 
parameters (the b�s). Although the computation looks awkward it is not particularly 
difficult or time-consuming: the sector integrals (inner square bracket) are computed one 
by one for each sector and time point, and then the outer integration is done76.  

                                                                                 
76 Consequently the computation is essentially one integral inside another, not a multidimensional integral: the 
workload does not increase exponentially with the number of sectors. 
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We now wish to find the b�s (there are m of them say, where m is the number of sectors) 
and, importantly, we have already found the c�s. We use the same functional form of 
prior as before: 
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though of course we can allow the mean and dispersion parameters to be different (we 
use 0.7 for the mean for each sector as we think the sectors are quite strongly 
correlated). It is then just a matter of multiplying the likelihood function by the prior and 
minimizing the resulting function, as before. 

Back-testing 
We have seen how the issuer-sector correlation estimates are reasonably stable from 
month to month (results were shown for twelve different issuers taken from a variety of 
sectors and of differing size). Here we show the results for the sector-sector 
correlations. Remember that what is being shown here is the sector-market correlation, 
i.e. the correlation of the sector risk-factor to the presumed �market� risk-factor that is 
responsible for cross-sector correlation. To obtain the sector-sector correlation for two 
different sectors one simply multiplies their sector-market correlation parameters. 

Our universe of issuers is partitioned into nineteen sectors, though a couple of them 
contain very few issuers. Here we show some of the results from the new estimation 
method. Currently we estimate a full covariance matrix for the sectors, so the methods are 
not directly comparable. What we can do, however, is to estimating a �market time series� 
(combining all issuers) and �sector time series� (combining all issuers within a particular 
sector) and correlating the two. This allows us to give a sector-market correlation that is 
consistent with the current methodology. We refer to this as the �old method� on the 
graphs, and the Bayesian approach described in this chapter as the �new method�. 

As can be seen from the graphs, the new method (shown as the solid line) exhibits 
rather less monthly fluctuation than the current one (shown as the dotted line), while 
giving fairly similar �average� values. This cannot simply be ascribed to the Bayesian 
prior forcing all the correlation parameters towards 0.7�though this would occur if the 
dispersion parameter σ were set to a very low value. For, looking at Insurance, one sees 
that the correlations are at a pretty static 90%. 

Conclusions 

In the first part of this chapter, using some ideas from the theory of robust statistics we 
developed and back-tested a new method of estimating correlations from historical 
spread data. The method consists in separately estimating issuer-sector and sector-
sector correlations, where here a �sector� means a risk factor that causes issuers in the 
same industry sector to have a significant common component of variation. It appears 
that this method produces more stable results than the use of �raw� daily returns, which 
we have suggested is inadequate for a variety of theoretical and practical reasons. 
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In the second part we have completed the description of our new method for modeling 
correlations in PortfolioRisk+. The emphasis has been on robust estimation, which is 
why we have used non-parametric methods and also used priors. 

We have hinted that, at least in principle, equity returns could also be used in the 
calibration. It would therefore be interesting to discover whether the use of equity returns 
would produce substantially different results. 
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Appendix � Example of Bayes� theorem 
 

Suppose that we suspect that a coin is biased. We believe that the probability θ of its 
showing heads is 0.4, though we are not certain that that is so. Suppose that we choose 
a Beta distribution for θ, with mean 0.4 and standard deviation 0.15. This means that 
(roughly) 

11 )1()( −− θ−θ∝θ bap , with a=3.87 and b=5.8 

(a, b having been chosen to match the mean and variance: the mean is a/(a+b) and the 
variance is ab/(a+b)2(a+b+1) ). 

Now we observe that in 50 coin tosses, 24 show up heads. By the Binomial Theorem 
the probability of observing this is 

2624 )1(
!26!24

!50)|( θ−θ=θxp  

So the posterior probability distribution of θ is 
8.42687.224 )1()|( ++ θ−θ∝θ xp . 

The use of a Beta distribution as a prior was a neat choice because the posterior 
distribution is another Beta distribution. Its mean is (24+3.87)/(24+3.87+26+4.8)=0.467. 
The MAP estimate is the mode of the distribution, which is (a-1)/(a+b)=0.45. Whichever 
of these we choose to take as our view of biasedness, our conclusion is that the coin is 
less biased than we previously thought it to be. 
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12 
Volatility, correlations, and the CAPM 
We are now going to sew together some of the fundamental ideas that we have 
introduced in the previous chapters. These are the mean-variance theory of risk, 
risk contributions, and correlation. We show how all these are used in portfolio 
management and how they relate to the way the market prices risk. 

Portfolio volatility 
All investors trade risk in some form and to some extent. For example, an investor in 
credit-risky bonds has the risk either that the bond will increase or decrease in value 
(mark-to-market viewpoint) or that the bond defaults (buy-and-hold viewpoint). The 
Merton model argues that the risk of a bond (whether default or mark-to-market risk) 
arises from the volatility of the firm�s assets. In return for taking this risk, the bondholder 
is rewarded with a coupon that not only covers his expected loss but also rewards his 
risk-taking. This latter reward is known as the risk premium: no risk, no premium. 

Once the investor has assembled a portfolio, he can look at everything at a portfolio 
level and take the view that he is being rewarded for taking an aggregated risk. There 
then arises the question of whether enough reward is being given for the assumed risk. 
As we have previously discussed, there are several ways of measuring risk77, but the 
simplest one to start with is the mean-variance framework. 

Here the risk of a portfolio is measured by its standard deviation at some time horizon; if 
the horizon is short then the term volatility is effectively synonymous with standard 
deviation. It is convenient to keep the same word as we can then enquire how a firm�s 
asset volatility feeds through to bond price or spread volatility, and thence to portfolio 
volatility.  Portfolio volatility depends on two things: 

• individual asset volatilities, and 

• correlation between assets. 

Increasing either of these causes the portfolio volatility to increase. For a picture, see 
Fig. 12.1 (next page). 

Estimating market correlations is therefore of fundamental importance in 
assessing in a portfolio context what is worth buying and what is not. This is why 
we have spent a lot of effort on building robust correlation estimators. 

 
                                                                                 
77 �Risk measures: How long is a risky piece of string?�, Chapter 9. 
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Fig. 12.1. Effect of asset volatility and correlation on portfolio volatility (NB the graphs are 
freehand sketches only) 

 

(a) Moderate asset volatility, moderate correlation � moderate portfolio volatility. 

 

 
 

(b) Higher asset volatility � higher portfolio volatility. 

 

 
 

(c) Higher correlation � higher portfolio volatility. 

 

 
 



 

 The Quantitative Credit Strategist
Volatility, correlations, and the CAPM

  

 

 29 October 2004 149

Risk contributions 
We argued in Chapter 2 that the best approach to modeling correlation is not to write 
down a huge matrix of pairwise correlations, but instead to seek factors that govern the 
dependence. However, if all we want to do is construct a formula for portfolio variance 
then a covariance matrix is the quickest route. 

We consider a portfolio �=
i

ii XaY  in which Xi is the return of the i�th asset and ai is the 

i�th asset allocation. The portfolio variance is therefore 

� ρσσ=σ
ji

ijjijiY aa
,

2  

where σi is the i�th standard deviation and ρij is the pairwise linear correlation coefficient 
between asset i and asset j. This gives the portfolio standard deviation as 

2/1

,
�
�

�

�

�
�

�

�
ρσσ=σ �

ji
ijjijiY aa . 

Following our discussion of risk measures, we wish to find the sensitivity, or delta, of the 
portfolio risk (σY) to asset allocation. This is 

],Cov[11 YXa
a i

Yj
ijjij

Yi

Y
σ

=ρσσ
σ

=
∂
σ∂

�  

so that the portfolio risk is most sensitive to assets that have a high covariance with the 
market portfolio. A high covariance results either from high volatility or high correlation to 
the rest of the portfolio. 

 

Capital Asset Pricing Model (CAPM78) 
How does the market price risk? Let Y be the �market portfolio� and declare that the 
market prices in an optimal way by equilibrium: low-returning risky assets are sold and 
high-returning less-risky assets are bought until equilibrium is achieved. 

We saw in our previous discussions on risk measures79 that a portfolio is optimal in the 
sense of Sharpe ratio (return ÷ risk maximized) when the excess returns are 
proportional to the risk contributions. That is, 

i
a

kr
i

Y
i  each for

∂
σ∂

=
    

with ri denoting the expected excess return of the i�th asset. Putting everything together 
we arrive at the famous Capital Asset Pricing Model: 

""],Cov[ ii
Yi

Y
i YXk

a
kr β=

σ
=

∂
σ∂

=
 

                                                                                 
78 Introduced by Markowitz (1952) and Sharpe (1964). 
79 �Risk measures: How long is a risky piece of string?�, Chapter 9. 
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(�beta� being the universally used CAPM terminology). So, loosely, one is rewarded for 
volatility that is correlated with the market. Moreover the reward is linear in the risk (Fig. 
12.2, left picture). 

