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Introduction to Credit Risk

1. Financial risks: an example

2. Classification of risks

3. Market vs. credit risk

4. Credit ratings and credit events

5. Some economic principles of credit risk

6. Credit spreads

7. Outlook
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Risks of Holding an Option

The risks an option holder is exposed to include the following:

• Changes in the market value or volatility of the underlying

• Changes in risk-free interest rates

• Lack of liquidity if sale is intended

• Catastrophic events like those on September 11, 2001

• Fluctuation of the credit quality of the option seller, or worse, failure

to honor obligation at option maturity (applies only if option is in

the money)
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Zoology of Financial Risks

• Market risk: possibility of unexpected changes in market prices and

rates

• Operational risk: possibility of mistake or breakdown in trading/risk

management operation

– mis-pricing of instruments

– mis-understanding of involved risks

– fraud (’rough trader’)

– systems failure

– legal exposure due to inappropriate services
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Zoology of Financial Risks (2)

• Liquidity risk: possibility of increased costs/inability to adjust

position(s)

– bid-ask spreads widen dramatically over a short period of time

– access to credit deteriorates

• Credit risk: possibility of losses due to unexpected changes in the

credit quality of a counterparty or issuer

• Systemic risk: market-wide liquidity breakdowns or domino-style

correlated defaults
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Some Sources of Credit Risk Exposure

• Exposure to the credit risk of an underlying, for example

– bank loan

– corporate or sovereign bond

• Exposure to the credit risk of the (OTC) counterparty: vulnerable

claims

• Combinations of both, for example with options on corporate bonds
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Market vs. Credit Risk

Basically, credit risk is part of market risk. But there are illiquid

contracts for which market prices are not available, for example loans.

Other factors calling for a distinction are as follows.

Market Risk Credit Risk

Time horizon short (days) long (years)

Portfolio static dynamic

Hedging standardized often customized (improving)

Information market related contract specific

Data abound sparse
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Credit Ratings

Ratings describe the credit worthiness of bonds; they are issued by

(private) rating agencies.

• S&P: classes AAA, AA, A, BBB, BB, B, CCC, with AAA the best

• Moody’s: classes Aaa, Aa, A, Baa, Ba, B, Caa, with Aaa the best

• Bonds with ratings of BBB/Baa and above are considered

’investment grade’; those below are considered non-investment grade
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Average Cumulative Default Rates

Complete rating universe of S&P, 2001

Years 1 2 3 4 5 10

AAA 0.00 0.00 0.07 0.15 0.24 1.40

AA 0.00 0.02 0.12 0.25 0.43 1.29

A 0.06 0.16 0.27 0.44 0.67 2.17

BBB 0.18 0.44 0.72 1.27 1.78 4.34

BB 1.06 3.48 6.12 8.68 10.97 17.73

B 5.20 11.00 15.95 19.40 21.88 29.02

CCC 19.79 26.92 31.63 35.97 40.15 45.10
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Credit Events

Credit events indicate/document a credit quality change of an issuer.

• Credit rating change

• Restructuring

• Failure to pay

• Repudiation

• Bankruptcy

In case of the last three events we also speak of a ’default’.
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Why Measure and Manage Credit Risk?

• In perfect capital markets, adding/subtracting financial risk has no

impact on the market value of a firm (Modigliani-Miller)

• In imperfect capital markets, measuring and managing financial risk

has significant benefits

• Due to informational asymmetries, credit markets are imperfect

Kay Giesecke



Introduction to Credit Risk 1 - 11

Adverse Selection and Moral Hazard

How can a bank respond to credit market imperfections?