This argument does depend on market efficiency and if taken too far it has some 
unsavoury implications for portfolio managers: you may as well hold the market portfolio, 
and you get no reward for diversifying your portfolio (because investors can do that 
themselves). But, if we argue that inefficiencies exist in the market, owing to, for 
example, players holding different amounts of market information, players having trading 
constraints, or players having different risk measures, then the picture on the right is a 
truer representation of reality and now portfolio selection becomes a valuable exercise: 

Fig. 12.2. Risk vs. return in the CAPM world and in the real world 

 

 

 

 

 

 

 

 

  

 

 

At this point we have shown how to make trade recommendations based on the 
assumption that we start with a portfolio similar to the �market portfolio� (in practice, a 
suitable index or benchmark). For example, if ABC Inc has a high return to risk, then we 
can recommend buying it. We can do this without going into greater depth than looking 
at first-order risk contributions to the market portfolio, which we assume to be similar to 
those in our portfolio. 

However, as we have said before80, this simple analysis does not tell us how much to 
buy: as we increase the weight in ABC its risk contribution increases in a nonlinear way 
(as we shall discuss next, this arises from portfolio risk being a convex function of asset 
allocation) and if we buy too much then we will be over-exposed to it. Of course, in the 
case where our portfolio is very different from the market portfolio, the recommendation 
may even be the wrong way round: for example it would not be correct to buy ABC Inc if 
our portfolio happened to be greatly overweight in that asset already. Hence to do a 
proper portfolio optimization we need to know the precise portfolio composition and to 
consider second derivatives of risk w.r.t. asset allocation. We briefly consider this latter 
point next. 

                                                                                 
80 �Portfolio optimization: The importance of convexity�, Chapter 10. 

Expected
Return Expected 

Return Buy 

Sell 

Risk Risk 

CAPM (Efficient market) Real world (inefficient) 

Expected 
Return 



 

 The Quantitative Credit Strategist
Volatility, correlations, and the CAPM

  

 

 29 October 2004 151

Convexity 
 

One differentiation more shows that 

�
�

�

�

�
�

�

�

σ
−

σ
=

∂∂
σ∂

2

2 ],Cov[],Cov[
],Cov[1

Y

ji
ji

Yji

Y YXYX
XX

aa
 

To prove the all-important convexity, which is necessary for a unique optimal portfolio, 
we need to show that the matrix of second partial derivatives is positive definite. This 

means that, if we write 
ji

Y
ij aa

H
∂∂
σ∂

=
2

, then we are to show that 

0
,

≥�
ji

jiji uHu  

for any vector u. This can be written out in full as 
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which after further manipulation gives 
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A useful trick that we shall use in later work is to consider the function 
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Now Q(t) must be positive for all values of t, because it is the variance of something. By 
�completing the square� we find that 
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which is what we wanted to show. 

It is worth noting that we have been a little sloppy in our terminology. Positive 

definiteness means that 0
,

>�
ji

jiji uHu , not ≥ 0. In fact, no risk measure can satisfy the 

strict inequality, because it is a corollary of the homogeneity property of a risk measure 
R that 

0
,

2
=

∂∂
∂

�
ji ji

ji aa
Raa . 
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(We could have foreseen this in the construction of Q(t), which vanishes at t=1 if the u�s 
are equal to the a�s.) All this says is that if we scale up all the exposures by the same 
relative amount then the portfolio risk scales up in a linear way too: but then it can�t be 
strictly convex. In practice this is not an issue because such a scaling is forbidden in any 
sensible portfolio optimization: the total value must remain the same. 

Conclusions 
We have shown how portfolios work in a mean-variance framework and established that 
the �delta� of an asset, i.e. the sensitivity of standard deviation to asset allocation, is the 
covariance between the asset and the portfolio. We have also related this important 
result to the CAPM. However, mean-variance is not ideal for bond portfolios, in which 
the downside risk greatly exceeds the upside. There is a great deal of interest in 
�downside� risk measures in the risk management community and it is also apparent 
that the market puts a premium on downside risk: for example, in short-dated out-of-the-
money put options. So in the next chapter we shall start looking at portfolio optimization 
in the VaR and CVaR (expected shortfall) frameworks, and showing how these compare 
with the mean-variance framework. 
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13 
Contributions to VaR and CVaR 
In this chapter we continue with the subject of risk contributions. The risk 
contribution of an asset in a portfolio is fundamental to portfolio optimization, and 
it is defined by sensitivity of portfolio risk to fractional change in asset allocation. 
The classical mean-variance theory was developed by Markowitz in the 1950s 
and we have considered it in some detail in the last few chapters. It is a theory 
that is well-established and well-founded but, as we shall see here, it is not the 
best for dealing with very asymmetrical or fat-tailed distributions. Consequently 
Value-at-Risk (VaR) has become popular. However, as we shall discuss in depth 
here, VaR contribution is quite difficult to compute and certain portfolio models do 
not permit a sensible definition of it. For substantially the same reasons it is also 
very difficult to estimate VaR contribution from a Monte Carlo simulation. 
However, there are some more fundamental problems with VaR associated with 
its lack of convexity, which causes difficulties with portfolio optimization, and the 
only satisfactory way to resolve this is to move away from VaR and to use 
expected shortfall or �CVaR� instead. 

We round off with an example that shows how VaR, CVaR and standard 
deviation contributions can be very different. VaR and CVaR contributions 
emphasize severe, rare risks (tail risks) whereas standard deviation 
contributions emphasize small, frequent risks (middle-of-distribution risks). 

Recap: from standard deviation to VaR 
We have spent some time in the last few chapters talking about standard deviation and 
its influence on financial theory: risk management, portfolio management, and the 
Capital Asset Pricing Model. When looking at the distribution of returns of complex 
financial instruments such as derivatives, some disadvantages become apparent. Take 
first Figure 13.1, which gives two attempts at modeling the distribution of P&L of a 
portfolio that holds one or more credit-risky bonds (long positions only). 
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Figure 13.1. Approximations to the statistical distribution of returns of a credit-risky bond (or 
portfolio). Dotted: Normal N(0,1); Solid: Gamma(2,1) shifted to make its mean zero. Both 

distributions have mean 0 and variance 1. 
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Early models of risk management, which persisted in times gone by when computers 
were slow and sophistication was low, assumed that asset returns were Normal (Figure 
13.1, dotted line). On the other hand the true distribution may well be closer to that 
shown by the solid line. For bond portfolios in which the upside is small and the 
downside is big this is a considerably more realistic picture. The point about Figure 13.1 
is that both the distributions have mean 0 and variance 1. So mean-variance does not 
tell them apart. 

Now there is nothing intrinsically wrong with using standard deviation as a risk measure 
even when the distributions involved are skewed and/or fat-tailed. If one is worried 
mainly about common, not-too-severe events, and not about the tails, then standard 
deviation may well be appropriate. However, portfolio managers and risk managers 
often do care about downside risk. For one thing, regulatory authorities require them to 
care. In today�s world, no investment bank would be permitted to state the market risk of 
its derivatives portfolio on the basis of Normal distribution assumptions81. Similarly, no 
investment bank would be permitted to state the credit risk of its loan book on the basis 
of Normal distribution assumptions. For investment-grade bond portfolios, the risk of 
default is perceived as quite low and the spread risk is more important. In that case, the 
Mertonian interpretation of a bond portfolio as a portfolio of options on the underlying 
firms is the most pertinent, and it makes sense to view the portfolio as a portfolio of 
derivatives. 

In fact there is direct evidence that the market cares about downside risk too. For a start 
the equity option market shows �skew� (or smile) indicating that out-of-the-money put 
options are more expensive than a Normally distributed world would suggest. 

                                                                                 
81 More precisely, if they do use a very unsophisticated methodology, the risk figures are increased by a 
�multiplier� chosen by the regulatory authority. A better methodology that has been satisfactorily back-tested 
incurs a lower multiplier. 
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Figure 13.2. Typical equity option skew (�smile�). 

 

 

 

 

 

 

 

 

 

 

So option dealers implicitly care about non-Normal distributions. There are two possible 
explanations for this: 

• The underlyings genuinely do have bigger downside, so put options have a 
greater expected payout, and hence a greater price. 

• Supply and demand and risk aversion increase the desire of buyers, who are 
typically long-equity funds, to obtain downside protection. This causes the price 
to increase, and buyers will pay it even if on a purely actuarial basis it seems 
too high: in other words there is a risk premium.  

In fact both explanations are generally accepted as true.  

Now that we have decided that downside risk is important, we want to know how to 
quantify it. The Value at Risk, at lower82 tail probability p, is given by y such that 

pyYP =< )(  

In other words, it is the smallest level of loss that will be exceeded no more than 100p% 
of the time, at some specified time horizon.  

For example, with the distributions of Figure 13.1, the VaR at 98% confidence (p=0.02) 
is −2.05 for the Gaussian distribution and −4.8 for the non-Gaussian one, so VaR does 
recognize the difference in downside risk. 

Having established what VaR is, we now wish to find its sensitivity to asset allocation 
because, as we have said previously, this is necessary in portfolio optimization. 

 

                                                                                 
82 We are using the convention that loss is negative. In many articles on risk management loss is taken to be 
positive and then the VaR is in the right-hand tail of the distribution. 
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VaR contribution 
 
Fundamentals 

We assume that the portfolio is given as a weighted sum of assets, as � == n
j jj XaY 1 . 

We are going to prove the following result which states the sensitivity of the VaR of Y to 
the asset allocations aj : 

 ]|[][ VaRYXEYVaR
a i

i
==

∂
∂  (1) 

This means, in words, that the sensitivity of the VaR to the i�th allocation is equal to the 
expected loss from the i�th asset conditionally on the portfolio loss being equal to the 
VaR. In other words, we imagine all possible events that might occur, then forget about 
all of them except the ones in which we lose exactly whatever we have computed the 
VaR to be, and then find the average loss from the asset in question. 

There are various ways of proving (1), but before we go into those in depth we shall 
make some observations. First, the sum of the VaR contributions (recall: risk 
contribution=allocation x sensitivity) is the VaR, by 1-homogeneity83: 
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which is quite transparent. Next, let us recall the standard deviation result: 

 ],[
][

1][ YXCov
YV

YV
a i

i
=

∂
∂  

For standard deviation, the risk contribution is given as the covariance between the 
asset and the portfolio: the higher the correlation between the two, the higher the 
contribution. Now take VaR: if the asset is likely to have much depreciated in value84  
when the portfolio has much depreciated in value, then the VaR contribution is large�
and this is another way of expressing that the asset and portfolio are correlated. So in 
that sense, VaR and standard deviation contribution are conceptually similar. The 
difference is that VaR contribution does not look at all scenarios in the same way that 
standard deviation does: it targets only the situations in which the portfolio loses one 
precise amount of money85. This has some important ramifications. 

 

Discrete models and the problems they cause 
The first concerns any situation in which the loss distribution is discrete, by which we 
mean that the portfolio loss cannot take any possible value, but instead only a set of 
discrete values. An example is default-only models of credit risk, in which a bond either 
defaults or does not default. A more sophisticated example is if a bond can upgrade or 

                                                                                 
83 �Portfolio optimization: The importance of convexity�, Chapter 10. 
84 e.g. for a bond: downgraded, defaulted, spread greatly increased 
85 In a sense, the standard deviation contribution is a weighted average of the VaR contribution taken over all 
tail probabilities between 0 and 1: so the standard deviation looks at the whole loss distribution, and the VaR 
at just one slice through it. 
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downgrade to one of a finite number of rating states. Another situation in which this 
occurs is when the model is specifically designed to work on a �grid�86: for simplicity and 
ease of computation, the loss arising from the portfolio is assumed to lie on a grid of 
equispaced points. 

To see what the consequence of discreteness is, consider the following picture of the 
loss distribution: 

Figure 13.3a. VaR for discrete loss distribution. 

 

 

 

 

 

 

 

 

 

We define a "portfolio event" as a specific combination of individual asset events. For 
simplicity, we start by assuming that each possible portfolio event gives rise to a 
different portfolio loss. Then each "spike" in the figure represents one combination of 
events. When one of the asset allocations is altered slightly, the probability of a specific 
portfolio event does not change; however, the portfolio loss does: the height of each 
spike is unchanged, but the spikes move a little left or right. For small changes in asset 
allocation, the spike do not move past each other, i.e. their corresponding losses remain 
in the same order. Hence the VaR, which is determined by tail probability, corresponds 
to the same event as it did before the asset allocations were perturbed. So for small 
perturbations the VaR varies linearly in the asset allocations, and its sensitivity is just 
given by the values of the assets in the corresponding event. This is what (1) says 
(without the expectation symbol), because conditioning on Y=VaR tells us exactly what 
each asset did. 

However, there is a fairly obvious problem. Suppose that, on the particular event 
corresponding to losing the VaR, one particular asset�call it asset #1�gives little loss, 
but that it has a large loss in the events that give rise to a similar portfolio loss. Suppose 
further that another asset, #2 say, is quite similar (e.g., a bond of similar rating). Then 
one can easily have a situation like that in Figure 13.3b. 

                                                                                 
86 CreditRisk+ is an example. However, many portfolio models can be implemented in �grid� form, which has 
some computational advantages. Grid-based methods are very commonly used in CDO pricing as well. 
However, with those it is not very important to find the sensitivity w.r.t. asset allocation. We shall talk about 
these issues later. 
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Figure 13.3b. Inconsistent sensitivity of VaR for discrete loss distribution. At present event B 
determines the VaR 

 

 

 

 

 

 

 

 

 

 

 

 

The VaR sensitivity of asset#1 is �1, and of asset#2 is �8. Given that they are similar 
assets, this looks very odd indeed. Further, a small change in the confidence level will 
alter the picture drastically: decreasing the tail probability will make the sensitivities �10 
and �5, while increasing it makes them �9 and �3. 

This makes VaR sensitivity extremely sensitive to tail probability, which is clearly 
undesirable: you do not want the picture to change by altering the confidence level from 
98% to 98.1%. The consequence of this problem is that when larger changes are made 
to the asset allocations, and the �spikes� (Figure 13.3b) become re-ordered (Figure 
13.3c), the VaR sensitivities suddenly jump (Figure 13.3d). This makes portfolio 
optimization very difficult indeed. 

Figure 13.3c. Now event C determines the VaR, and the sensitivities have jumped 
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 event C: asset#1 = -9, asset#2 = -3, ... 

 event B: asset#1 = -1, asset#2 = -8, ... 

 event A: asset#1 = -10, asset#2 = -5, ... 
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 event C: asset#1 = -9, asset#2 = -3, ... 

 event B: asset#1 = -1, asset#2 = -8, ... 

 event A: asset#1 = -10, asset#2 = -5, ... 
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Figure 13.3d. Variation of VaR with asset allocation: an optimization nightmare 

 

 

 

 

 

 

 

 

 

At present we have assumed that each 
event gives rise to a different level of 
portfolio loss. In practice more than one 
event may give rise to the same portfolio 
loss, e.g. in a portfolio of five assets, in 
one event the asset values might be (-1, -
2, -9, -3, +1), and in another (-5, -3, -2, -2, 
-2): the portfolio losses are �14 in each 
case. For grid-based methods this sort of 
situation will almost certainly arise 
because the losses must be integer 
multiples of the grid spacing. In that case, one might imagine that the formula for the 
VaR contribution would be given by averaging the contributions arising from all the 
events that gave rise to that particular loss (the VaR): indeed this is so, and that puts the 
expectation symbol into Eq. (1), which rounds off the �proof� nicely. However, it does 
little to alter the problem that we have identified above. Take for example the following 
situation, in which there are five assets and their possible gains and losses are given in 
the table above. 
 

If the VaR is �19, then the combinations are 

(+1,-4,+3,-9,-10), (+1,-10,-2,2,-10), (-2,-4,-17,+2,+2), (-8,+2,-17,+2,+2). 

If it is �18, they are 

(+1,-10,-2,-9,+2), (+1,+2,-2,-9,-10). 

If it is �17, they are 

(-8,-4,+3,+2,-10), (-2,-10,+3,+2,-10). 

 

So for VaR=�17 the risk contribution of asset#4 is +2 (as both the combinations have 
that as the loss), at VaR=�18 it is �9, and at VaR=�19 it is somewhere in between +2 
and �9, depending on the relative probabilities of the various combinations. The other 
assets behave, or rather misbehave, in the same way. 

   

Asset # Possible gains/losses

1 +1, -2, -8
2 +2, -4, -10
3 +3, -2, -17
4 +2, -9
5 +2, -10

 Source: Credit Suisse First Boston  

allocation in jth asset 

delta 

VaR 
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This points to the conclusion that trying to do portfolio analysis and optimization using 
grid-based models is not a very good idea because the question of finding a �sensible� 
VaR contribution is not well-posed. At a first glance, before one has appreciated this 
problem, it seems very reasonable to use them because moving the distribution onto a 
discrete grid hardly alters the distribution of losses. The catch is that the sensitivities to 
asset allocations can become totally messed up. Mathematically, it is possible for two 
functions to be very close, but for their gradients to be very different, as for example 
below, and this is the essence of the problem. 