• Increase average interest rates (take a ’lemon’s premium’ )

– adverse selection: bad risks remain at the bank

– moral hazard: incentive for borrower to gamble, particularly for

large loan sizes

• Reduce exposure, but this may lead to credit rationing and reduces

potential profits

In practice, banks would set both interest rates and exposure limits

according to the measured credit risk of the borrower.
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Treasury vs. Corporate Bond Yields

Maturity (years) Treasury yield Corporate bond yield Yield spread

1 5% 5.25% 0.25%

2 5% 5.50% 0.50%

3 5% 5.70% 0.70%

4 5% 5.85% 0.85%

5 5% 5.95% 0.95%

The credit yield spread is the difference in the yield between a

defaultable and a non-defaultable (credit risk-free) bond. The spread is

the excess yield which compensates the bond holder for bearing the

credit risk of the bond issuer.
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Credit Spreads

• Two types of bonds: default free and defaultable

• B̄T
t price at time t of a default free zero-coupon bond paying 1 at T

• Bond yield ȳ(t, T ) satisfies B̄T
t = e−ȳ(t,T )(T−t)

• BT
t price at time t of a defaultable zero-coupon bond paying 1 at T

• Bond yield y(t, T ) satisfies BT
t = e−y(t,T )(T−t)

• Credit yield spread S(t, T ) is then

S(t, T ) = y(t, T )− ȳ(t, T ) = − 1
T − t

ln
BT

t

B̄T
t

• The term structure of credit spreads is the schedule of S(t, T )
against T
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Default Modeling Paradigms

How can we model the default event, default probabilities, and bond

prices?

1. Structural approach: economic arguments about why a firm defaults

(a) Classic option-theoretic model of Merton (1974)

(b) First-passage model

2. Reduced form/intensity based approach: tractable ad-hoc financial

engineering type approach

3. Hybrid approach: unifies economic and financial engineering type

arguments
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Goals of This Course

• Provide an understanding of the basic principles of credit risk

• Learn how to model default events, default probabilities, and bond

prices

• Learn how to calibrate and apply these models in practice

• Provide an understanding of the structure and rationale of popular

derivative products for credit risk insurance

• Learn how to analyze the risk and value of these transactions
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Background Reading

• Das, S. (1998), Credit Derivatives: Trading and Management of

Credit and Default Risk, John Wiley and Sons.

• Tavakoli, J. (1998), Credit Derivatives: A Guide to Instruments and

Applications, John Wiley and Sons.

• Francis, J.C., Frost, J.A., Whittaker, J.G. (1999), Handbook of

Credit Derivatives, Irwin/McGraw-Hill.

• Nelken, I. (1999), Implementing Credit Derivatives: Strategies and

Techniques for Using Credit Derivatives in Risk Management,

Irwin/McGraw-Hill.
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Structural Modeling of Credit Risk

1. Credit spreads and default modeling paradigms

2. Structural modeling: classic approach

3. Structural modeling: first-passage approach

4. Modeling default correlation in the structural approach

5. Implementation in practice
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Classic Model of Merton (1974)

• A firm is financed by equity and a single issue of zero-coupon debt

with face value F maturing at T

• Markets are frictionless (no taxes, transaction costs...)

• Continuous trading

• The total market (or asset) value of the firm V is modeled by a

geometric Brownian motion with drift µ and volatility σ, i.e.

dVt = µVtdt + σVtdWt, V0 > 0

where W is a std. Brownian motion. Thus Vt = V0e
(µ− 1

2 σ2)t+σWt

• V is invariant to the firm’s capital structure

• Interest rates are a constant r > 0; thus B̄T
t = e−r(T−t)
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Default Time

The firm defaults if at the debt maturity T the assets are not sufficient

to fully pay off the bond holders (absolute priority). In this case the

equity investors surrender the firm to the bond investors which then

make use of the remaining assets.