Functions are close; gradients are completely different 

 

 

 

 

 

 

 

 

Monte Carlo simulation has all the same problems 
The difficulties of defining and finding VaR contribution are not confined to discrete 
models. They also occur with any model, if Monte Carlo simulation is used. This is 
because the output of a Monte Carlo simulation is necessarily a (discrete) list of 
numbers. In finding the expected value of a particular asset given that the portfolio value 
(or loss in value) is equal to the VaR, we are faced with the problem that only in one 
simulation is the portfolio value equal to the VaR�so the expectation is being calculated 
from a single Monte Carlo simulation! Not surprisingly this gives useless results. 
Increasing the number of simulations has no effect. 

The only remedy is to try and work with smooth, continuous distributions wherever 
possible. This means that if analytical methods are used, they should be ones that give 
continuous distribution approximations. If on the other hand Monte Carlo simulation is 
used, the distribution should be smoothed out. The method of kernel estimation has 
been suggested for this purpose87 as a method of stabilizing Monte Carlo results, so we 
take it next. 

 

Kernel estimation 
The basic idea behind kernel estimation is that we use not just one simulation (i.e. that 
on which the portfolio value equaled the VaR) to estimate the conditional expected loss, 
but also those �close by� (i.e. simulations on which the portfolio value was close to the 
VaR). 

 
                                                                                 
87 C. Gourieroux, J.-P. Laurent & O. Scaillet, �Sensitivity Analysis of Values-at-Risk�, J. Emprirical Finance, 
7:225-245, 2000. 
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The kernel estimate of the distribution is given by 
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Here (yk) denote the simulations; ψ is some probability density function chosen by the 
user (a Normal distribution, ψ(x)=exp(−x2/2)/√2π is the most widely used), Ψ is its 
associated cumulative probability function (so for a Normal distribution, Ψ(x)=Φ(x)), and 
h is a width parameter. The effect is that each simulation becomes �fuzzy�, and the 
distribution is smoothed out more as h is increased. 

 

 

 

Fig. 13.5. Increasing levels of smoothing: h=0; h>0 small; h>0 larger. 

 

To find the VaR sensitivities we just differentiate the tail probability with respect to the 
asset allocations: 
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here xk is the value of the i�th asset in the k�th simulation. As the tail probability is to be 
constant, with y varying, the left-hand side is to be zero, and we arrive at 
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which is very similar to Eq. (1) in spirit: the expression is a weighted average of values 
of the i�th asset (Xi) using weights that kill off any simulations that did not give a portfolio 

loss close to the VaR ( ��
�

�
��
�

� −
ψ

h
yy k is negligible unless kyy ≈ ). We can think of the 

above expression as being ]|[ VaRYXE i ≈ . And taking the limit h→0 does give us Eq. 
(1). 

But does it work well in practice? Kernel estimation is certainly an improvement over 
using the raw simulation data, but it is not ideal, and to obtain stable estimates requires 
a very large number of simulations. Direct estimation from a model is a preferable 
approach, if the model is susceptible to analytical treatment. Although this is more 
difficult to implement, it gives excellent results, and we discuss it next. 
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Conditional independence models  
Suppose that, conditionally on some risk factor (V is the notation we have been using in 
previous chapters, so we continue with it), the values of assets are independent. We 
have argued88 that a fair approximation to the loss distribution can be obtained through 
reasoning that conditionally on V the loss distribution is roughly Normal (by the Central 
Limit Theorem). This leads to the following approximation to the tail probability: 
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(The first expression is the general one and uses the conditional mean µY|V and 
standard deviation σY|V; the second one assumes that the distribution of V is discrete, 
i.e. there is a discrete set of risk-factor states. Note that it is quite OK for the distribution 
of the risk factor to be discrete; the important thing is that the distribution of the portfolio 
loss be continuous, which is an entirely separate matter.) As usual Φ denotes the 
cumulative Normal probability function, and φ (used later) is the density. 

It is now a simple matter to find the VaR sensitivity, because all we have to do is 
differentiate with respect to asset allocation: 
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We wish the tail probability to be fixed and the VaR (i.e. y) to vary, so the left-hand side 
is to be zero; rearranging gives 
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Computation of this is easy once the sensitivities of the conditional mean and variance 
to asset allocation are found; and as this is easy enough, the method is very workable.  

 

General proof of Eq. (1) 
We round off the discussion of the theory of VaR sensitivity with a general proof of the 
equation (1). This uses the characteristic function, which we introduced a while back89. 
Although the derivation is technical, it is of interest because a vast amount of theory can 
be developed using exactly the same machinery: first and second derivatives of 
expected shortfall and saddle-point analytics. The reader is referred to the Appendix. 

 

 

                                                                                 
88 �Getting the full picture�, Chapter 8. 
89 �Characteristically elegant�, Chapter 6. 
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Second derivative of VaR 
We pointed out in the chapter on optimization90 that it is important for the portfolio risk to 
be a convex function of the asset allocations. VaR does not have this property, and that 
is nothing to do with the model, or how the VaR is calculated: it is simply a deficiency of 
VaR itself. Although we could go through the mathematics to show where things go 
wrong, the exercise is messy and not very useful and the reader is asked to take it on 
trust. When we say that VaR is not convex we do not mean that it goes wrong in all 
situations: for simple portfolio models it may well prove to be convex, and in certain 
types of portfolio approximation it always is. However, CVaR, as we shall see in a 
moment, is much better behaved and it makes sense to drop VaR in favor of it. 

From VaR to CVaR 
Recall that (if we adopt the convention that loss is negative) the expected shortfall or 
CVaR is defined by91 

]|[ VaRYYECVaR <= . 

First derivative of CVaR 
In a remarkable similarity with Eq. (1), CVaR has a sensitivity given by 
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In other words, the CVaR sensitivity is the expected loss from the asset in question 
given that the portfolio loss is worse than the VaR. We prove Eq. (2) in the Appendix. 

Again it is easy to show that the CVaR contributions add to give the CVaR: 
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The difference between Eqs. (1,2) is important. We have spent some time pointing out 
all the problems that are encountered in trying to estimate a conditional expectation 
based on an exact level of portfolio loss. The CVaR sensitivity requires the expectation 
to be conditional on a range of losses instead, and that is considerably easier. Obviously 
estimation from a Monte Carlo simulation is still quite �noisy�, as for example if the tail 
probability is 1% and 10,000 simulations have been run then the expectation is being 
estimated from only 100 simulations�and the problem is worse for a lower tail 
probability. On the other hand it is possible to derive the sensitivity of the kernel 
estimate of the CVaR, and use that instead: that has an additional smoothing effect. 

However, as with the VaR, the most satisfactory approach is to obtain the CVaR and its 
derivatives using conditional independence models. To pick up where we left off with the 
VaR, assume that there is some risk-factor V on which the assets are conditionally 
independent, and assume that Y is Normal conditionally on V. The CVaR is given by 
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90 �Portfolio optimization: The importance of convexity�, Chapter 10. 
91 Sometime a minus sign is inserted in front, but this makes no real difference. The only thing to watch for is 
the convexity later on. 
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with 
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differentiating we obtain the neat result for the sensitivity:92 
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Second derivative of CVaR 
Another nice result, which again looks like Eq. (1,2), is the formula for the second 
derivative (or Hessian as it is often called) of CVaR: 

 
P
yfVaRYXXCovYCVaR

aa ji
ji

)(]|,[][
2

×=−=
∂∂

∂  (3) 

In other words, the second derivative is the conditional covariance of the two assets 
given that the portfolio loss is equal to the VaR, multiplied by a factor which we won�t 
bother about (−1 × density of the loss distribution at the VaR ÷ tail probability). As it is 
known that the covariance matrix of any two random variables must be positive definite 
(see Chapter 12), convexity has been proven93. We prove Eq. (3) in the Appendix to this 
chapter. 

Notice that if we want to calculate this second derivative, all the problems that we had 
with the VaR sensitivity come back to haunt us, because the conditioning is on an exact 
level of loss (Y=VaR in Eq. (3) cf. Y<VaR in Eq. (2)). So for discrete models the Hessian 
has the undesirable property of jumping as the asset allocations are changed, and as 
the tail probability (used to define the CVaR) is changed. Also it is difficult to estimate 
from Monte Carlo simulations. 

On the other hand it is fine in the conditional independence framework. Differentiating 
the expression for first derivative: 
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The resulting expression for the Hessian is necessarily convex94. This concludes our 
examination of CVaR. 

 

 

                                                                                 
92 There is a bit more to this than meets the eye. It might look as though we have missed out some terms from 
here, arising from the fact that zY|V depends on the asset allocations. Actually, those terms all cancel. 
93 In fact, because of the minus sign in (3), the risk measure is concave. But this is only because we have 
defined risk as being negative here, which is a trivial issue. All the properties needed for optimization are 
obeyed. 
94 The first part of the expression is the Hessian of the standard deviation risk measure, and the second is a 
�perfect square�. 
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Example 
We are going to demonstrate in this section that standard deviation, VaR and CVaR 
give different pictures of the split-down of risk in a portfolio. 

For simplicity we have taken a simple model of a portfolio of defaultable bonds or loans. 
Much of what we are going to demonstrate applies to other asset classes as well, but 
this example is more easily explained. 

Table 13.1 (next) shows the portfolio, in which loans are assumed either not to default, 
or to default without recovery (so the loss is either 0 or 1, times the exposure). The 
loans are correlated according to the Gaussian copula model that we have seen before. 
This means that a Normally distributed risk factor is assumed and the conditional default 

probability of each loan is 
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i

ii Vp
 where pi is the expected default frequency 

(EDF) and βi is the correlation parameter of the ith loan. Each loan is made to a different 
issuer. As can be seen from the table, different assets have different exposures, 
correlations, and EDFs. Also assets 5, 8, 14 have big exposures and low EDFs: this is 
done deliberately. In the context of a real portfolio this is quite reasonable as it is normal 
to have bigger positions in (or, lend more to) higher-grade credits. 
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Table 13.1. Test portfolio of loans and results of portfolio calculations.  Note particularly #5, #8, 
#14, which have much bigger exposures and lower default probabilities; this makes them �tail 
risks�. Note also that #36-#50 are less correlated with the rest of the portfolio than #21-#35. 

Allocation 
(M$) EDF Correl

1 1 2.00% 0.5
2 2 1.00% 0.5
3 1.3 2.00% 0.5
4 1 10.00% 0.5
5 25 0.10% 0.5
6 2 1.00% 0.5
7 3 1.00% 0.5
8 12 0.50% 0.5
9 2 0.70% 0.5

10 2 0.70% 0.5
11 3.4 0.70% 0.5
12 1.7 3.00% 0.5
13 2.1 1.00% 0.5
14 15 0.20% 0.5
15 2 0.70% 0.5
16 2 0.70% 0.5
17 3.4 0.70% 0.5
18 1.7 3.00% 0.5
19 2.1 1.00% 0.5
20 2 0.70% 0.5
21 2 0.70% 0.7
22 3.4 0.70% 0.7
23 1.7 3.00% 0.7
24 2.1 1.00% 0.7
25 2 0.70% 0.7
26 2 0.70% 0.7
27 3.4 0.70% 0.7
28 1.7 3.00% 0.7
29 2.1 1.00% 0.7
30 2 0.70% 0.7
31 2 0.70% 0.7
32 3.4 0.70% 0.7
33 1.7 3.00% 0.7
34 2.1 1.00% 0.7
35 2 0.70% 0.7
36 2 0.70% 0.3
37 3.4 0.70% 0.3
38 1.7 3.00% 0.3
39 2.1 1.00% 0.3
40 2 0.70% 0.3
41 2 0.70% 0.3
42 3.4 0.70% 0.3
43 1.7 3.00% 0.3
44 2.1 1.00% 0.3
45 2 0.70% 0.3
46 2 0.70% 0.3
47 3.4 0.70% 0.3
48 1.7 3.00% 0.3
49 2.1 1.00% 0.3
50 1.5 0.80% 0.3  
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Figure 13.6. Skewed loss distribution from test portfolio 
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Figure 13.6 shows the loss distribution. From the top picture (probability density as a 
function of loss: note logarithmic scale on vertical axis) it is clear that the downside is 
much bigger than the upside. The lower picture shows the probability mass and this 
allows you to work out the VaR by eye (though not the CVaR). For example at 99.5% 
confidence, the tail probability is 0.005 and the VaR is about �$20.25M. The CVaR is 
incidentally �$27.7M (it must be a greater loss than the VaR). 
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Figure 13.7 (next page) shows the risk contributions using three different risk measures: 
standard deviation, VaR(99.5%), CVaR (99.5%). There are two obvious points to be 
made. 

First, assets 21-35 have higher contributions, by all measures, than assets 36-50. As 
the only difference between these two groups is correlation, this must be the 
explanation. We have already decided on theoretical grounds that the higher the 
correlation of an asset the higher its risk contribution, so this comes as no surprise. 

Secondly, VaR and CVaR identify assets 5, 8, 14 as tail risks and they receive much 
more �attention� than when standard deviation is used. Because these issuers are very 
unlikely to default they do not contribute a huge amount to the variance. In fact, asset #4 
does not have the highest risk contribution as measured by standard deviation, but very 
clearly does by VaR and CVaR. 

The consequence of this for a portfolio manager is important. For an optimal portfolio, 
risk contribution must be in constant ratio to excess return, across the portfolio. As VaR 
and CVaR penalize tail risks more than standard deviation does, it must be the case that 
in the VaR- or CVaR-optimal portfolios the tail-risky assets will have lower allocations 
than they will in the standard-deviation-optimal portfolio. 
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Figure 13.7. Risk contributions by standard deviation, VaR and CVaR for test portfolio. (The signs 
of the VaR and CVaR contributions have been reversed to make them positive.) Less correlated 
assets have a lower risk contribution (compare #21-#35 with #36-#50), by all three measures. Big 
exposures to unlikely risks are heavily penalized by VaR and CVaR, compared with standard 
deviation.  
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Conclusions 
We have covered quite a lot of ground in this chapter and the conclusions can be 
summarized as follows. 

 
VaR/CVaR vs. standard deviation 

• First, VaR and CVaR both give a more complete picture of potential loss than 
standard deviation does. This is particularly relevant for distributions that have 
appreciable downside risk. 

 
CVaR as an improvement on VaR 

• VaR is very difficult to estimate satisfactorily from Monte Carlo simulation of a 
model. 

• CVaR is theoretically sounder than VaR because of convexity. This does not 
mean that VaR will always fail to be convex�often it is�but it is not possible for 
CVaR to exhibit non-convexity. Importantly, the estimated CVaR will always be 
convex too, provided it is estimated �in a sensible way�. 

• Using CVaR does not completely remove all the difficulties associated with 
estimating VaR; rather, CVaR is �one order of differentiability smoother than� 
VaR. This means that  - 

o estimating the first derivative of CVaR is about as awkward as 
estimating the VaR; 

o estimating the second derivative of CVaR is about as awkward as 
estimating the first derivative of VaR; and so on. 

• VaR and CVaR can be cleanly estimated from analytical conditional 
independence models, and this is why we regard these as the best way to do 
portfolio analysis. These techniques have the additional advantage of not 
introducing simulation error.  

 
VaR and CVaR vs. standard deviation 

• VaR and CVaR penalize severe but unlikely risks much more than standard 
deviation does. This is not intuitively surprising, but a mathematical explanation 
is quite difficult (though an elegant one is given in the reference cited below95). 
Consequently if VaR or CVaR is used as a risk measure then these tail risks will 
seem less attractive, from a risk/return perspective, than if standard deviation is 
used.   

So beware: altering your risk measure causes your optimal portfolio to vary. 

 

 

                                                                                 
95 R. Martin et al: �VaR: Who contributes and how much?�, RISK, August 2001. 
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Appendix 
General proof of Eq. (1): VaR sensitivity 
Recall that the characteristic function is defined by 

][)( i YeEC ω=ω ,     1i −= , 

and that the density of Y is recovered from the characteristic function by the inverse 
Fourier integral 
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(This needs careful interpretation because the integral runs through a singularity at ω=0, 
but we shall not go into the details96.) Differentiating w.r.t. the j�th asset allocation gives 
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Now we want the tail probability to remain fixed, while the VaR (i.e. y) varies, so the left-
hand side must be zero. Also we can write out  
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The integral in the numerator is the Fourier representation of the delta function (spike) at 
Y=y, and we already know the denominator (as the density function at y) so the result is 
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A large amount of theory rests on this method of proof, including as we shall see later 
the results for expected shortfall, and all the saddle-point methodology. We have not 
talked about the saddle-point method yet, as it is very advanced, but it can be viewed as 
a method of handling the Fourier integrals used in the above derivation. 

                                                                                 
96 Essentially one perturbs ω at the origin to give it a positive imaginary part. 
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General proof of Eq. (2): CVaR sensitivity 
To work out the CVaR we first need to calculate, for the distribution of Y, the expected 
payout of a put option �struck� at the VaR. 