Letting τ denote the default time, we have

τ =





T : VT < F

∞ : else

We define the default indicator function

1{τ=T} =





1 : VT < F (default)

0 : VT ≥ F (survival)
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Payoffs at Maturity

• With absolute priority, we have the following payoffs at maturity T :

Bonds Equity

VT ≥ F F VT − F

VT < F VT 0

• The value of the bonds is BT
T = min(F, VT ) = F −max(0, F − VT )

• And the value of the equity is given by ET = max(0, VT − F )
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Equity as a Call Option

The payoff max(0, VT − F ) to equity at T is that of a call option on the

assets of the firm V with strike given by the bonds’ face value F and

maturity T . The value E0 of equity at time zero is therefore given by the

Black-Scholes (1973) call option formula:

E0 = BSC(σ, T, F, r, V0) = V0Φ(d1)− Fe−rT Φ(d2)

where Φ is the standard normal distribution function and

d1 =
ln(V0

F ) + (r + 1
2σ2)T

σ
√

T

d2 = d1 − σ
√

T
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Valuing the Bonds

The payoff min(F, VT ) = F −max(0, F − VT ) to bond holders at T is

that of a riskless loan F and a short put option on the assets of the firm

V with strike given by the bonds’ face value F and maturity T . The

value of the bonds BT
0 at time zero is therefore given by

BT
0 = Fe−rT −BSP (σ, T, F, r, V0) = Fe−rT Φ(d2) + V0Φ(−d1)

where BSP is the Black-Scholes put option formula. Equivalently, we

can find BT
0 using our previous result as the difference between asset

and equity value, i.e. BT
0 = V0 − E0.
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Risk-Neutral Valuation: Idea

• Black and Scholes: prices of derivatives do not depend on agents’

preferences toward risk

• Hence, prices of derivatives are the same in a world where investors

are risk-neutral (RN)

• But in the RN-world, if there are no arbitrage opportunities,

derivatives prices are just given by the expected discounted payoffs.

• Suppose that some contract pays X at time T . Then today’s

(t = 0) value of this contract is Ẽ[e−rT X]
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Risk-Neutral Valuation

1. There exists a probability P̃ such that all discounted price processes

(Xt)t≥0 are martingales wrt P̃ if and only if there are no arbitrage

opportunities in the financial market. The martingale property

means that Ẽ[e−rT XT ] = X0.

2. P̃ is unique if and only if markets are complete, i.e. every contingent

claim can be replicated.

Two probabilities are thus to be distinguished:

1. Real-world (or objective) probability P , e.g. historical default rates

2. Risk-neutral (or martingale or subjective) probability P̃ : if we talk

about prices of securities
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Another Look at Bond Values

In the risk-neutral valuation framework, the prices of securities are given

by their expected discounted payoffs under the risk-neutral probability:

BT
0 = Ẽ[e−rT (F −max(0, F − VT ))]

= e−rT F − e−rT Ẽ[(F − VT )1{τ=T}]

which is the present value of a riskless loan with face F less the value of

the risk-neutral expected default loss (1{τ=T} = 1{F>VT } is the default

indicator function).
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Estimating F , r, V0, and σ

• F can be estimated from balance sheet data.

• r can be estimated from prices of default-free (Treasury) bonds.

• In order to estimate V0 and σ indirectly, we first observe the equity

value E0 and its volatility σE directly from the stock market. Using

these quantities, we then solve a system of two equations for V0 and

σ. The first is provided by the equity pricing formula, relating assets,

asset volatility and equity:

E0 = BSC(σ, T, F, r, V0)

The second can be obtained via Ito’s formula applied to the equity

value,

σEE0 = Φ(d1)σV0
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Default Probability

We have for the default probability

P [τ = T ] = P [VT < F ] = P [V0e
(µ− 1

2 σ2)T+σWT < F ]

= P [WT <
ln( F

V0
)− (µ− 1

2σ2)T
σ

]

= Φ(
ln( F

V0
)− (µ− 1

2σ2)T

σ
√

T
)

since WT is normally distributed with mean zero and variance T . Setting

µ = r, we find the risk-neutral default probability

P̃ [τ = T ] = Φ(−d2) = 1− Φ(d2)
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Credit Spreads in the Classic Model

From our general spread formula we find

S(0, T ) = − 1
T

ln
(

Φ(d2) +
1
d
Φ(−d1)

)

where d = F
V0

e−rT is the discounted debt-to-asset value ratio.