 

 

 

 
 
This can be obtained by integrating the tail probability function 
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The CVaR is obtained from the equation 
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where P is the lower tail probability. Differentiating with respect to asset allocation gives 

��
∞

∞−

ω−
∞

∞−

ω− ω
ω

ω
π∂

∂+ω
ω∂

ω∂
π

+
∂
∂=

∂
∂ deC

Pa
yde

a
C

Pa
yCVaR

a
y

j

y

jjj

1)(
i2

11)(
2

1 i
2

i  

and now the first and third terms cancel, because of (*). Using the result for 

jaC ∂ω∂ /)(  that we obtained before, we arrive at 

]|[
)(

)](1[
yYXE

yYP
yYXE

CVaR
a j

j

j
<=

<

<
=

∂
∂ ,    Q.E.D. 

 

General proof of Eq. (3): Second derivative of CVaR 
We have obtained that 
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and differentiate again: 
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Previous working shows that the second term tidies up to give 
jk a

y
a
y

∂
∂

∂
∂ , and we already 

know the first derivatives of VaR. Also 
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as required. 
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Appendix 
Single-name Credit risk modeling  
Overview of models 
 

There are three main quantitative approaches to single-name credit risk modeling: 

• Reduced form models concentrate on the spread between non-risky and risky 
rates. They deal with debt directly (a great strength) and say nothing about equity 
(a weakness). Default arrival is described by a Poisson process and is totally 
unpredictable. The key ingredients of these models are interest rates, hazard 
rates and recovery value.  

Reduced form models were studied by Artzner & Delbaen (1995), Jarrow & 
Turnbull (1995) and Duffie & Singleton (1999). 

• Structural models concentrate on the evolution of a firm�s assets. Default 
happens when assets fall below a threshold (either discrete or continuous). In 
general, default is predictable and overnight default risk is close to zero. The firm 
is �dissolved� at maturity. Equity is priced as a call option on the assets of the 
company, while debt is priced as the present value of the terminal debt minus a 
put option on the assets. Clearly, the sum of equity and debt equals the value of 
the assets. These category of models are used in practice for a variety of 
purposes (KMV, CUSP, Credit Grades, etc.)  

Structural models have been particularly successful recently, for two main 
reasons: firstly, they are able to unify equity and debt in a single model; secondly, 
they naturally handle the non-linear payoff of corporate securities and, in 
particular, the asymmetrical nature of credit risk caused by the possibility of 
default. 

The original option based structural model was developed by Merton (1974) on 
the basis of Black & Scholes�s work (1973). Black, Fischer & Cox (1976) 
expanded the model by introducing a barrier triggering default before maturity. 
Advanced structural models featuring jump-diffusion characteristics, where a firm 
can default unexpectedly due to sudden drops in assets value, were introduced 
by Zhou (1997) and subsequently developed by Kijima & Suzuki (2001) and 
Hilberink & Rogers (2002). 
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• Hybrid models combine the reduced form and structural approaches. They 
model default as a completely unexpected event characterized by an 
instantaneous default probability like the reduced form models, but they express 
this probability as a function of the share price, somehow bringing the capital 
structure of the company into the picture. Hybrid models are particularly useful to 
model securities that combine equity and debt features, such as convertible 
bonds. They have important implications for purely equity products and elegantly 
explain volatility skews.  

We now review the different categories of models in greater detail, providing some 
highlights about the underlying theory. We start with reduced form models, move on to 
hybrid models, and finally thoroughly examine structural models. 

 

Reduced form models 
Reduced form models assume that default occurs without warning at an exogenous 
default rate or intensity, and is therefore unpredictable. These models do not try to 
explain the reasons why default occurs, and the intensity model is inferred from market 
prices.  

Assumptions 
The dynamics of the intensity are specified under the risk-free probability Q  and all 

expectations are calculated under this probability measure (the notation used is ][⋅QE ). 

Taking as given the random default time τ , we define the default process N  by 

�
�
� ≤τ

== ≤τ notif0
if1

1 }{
t

N tt  

The default process described is increasing, namely it has an upward trend: the 
conditional probability at time t  that the firm defaults by time ts ≥  is not less than tN  
itself. We can decompose tN  in two separate processes: a martingale (whose value at 
time t  equals the conditional expectation of future values) and a so-called compensator 

τA  (which captures the upward trend in N ). The compensator describes the 
cumulative, conditional likelihood of default, and it is parameterized through a non-
negative process λ  by setting 

� λ== τ
τ t

sttt dsAAA
0),min(   with, . 

The variable tλ  describes the conditional default rate or intensity. Under the 
assumption that the intensity λ  is constant, the default process is a homogenous 
Poisson process with intensity λ , stopped at its first jump. Thus τ  is exponentially 
distributed with parameter λ  and the pricing (or risk-neutral) probability of default is 
given by 

TeTq λ−−= 1)( . 
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Given the default probability, it is possible to calculate the intensity as 

)(1
)(
Tq

Td
−

=λ , 

where d  is the density of q . In the view of this representation, in the statistical literature 
λ  is often called hazard rate. 

On the other hand, if )(tλ=λ  is a deterministic function of time, then N  is an 
inhomogeneous Poisson process with intensity λ , stopped at the first jump. The default 
probability is given by 

�−= λ− T duueTq 0 )(1)( . 

Finally, if )( tλ=λ  is a stochastic process such that conditional on the realization of the 
intensity, N  is an inhomogeneous Poisson process stopped at its first jump, then N  is 
a Cox process, or doubly-stochastic Poisson process. The conditional default probability 
given the intensity path up to time T  is 

�−= λ− T
udueTq 01)( , 

and the expected default probability can be expressed as 

][ 01)( �−=
λ− T

uduQ eETq . 

Valuation 
Reduced form models have the desirable characteristic of producing tractable valuation 
formulas. If we consider a zero coupon bond paying 1 at maturity T  if there is no 
default, or R  at time T  if default occurs, the bond price is 

)()1(11 ][ }{}{0 TqReeREeB rTrT
TT

QrTT −−=+= −−
>τ≤τ

− . 

The variable R  is the recovery value of the bond, namely the fraction of the principal 
amount that the investor manages to get back in case of default, and )(Tq  is the 
market-implied default probability. It is interesting to point out that the value of such a 
bond is the value of an otherwise equivalent risk-free bond, minus the present value of 
the expected loss due to default. Even more interesting is the case where the intensity 
λ  is constant and recovery value is zero, in which case the valuation formula becomes 

TrrTT eTqeB )(
0 ))(1( λ+−− =−= , 

where we can calculate the price of the defaultable zero coupon bond the same way we 
would valuate a risk-free bond, only making sure to increase the discount rate by λ . 

It is worth pointing out once again that default is modeled as being always unexpected. 
This characteristic is one of the major strengths of reduced form models. We will see 
that for basic structural models the short-term default probability is close to zero, which 
is in contrast with the empirical evidence. On the contrary, in the case of reduced form 
models default can happen at any point in time, and this naturally explains the greater 
than zero observed short-term credit spreads. 



 

 The Quantitative Credit Strategist
Single-name Credit risk modeling

  

 

 178 29 October 2004

Hybrid models 
Hybrid Models build upon the results of the Reduced Form models by defining specific 
functions for the hazard rate λ . In these models the hazard rate, namely the 
instantaneous probability of default, is typically expressed as a function of the share 
price. This allows us to tie the likelihood of default into information reflecting the current 
fundamental value of the firm. To this extent Hybrid Models move away from the 
Reduced Form models� approach � which do not try to explain the reasons of default at 
all � and take a step in the direction of Structural Models, which we will examine in the 
next section. 

Assumptions 
In order to define the hazard rate function, it is convenient to express the equity value of 
a firm in terms of units of a so-called �money market account� )(tB . This can be done 
simply by dividing the stock price )(tS  by  

�=
t duuretB 0 )()( ,  

( )(ur  is the continuously compounded  interest rate earned on the account), obtaining 

)(
)()(

tB
tSts = . 

Under this assumption the discounted price is modeled as a martingale with 

)()()( tdWtstds σ=  

where )(tW  is a standard one-dimensional Brownian motion. 

We can therefore express the hazard rate as a function of this relative stock price. 
Madan and Unal (1998) make the assumption that  

.
)(ln

))(()(

2

�
�

�
�
�

�
�
�

	


�

�

δ

=

φ=λ

ts

c
tst

 

If δ  lies below the current value of )(ts , then λ  is a decreasing function of the equity 
value, with the hazard rate tending to infinity as )(ts  approaches δ . This simply means 
that the instantaneous risk of default increases as the equity value goes down. On the 
other hand, if δ  is above the current equity value, then a positive relation is possible. 
This may be appropriate when the value of the equity increases as a consequence of 
increased assets volatility, therefore creating greater risk for the bond-holders (see the 
Structural Models section for greater details about viewing contingent claims on a 
company�s assets as options). The exact value of δ  has to be determined empirically. 
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Valuation 
We have seen before how it is possible to derive the risk-neutral probability of default 
when the hazard rate is a stochastic function of time )(tλ . Obviously, the risk-neutral 
probability of no default is simply the complement of ),( Ttq , namely 

][ )(),( �=
λ− T

t dtuQ eETtF . 