We see that the spread is a function of

• maturity T

• asset volatility σ (a proxy for the firm’s business risk)

• leverage d (a measure of the firm’s leverage)
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The Term Structure of Credit Spreads
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We set the parameters r = 6% per year, σ = 20% per year. In the figure

we plot credit spreads S(0, T ) as a function of maturity T for varying

degrees of firm leverage d. For d < 1 the term structure is hump-shaped,

for d ≥ 1 it is decreasing.
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The Term Structure of Credit Spreads (2)
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We set the parameters r = 6% per year, d = 0.9. In the figure we plot

credit spreads S(0, T ) as a function of maturity T for varying degrees of

asset volatility σ.
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Short Credit Spreads

The short spread is the credit spread for for maturities going to zero. It

is the premium bond investors demand as compensation for bearing the

issuer’s default risk over an infinitesimal period of time.

It can be easily checked that in the classic model the value of the short

spread depends on the leverage ratio d:

• d < 1: limT↓0 S(0, T ) = 0

• d ≥ 1: limT↓0 S(0, T ) = ∞
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What Can be Criticized?

• Simple capital structure

• Costless bankruptcy

• Perfect capital markets

• Risk-free interest rates constant

• Only applicable to publicly traded firms

• Empirically not plausible

• Default only possible at the maturity of the bonds
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First-Passage Default Model

As Black-Cox (1976), we recognize that the firm may default well before

T . Let us suppose that a default takes place if the assets fall to some

threshold level D < V0 for the first time:

τ = min{t > 0 : Vt ≤ D}

Note that

{τ ≤ t} = {min
s≤t

Vs ≤ D} = {min
s≤T

(V0e
(µ− 1

2 σ2)s+σWs) ≤ D}

Kay Giesecke



Structural Modeling of Credit Risk 2 - 18

Default Probability

Setting m = µ− 1
2σ2, we have for the default probability

P [τ ≤ T ] = P [min
s≤t

(ms + σWs) ≤ ln(D/V0)]

That is, we are looking for the distribution function of the running

minimum

Mt = min
s≤t

(ms + σWs)

of a Brownian motion with drift m and volatility σ. This distribution is

known to be inverse Gaussian and we have, setting x = ln(D/V0),

P [τ ≤ T ] = Φ
(

x−mT

σ
√

T

)
+ e

2mx
σ2 Φ

(
x + mT

σ
√

T

)
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A Quick Look at Bond Prices

Consider a zero coupon bond which has zero recovery–in the event of a

default a bond investor loses all of his/her initial investment. If arbitrage

opportunities are ruled out, then the price BT
0 of this bond is given by its

expected discounted payoff under the risk-neutral probability:

BT
0 = Ẽ[e−rT 1{τ>T}] = e−rT (1− P̃ [τ ≤ T ])

where P̃ [τ ≤ T ] is the risk-neutral default probability. If we set µ = r,

then we have simply P [τ ≤ T ] = P̃ [τ ≤ T ] and we can use our previous

result.
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The Term Structure of Credit Spreads
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We set the parameters r = 6% per year, V0 = 1, and D = 0.7. In the

figure we plot credit spreads S(0, T ) as a function of maturity T for

varying degrees of asset volatility σ. Short spreads are zero!

Kay Giesecke



Structural Modeling of Credit Risk 2 - 21

Empirical Plausibility

In a structural model bond investors are warned in advance when a

default is imminent (we say the default event is predictable). This

implies that spreads go to zero with maturity going to zero, which is

empirically hardly plausible.

This spread property implies that bond investors do not demand a risk

premium for bearing the default risk of the bond issuer for maturities up

to a couple of weeks/months.

Moreover, contrary to what we observe in the bond markets, model bond

prices converge continuously to their default contingent values.
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Default Correlation

All firms are dependent on general (macro-) economic factors such as

the stage of the business cycle, commodity prices, or interest rates. That

means that different firms may not default independently of each other;

we say that defaults are correlated.

Capturing these effects in a model is extremely important if one

considers portfolios of bonds, as it is for example the case with a

financial institution.