The price of the defaultable bond, as a function of ),( TtF , is therefore given by 

 ))],(1(),([)( TtFRTtFEeB QtTrT
t −+= −− , (A.1) 

where R  is again the recovery value. 

Given the assumptions we have made we are in a Markov setting, and the pricing 
probability of default can be expressed as 

),(),( tsTtF ψ= , 

where s  is the discounted equity price as previously defined. It is easy to observe that  

)(0 )( se
t duu ψ� λ−  

is a risk neutral martingale and hence by Itô�s lemma the function ψ  has to satisfy the 
partial differential equation 

1),( to subject),,()(),(),(
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2 =ψψφ=
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The solution is given by 
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and )(yGa  satisfies the ordinary differential equation 

1)0(,1)0( to subject,01
2

32 −=′==−′�
�

�
�
�

� −+′′ GGaGGyGy . 

Once the function ),( tsψ , and therefore ),( TtF  has been determined, plugging it into 
Equation A.1 gives the price of the defaultable bond. 
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Structural models 
In 1974, Robert Merton introduced a simple model that links equity to debt. This model 
relies upon the sharing rule of the firm�s assets between two main classes of 
claimholders, the shareholders and the bondholders. Models of this type have since 
become known as structural models, as these describe the capital structure of the firm. 

Assumptions 
Merton assumed an underlying process that represents the total value of the firm�s 
assets A . The equity and debt claims are priced off this process. The main hypotheses 
of Merton�s framework are: 

1. The value of the firm follows a standard geometric Brownian motion (GBM), thus 
providing the same mathematical tools available in the Black-Scholes world. The 
process is described in mathematical terms as follows: 

0, 0 >σ+µ= AdWdt
A

dA
t

t

t , 

where µ  is a drift parameter, σ  is a volatility parameter and W  is a standard 
Brownian motion. Applying Itô�s lemma the above equation can be re-written in finite 
terms: 

tWt
t eAA σ+σ−µ= )(

0
2

2
1

. 

2. The total value of the firm is financed by equity E  and one representative zero-
coupon bond TB , maturing at T  with face value F , so we get    

TTT EBA += . 

3. The priority rule cannot be violated: shareholders obtain a positive payoff only in the 
case that debt-holders are completely reimbursed. 

4. There are neither cash flow payouts nor issues of any type of security during the life 
of the debt or bankruptcy costs. It is also assumed that the firm can�t be liquidated 
before maturity. This implies that default can only happen at maturity. 

Valuation of the equity and debt claims 
In the event the face value payment is not met, i.e., the firm defaults, the bondholders 
receive the entire value of the firm and the equity-holders of the firm receive nothing. 
Hence the value at maturity of the bond TB  is given by 

),min( FAB TT = . 
 

Figure A.1 represents the payoff diagram for TB . 
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Figure A.1 
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Source: CSFB 

 

 

We can also write the above equation as  

)0,max( FAAB TTT −−=  

from which we can identify E  as 

)0,max( FAE TT −= . 
 

Figure A.2 represents the payoff diagram for TE . 

Figure A.2 

 

TAF

Equity 
price

TATAF

Equity 
price

 
Source: CSFB 

 

The value of the equity is then equal to that of a European call option 0c  on the assets 
of the company, where the maturity of the option corresponds to the maturity of the firm 
and the principal payment on the debt F  corresponds to the strike of the option (see 
Figure A.2 above).  

In the Black-Scholes economic setting the value of the equity is 

)()( 21000 dFedAcE rT Φ−Φ== − , 
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where 

Tdd
T

AFTr
d σ−=

σ

−σ+
= 12

0
2

1 ,
)/ln()2/(

, 

)(⋅Φ  is the standard normal cumulative distribution function and r  is the risk-free rate. 

We can also write TB  as  

)0,max( TT AFFB −−= . 

Therefore, the value of the bond at time 0 is 

00 pFeB rT −= −  

where 0p  is the value of a European put struck at F  maturing at T . The value of the 
put is  

)()( 2100 dFedAp rT −Φ+−Φ−= − . 

So the debt-holder is a holder of a risk-free loan and short a put option on the firm�s 
assets. It is easy to verify, using put-call parity, that the market value identity holds 

000 BEA += . 

These equations clearly show how, although both equity and debt values  depend on the 
leverage of the firm (the 0/ AF  ratio embedded in the 1d  and 2d  variables), the assets 
value does not.  

Default Probability 
We have seen before that the assets value at time t  is given by 

tWt
t eAA σ+σ−µ= )(

0
2

2
1

. 

We can use this result to calculate the default probability of the bond, namely the 
probability that the assets value falls below the face value of debt F  at maturity. Since 

TW  is normally distributed with a zero mean and variance T , the default probability 
)(Tp  is  

[ ] �
�
�

�
�
�
�

�

σ

−
Φ=−<σ=<=

T

mTAF
mTAFWPFAPTp TT

)/ln(
)/ln(][)( 0

0 , 

where, once again, )(⋅Φ  is the standard normal cumulative distribution function, and 

)2/( 2σ−µ=m . 

Credit Spread 
Finally, let us derive a formula for the credit spread. The credit spread is the difference 
between the yield of a defaultable zero-coupon bond and the yield of an otherwise 
equivalent default-free bond. It is a measure of the compensation the investors require 
for taking on the risk associated to the potential default losses. The relationship between 
the yield and the price at time t  of a bond maturing at time T  is 

))(,(),( tTTtyeTtB −−= . 
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The spread ),( TtS  at time t  is therefore 

tT
B

B
tT

TtS
T
t

T
t >

��
�

�

�

��
�

�

�

−
−= ,ln1),( , 

where T
tB  is the price of the default-free bond maturing at time T . The term structure 

of credit spreads is the schedule ),( TtS  against T , keeping t  fixed. Under the Black-
Scholes economic setting the price of the riskless bond is 

)( tTrT
t FeB −−= , 

therefore the term structure is given by 

0,)()(ln1),0( 1
0

2 >��
�

�
��
�

�
−Φ+Φ−= Tde

F
A

d
T

TS rT , 

which is a function of maturity T , assets volatility σ , the leverage ratio 0/ AF  and the 
risk-free rate r . 

Advanced structural models 
One problem of the traditional structural Merton model is that default can only happen at 
maturity. Even if the value of the firm gets very close to zero (before maturity), there is 
no mechanism to trigger default. This does not reflect the economic reality, as usually 
there are covenants in place that grant to credit-holders the right to reorganise the 
company if its value goes below a certain level.  

To get around this undesirable behavior, a knock-out threshold or barrier can be 
introduced, at the level of the firm�s debt.  If the value of the assets drops below the barrier 
at any point in time, the firm defaults. Thus, default can occur during the life of the firm, as 
opposed to the traditional structural models, in which default can only happen at maturity. 
With this �trick� we can generate the entire default curve, i.e., the default probabilities over 
different time horizons. This allows us to price any debt instrument of any maturity using 
the calculated default probabilities, and to make relative value decisions between several 
issues of the same issuer. In principle, any risky security can be priced using the default 
curve.  

Default Probability 
If we allow the bond to default before maturity, when the value of the assets falls below 
the threshold D  (which we assume to be less than the current asset value 0A ), then 
the time at which the bond defaults is a continuous random variable defined as 

}:0inf{ DAt t <>=τ . 

The default probability is then 

][ )/log()(min][)( 0ADWmsPDMPTp s
Ts

T <σ+=<=
≤

, 

where M  is the minimum of the firm values s
ts

t AM
≤

= min  and )2/( 2σ−µ=m . 
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Since the distribution of the minimum of an arithmetic Brownian motion is inverse 
Gaussian, the default probability is given by 

�
�
�

�
�
�
�

�

σ

+
Φ�

�
�

�
�
�
�

�
+��

�

�
�
�
�

�

σ

−
Φ= σ

T

mTAD
A
D

T

mTAD
Tp

m
)/ln()/ln(

)( 0

2

0

0 2
. 

Another limitation of traditional structural models is that default can be anticipated. This 
is because the geometric Brownian motion assumed for the value of the firm is 
continuous at any point in time and can only �diffuse� towards the level of the firm�s 
value that triggers default, therefore making it to some extent predictable. A continuous 
diffusion process as in Merton�s original model has therefore (almost) zero probability of 
hitting the barrier over a small time interval. Consequently, structural models predict a 
null short-term credit spread (a defaultable bond is not riskier than a Government Bond 
if we know it will not default overnight), which is in contrast with empirical observation. 