How can we model this in a simple and intuitive way? We can assume

that firms’ assets are correlated through time.
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Joint Default Probabilities

In the classic Merton (1974) model with two correlated firms, joint

default probabilities are given by

P [τ1 = T, τ2 = T ] = P [V 1
T < F1, V

2
T < F2]

= P [W 1
T < DD1,W

2
T < DD2]

= Φ2(ρ,DD1, DD2)

where

• ρ is the asset correlation

• Φ2(ρ, ·, ·) is the bivariate standard normal distribution with

correlation ρ

• DDi = ln(Fi/V i
0 )−(µi− 1

2 σ2
i )T

σi

√
T

is the std. distance to default of firm i
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Implementation in Practice

The classic Merton model with correlated defaults can be implemented

in practice, see KMV (1997) and JP Morgan (1997). These models are

used by banks to assess the aggregated credit risk of their loan portfolios,

which is also very important from a banking regulatory point of view.

A characteristic of these models is that they use a factor model for asset

returns, i.e. they assume that the asset return of firm i is given by

ln V i
T =

n∑

j=1

wijψj + εi

where the ψj are (independently) normally distributed systematic

factors, the wij are the factor loadings, and the εi are iid normal

idiosyncratic factors.
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Intensity-Based Credit Risk Modeling

1. Idea

2. Default as Poisson event

3. Recovery Conventions

4. Time-Varying Intensities

5. General Intensities and Valuation

6. Default correlation
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Main Idea

• The structural approach is based on solid economic arguments; it

models default in terms of fundamental firm variables.

• The intensity based approach is more ad-hoc (reduced-form) in the

sense that one does not formulate economic arguments about why a

firm defaults; one rather takes the default event and its stochastic

structure as exogenously given.

• In particular, one models default as some unpredictable Poisson-like

event. This leads to a great deal of tractability and a better

empirical performance, as we shall see.
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Poisson Process

Let T1, . . . , Tn denote the arrival times of some physical event. We call

the sequence (Ti) a (homogeneous) Poisson process with intensity λ if

the inter-arrival times Ti+1 − Ti are independent and exponentially

distributed with parameter λ.

Equivalently, letting N(t) =
∑

i 1{Ti≤t} count the number of event

arrivals in the time interval [0, t], we say that N = (N(t))t≥0 is a

(homogeneous) Poisson process with intensity λ if the increments

N(t)−N(s) are independent and have a Poisson distribution with

parameter λ(t− s) for s < t, i.e.

P [N(t)−N(s) = k] =
1
k!

(λ(t− s))ke−λ(t−s)
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Poisson Default Arrival

In the intensity based approach, the default time is set equal to the first

jump time of the Poisson process N . Thus τ = T1 is exponentially

distributed with (intensity) parameter λ and the default probability is

given by

F (t) = P [τ ≤ t] = 1− e−λt

The intensity is the conditional default arrival rate given no default:

lim
h↓0

1
h

P [τ ∈ (t, t + h] | τ > t] = λ

Letting f denote the density of F we can also write

λ =
f(t)

1− F (t)
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Properties of Defaults

In the structural approach a default is predictable, i.e. it can be

anticipated.

Since the jumps of a Poisson process are totally unpredictable (they are

complete surprises), in the intensity based approach the default is

unpredictable as well. This has important consequences for the term

structure of credit spreads, as we will see.
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Default Probabilities
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We plot default probabilities F (T ) as a function of horizon T for varying

degrees of intensities λ = 0.005, 0.01, and 0.02. Clearly, F (T ) is for fixed

T increasing in the default intensity λ.
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Bond Pricing

Assuming constant interest rates r > 0, for a defaultable zero bond

maturing at T with zero recovery we get

BT
0 = Ẽ[e−rT 1{τ>T}] = e−rT P̃ [τ > T ] = e−(r+λ̃)T

That is, in the intensity based framework we can value a defaultable

bond as if it were default free by simply adjusting the discounting rate.

Instead of discounting with the risk-free interest rate r, we now discount

with the default-adjusted rate r + λ̃, where λ̃ is the risk-neutral intensity.
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Recovery Conventions

So far we have assumed that in the event of a default, bond investors

loose all of their investment. In practice, however, investors frequently

receive some recovery payment upon default. For modeling purposes, we

consider the following recovery conventions:

• Constant recovery (recovery of face value)

• Equivalent recovery (recovery of an equivalent default free bond)

• Fractional recovery of market value
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Recovery of Face Value

Suppose that in case of default investors receive a constant amount

R ∈ [0, 1] at T . Then the defaultable zero bond has a value of

BT
0 = Ẽ[e−rT (1{τ>T} + R1{τ≤T})]

= e−rT (e−λ̃T + R(1− e−λ̃T ))

= B̄T
0 − B̄T

0 (1−R)P̃ [τ ≤ T ]

which is the value of a risk-free zero minus the value of the expected

default loss.
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Equivalent Recovery

Suppose that in case of default investors receive a constant fraction

R ∈ [0, 1] of an equivalent default-free zero bond at default. Then

BT
0 = Ẽ[e−rT 1{τ>T} + e−rτRB̄T

τ 1{τ≤T}]

= Ẽ[e−rT 1{τ>T}] + RB̄T
0 −RẼ[e−rT 1{τ>T}]

= (1−R)Ẽ[e−rT 1{τ>T}] + RB̄T
0

= (1−R)BT
0 P̃ [τ > T ] + RB̄T

0

which is the value of a fraction of 1−R of a zero recovery bond plus the

value of a fraction of R of a risk-free zero bond.
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Fractional Recovery

Suppose that in case of default investors receive a constant fraction

R ∈ [0, 1] of the pre-default market value BT
τ− of the defaultable bond.

Then

BT
0 = Ẽ[e−rT 1{τ>T} + e−rτRBT

τ−1{τ≤T}]

= e−(r+(1−R)λ̃)T

which is the value of a zero recovery bond with thinned (risk-neutral)

default intensity λ̃(1−R).
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Credit Spreads

Using our general spread definition, with a zero recovery convention we

get

S(0, T ) = − 1
T

ln
e−(r+λ̃)T

e−rT
= λ̃

meaning that the credit spread is in fact given by the (risk-neutral)

intensity. With a constant intensity, the term structure of credit spreads

is of course flat.

For richer spread term structures, we need more sophisticated intensity

models.
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Time-Varying Intensities

The simple Poisson process can be generalized to intensities which vary

over time. N is called a inhomogeneous Poisson process with

deterministic intensity function λ(t), if the increments N(t)−N(s) are

independent and for s < t we have

P [N(t)−N(s) = k] =
1
k!

(∫ t

s

λ(u)du

)k

e−
R t

s
λ(u)du

The default probability is then given by

P [τ ≤ t] = 1− P [N(t) = 0] = 1− e−
R t
0 λ(u)du
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Examples

• Constant: λ(t) = λ for all t (the homogeneous Poisson case)

• Linear: λ(t) = a + bt

• Piece-wise constant: λ(t) = a1 + a21{t≥t1} + a31{t≥t2} + . . .

The parameters must be chosen such that λ(t) ≥ 0 for all t.
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Bootstrapping the Intensity

Let us calibrate a piece-wise constant intensity model to market prices of

defaultable bonds. Suppose the issuer has liquidly traded zero recovery

bonds with maturities T1 < T2 < . . . < Tn and respective price quotes

Q1, Q2, . . . , Qn. We have

Qie
rTi = P̃ [τ > Ti] = e−

R Ti
0 λ̃(u)du

with

λ̃(t) = a1 + a21{t≥T1} + a31{t≥T2} + . . . + an1{t≥Tn−1}

We can now determine the coefficient a1 from Q1, a2 from Q2, and so

on, given an estimate of the risk-free interest rate r.
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Example