A second modification can be introduced to solve the short-term spread problem. The 
value of the firm still follows a standard geometric Brownian motion, but on top of it a 
jump process is added. This captures the fact that default could be triggered by a 
sudden, unexpected negative event. The jump process represents the possibility of the 
firm instantaneously defaulting due to the arrival of catastrophic information regarding, 
for example, litigation or fraud. 

Figure A.3 represents two possible paths followed by the firm�s assets where the above 
modifications have been introduced. When the value of the assets hits the barrier before 
maturity, the firm defaults. Also, a jump can occur, in which case the firm can potentially 
default instantly. This type of model is called a jump-diffusion model. 

 

Figure A.3 
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Finally, another advantage of advanced structural models over the traditional ones is 
their flexibility of calibration. Although the original Merton�s model is over-determined 
(it�s not possible to calibrate the model consistently to both the equity market and the 
credit market simultaneously), models characterized by jump-diffusion and continuous 
barrier are not, and can be tuned to fit equity and credit prices simultaneously. 
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The first jump-diffusion model was proposed by Zhou (1997). It extends Merton�s 
original model by replacing the GBM with a general jump-diffusion process 

0)0(,)1()(/ AAdNdWdtAdA =−Π+σ+λκ−µ= , 

where N  is a Poisson process with intensity λ  and Π  is an i.i.d. log-normal variable 
such that ),(~ln 2

ππ σµΠ N . This implies that 

1]1[ 2/2
−=−Π=κ ππ σ+µeE . 

This stochastic process has two components: one that characterizes the normal 
fluctuation in the firm value, caused by the continuous flow of economic information into 
the market, and another that describes the sudden changes, the jumps in the assets 
value, due to the arrival of unexpected important information. The jump-diffusion 
process seems therefore appropriate to model a firm�s default risk: the market value of 
the assets move continuously most of the time, but default can be triggered at any time 
by a sudden, dramatic drop in the firm�s enterprise value. 

The key difficulty with this approach is the lack of tractability, which is due to the fact that 
barrier problems for jump-diffusion are very difficult to solve. Zhou used the brute force 
Monte Carlo method, which is extremely slow (especially if calibration is involved). This 
methodology involves simulating thousands of possible random paths that the assets of 
the firm can follow, computing the payoff to the investor in each single one, discount it 
back and finally averaging out the results. The simulation is run under the risk-neutral, 
market implied probability measure Q , employing the stochastic process above 
rewritten in the following form 

dNdWdtrXdX )1()(/ −Π+σ+λκ−= , 

where FAX /= . The equation can also be restated as 

dNdWdtrXd )ln()2/(ln 2 Π+σ+λκ−σ−= . 
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CUSP: CSFB�s structural model 
CSFB�s original Credit Underlying Securities Pricing model (CUSP) employs a structural 
approach to the modeling of credit risk. 

CUSP is an extension to the original Contingent Claim model proposed by Merton. As 
shown before, Merton modeled equity as a call option on the firm�s assets and debt as a 
risk-free loan plus a short put option on the firm�s assets. He used a simplified model of 
the firm, with only two classes of securities: stocks and a zero-coupon bond maturing in 
one year (whereas CUSP uses a 10-year bond). At the end of the year, the company 
liquidates itself. If the value of the firm�s assets at the time is above the face amount of 
the debt, the equity holders pay off the liability and walk away with the residual. On the 
other hand, if the asset value of the firm falls below the face amount of the debt, the 
equity holders declare bankruptcy and walk away with nothing, while the debt holders 
receive the recovery value of the firm. The fact that equity and corporate debt are both 
derivatives of a same underlying asset implies certain theoretical relationship between 
the two should hold (i.e. put-call parity). 

The main limitation of Merton�s model is that its implementations, such as CUSP, are 
necessarily issuer-based, rather than issue-based: they cannot differentiate risk/relative 
value over different issues of the same issuer, e.g., a 5-year bond vs. a 10-year bond. 
Consequently, CUSP models a 10-year liquid bond as a proxy for the �generic� 
company�s credit.  

Unlike other structural credit models, which focus upon default probabilities, CUSP�s 
objective is to model the risk and reward associated with movements in credit spreads. 
This makes CUSP ideally suited as a tool for high-grade credit markets, where spread 
risk rather than default risk is the central issue. CUSP has affirmed itself as a market 
standard in credit structural modeling, alongside products such as KMV and 
CreditGrades. 

CUSP�s output measures are the Spread Widening Risk (SWR) and the Probability 
Weighted Return (PWR). SWR is CUSP's basic risk statistic, defined as the amount that 
the credit spread will widen given a one standard deviation decline in the equity price 
over a 3-month horizon. Again, SWR is calculated at the issuer level - i.e. one statistic 
for each issuer. PWR, on the other hand, is CUSP's basic return measure, defined as 
the expected bond return (for a hypothetical 10-year par bond). The PWR represents 
the debt 3-month total return averaged over the distribution of possible stock outcomes 
as given by the current equity volatility. The PWR incorporates both the change in debt 
price and carry over a 3-month horizon for a par 10-year bond. 

A significant improvement that CUSP introduces over the original Merton�s model is a 
�volatility smile� parameter. When the asset value of a highly leveraged firm goes below 
a certain level, CUSP automatically boosts the asset�s volatility in order to obtain a 
higher SWR than would otherwise be calculated. Empirical testing shows that this 
extension to the original model fits better the market data. 

 



 

 The Quantitative Credit Strategist
Single-name Credit risk modeling

  

 

 29 October 2004 187

At the present day there are more than 800 names modeled in CUSP that are made 
available via the web97. The delivery platform we have developed is highly accessible 
and interactive: the CUSP�s universe can be explored in several different ways, and the 
data can be analyzed in both numerical and graphic form.  

Typical uses of website include:  

• listing issuers from a specific sector or portfolio and sort them by SWR, to identify 
the riskiest credits according to CUSP;  

• sorting by SWR z-score to identify the most improved and least improved risks 
according to CUSP;  

• sorting by PWR for CUSP�s relative value ranking of the most attractive and least 
attractive issuers in a sector or portfolio; 

• viewing historical charts of PWR, SWR, LIBOR Spread, Stock Price and Stock 
Volatility at an individual or aggregate level. 

More details about CUSP, the way the model works and its possible uses can be found 
in the technical document �Introduction to CUSP� available on the website. Alternatively, 
you can contact directly the CUSP Team98. 

 

                                                                                 
97 The CUSP website is accessible to all CSFB�s customers at www.cusp.com using the usual CSFB 
Research & Analytics ID and password. 
98 US: Jonathan Song, 1-212-325-1768, jonathan.song@csfb.com; Jason Rayman, 1-212-325-4908, 
jason.rayman@csfb.com; David Crick, 1-212-325-3070, david.crick@csfb.com. Europe: Recai Gunesdogdu, 
44 207 883 7978, recai.gunesdogdu@csfb.com; Derek Hynes, 44 207 888 8107, derek.hynes@csfb.com. 
Asia: Yusuke Ueda, 81 3 5777 7174, yusuke.ueda@csfb.com 
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CUSP+: CSFB�s advanced structural credit risk model 
CUSP+ gets around most of the limitation that apply to the traditional structural models 
and to CUSP. 

The two main changes introduced in CUSP+ are a knock-out threshold, which allows for 
the possibility of a default to happen before the debt matures, and a jump-diffusion 
process for the firm�s value, which introduces the short-term component of credit risk � 
the firm can default suddenly and unpredictably. 

In CUSP+ the knock-out threshold or barrier is equal to the face value of debt, while 
jumps are modeled such that the firm value drops to 40% of the face value of debt 
(recovery value), automatically triggering default. (Figure A.4). The main benefit of these 
two simplifications is that we developed a closed form solution to the problem, allowing 
us to avoid computational intensive (and rather imprecise) Monte Carlo simulations. 

The �technical� innovations not only reflect more closely the real behavior of credit in the 
marketplace, they also allow for a more flexible calibration of CUSP+. The model can be 
calibrated to both the equity market and the credit market, depending on the investor�s 
view. For example, if you believe the equity markets are correctly priced, you can 
calibrate the model to the equity price and two points on the option volatility surface, and 
imply the credit curve. Or you can calibrate to the credit market, and the model would 
generate the entire equity volatility surface. As a third alternative, if you believe the 6-
month ATM volatility and 5-year CDS spread are both liquid, i.e., �correct�, you might 
actually calibrate the model to these two prices plus the stock price.  You can then find 
relative value on the credit curve off the 5-year point.  These methodologies are 
illustrated in Figure A.5. 

Hedge ratios can also be calculated from the model as well, as they represent the 
sensitivities or partial derivatives of the instrument with respect to the underlying 
parameters of the model. 

 

Figure A.4 
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Figure A.5 
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