Suppose n = 3 and Ti = i years. We have

Q1e
r = e−

R 1
0 a1du = e−a1

Q2e
2r = e−

R 2
0 (a1+a21{u≥1})du = e−2a1−a2

Q3e
3r = e−

R 3
0 (a1+a21{u≥1}+a31{u≥2})du = e−3a1−2a2−a3

allowing us to compute first a1, then a2, and afterwards a3. Now our

piece-wise constant intensity model is fully calibrated to market bond

prices.
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Credit Spreads

With time-varying intensities, zero-recovery bond prices are given by

BT
0 = Ẽ[e−rT 1{τ>T}] = e−rT P̃ [τ > T ] = e−rT−R T

0 λ̃(u)du

Thus credit spreads are

S(0, T ) = − 1
T

ln
e−rT−R T

0 λ̃(u)du

e−rT
=

1
T

∫ T

0

λ̃(u)du
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Term Structure of Credit Spreads
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We assume that the intensity is linear: λ̃(t) = a + bt. Fixing the baseline

intensity a = 0.005, we plot credit spreads S(0, T ) as a function of

horizon T for varying intensity slopes b = 0.001, 0.002, and 0.01.
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Cox Process

A Cox process N with intensity λ = (λt)t≥0 is a generalization of the

inhomogeneous Poisson process in which the intensity is allowed to be

random, with the restriction that conditional on the realization of λ, N

is an inhomogeneous Poisson process (for this reason N ia also called a

conditional Poisson process or a doubly-stochastic Poisson process).

The conditional and unconditional default probability is given by

P [τ ≤ t |λ] = 1− P [N(t) = 0 |λ] = 1− e−
R t
0 λudu

P [τ ≤ t] = E[P [τ ≤ t |λ]] = 1− E[e−
R t
0 λudu]
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Stochastic Intensities: General Case

The most general definition of an intensity relies on the Doob-Meyer

decomposition of the submartingale 1{τ≤t}: There exists an increasing

predictable process A with A0 = 0 (the compensator) such that the

difference process defined by 1{τ≤t} −At is a martingale. Now if A is

absolutely continuous

At =
∫ τ∧t

0

λsds

for some non-negative process λ, then λ is called an intensity of τ . From

this definition we can show that

P [τ ≤ t] = 1− E[e−
R t
0 λudu]
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Intensity Models

• Credit rating driven: λt = λ(Xt) where X is a vector of state

variable which governs, among other things, also credit rating

transitions (see Lando (1998), Jarrow-Lando-Turnbull (1997))

• Basic affine process

dλt = a(b− λt)dt + σ
√

λtdWt + dJt

where W is a standard Brownian motion, J is an independent jump

process with Poisson arrival intensity c and exponential jump size

distribution with mean d, a is the mean-reversion rate, σ is the

diffusive volatility, and the long-run mean of λ is given by b + cd/a.

The famous Cox-Ingersoll-Ross model is the special case where

c = 0. For affine intensities default probabilities are in closed-form.
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Valuation for General Intensities

For general stochastic intensity processes the valuation of defaultable

bonds is analogous to the case with constant intensities.

Consider a defaultable security paying off X at T if no default occurs

and zero otherwise. For X = 1 this is a defaultable zero bond.

This security has (under technical conditions) a value given by

Ẽ
[
e−
R T
0 rsdsX1{τ>T}

]
= Ẽ

[
Xe−

R T
0 (rs+λ̃s)ds

]

where r is the risk-free short rate and λ̃ is the risk-neutral intensity

process for default.
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Credit Spreads for General Intensities
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Credit spreads S(0, T ) as a function of horizon T for varying degrees of

business risk (asset volatility). Spreads are strictly positive, which is

empirically plausible. The short credit spread, i.e. the spread for

maturities going to zero, is given by the intensity.
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Default Correlation

To introduce default correlation, we can introduce correlation between

individual firms’ intensities. In such a model defaults are conditionally

independent given the intensity.

To induce a stronger type of correlation, one can let the intensity of a

particular firm jump upon the default of some other firm(s),

corresponding to the idea of contagion among defaults. Another idea is

to admit common jumps in intensities, corresponding to joint credit

events.
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Example: Joint Exponential Defaults

• 3 independent Poisson processes N1, N2, N with respective

intensities λ1, λ2, λ

• 2 firms, where Ni leads to a default of firm i only and N leads to a

simultaneous default of both firms

• Survival probability

P [τi > t] = P [Ni(t) = 0]P [N(t) = 0] = e−(λi+λ)t

• Joint survival probability

P [τ1 > t, τ2 > t] = P [N1(t) = 0]P [N2(t) = 0]P [N(t) = 0]

= e−(λ1+λ2+λ)t
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Structural vs. Intensity Based Approach

• While the structural approach is economically sound, it implies

empirically less plausible spreads. The intensity based approach is ad

hoc, tractable, and empirically plausible.

• Structural and intensity based approach are not consistent; in the

usual structural approach an intensity does not exist (this is due to

the predicability of defaults).

• By introducing incomplete information in a structural model, both

approaches can be unified (at least to some extent). This provides

some economic underpinnings for the ad hoc nature of the intensity

based framework.
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Credit Derivatives and Structured Credit:
Basics

1. Definitions, terminology, key characteristics of contracts

2. The market and its participants

3. Regulatory considerations

4. Overview of instruments

5. Asset swaps

Kay Giesecke



Credit Derivatives and Structured Credit: Basics 4 - 2

Structured Credit Market

The structured credit market encompasses a broad range of capital

market products designed to transfer credit risk among investors through

over-the-counter (OTC) transactions. These include mainly two classes:

1. Credit Derivatives, which are financial instruments whose value is

derived from an underlying market instrument driven primarily by

the credit risk of private or government entities

2. Structured Credit Products, which combine credit derivatives with

cash transactions in a customized way
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Key Characteristics

The key characteristic of credit derivatives is that they separate the

credit risk from an underlying and thereby enable investors to gain or

reduce exposure to credit risk.

Specifically, in the prospect of deteriorating credit and bond market

illiquidity they allow to actively manage credit risk by

• buying protection to reduce credit risk

• selling protection to diversify credit risk
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Credit Risk Management

Until recently, no tailored risk management products for credit existed.

For loans, risk management consisted of diversification by setting limits

in connection with occasional loan sales. Corporates often carried an

open exposure, they were rarely able to buy insurance from factors.

These strategies are inefficient, because they do not separate the

management of credit risk from the underlying asset; to lay off the risk

one had to sell the asset entirely.

Credit derivatives separate the credit risk from an underlying, and allow

an independent management of these risks. This implies efficiency gains

through a process of market completion; risk can be efficiently taken.
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Traditional Credit Protection

• Guarantee

• Letter of credit

• Loan participation (silent)

• Loan sale

• Credit insurance

These transactions share important features of credit derivatives. So why

are credit derivatives so significant?
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Short Credit Position

Credit derivatives allow to enter a short credit position, i.e. to load off

credit risk, with reasonable liquidity and without the risk of a short

squeeze.

They allow to reverse the risk-return profiles provided by credit

instruments for hedging or speculating purposes.

Credit derivatives allow to take advantage of arbitrage opportunities

(discrepancies in the pricing of the same credit risk through asset

classes, maturities, or rating classes).
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Reference Entity

The reference entity or entities need neither be a party to nor aware of

the transaction.

• Lay off credit risk without ceasing the customer relationship, i.e.

manage risk discreetly

• Terms of the transaction can be negotiated freely; they can be

customized to meet the needs of the involves parties

• Pricing discipline: credit derivative is objective market pricing

benchmark for some specific credit risk
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Off-Balance-Sheet Nature

Except when embedded with structured notes, credit derivatives are

off-balance-sheet transactions, i.e. there is no payment of the underlying

nominal.

• Flexibility in terms of leverage (risk vs. capital commitment);

example: take on the risk-return profile of a bond without

committing capital to buy the bond itself

• The more costly the balance sheet (i.e. the higher funding rates), the

higher the appeal of the off-balance-sheet nature of the transactions

• New lines of counterparties for traditional credit instruments such as

loans, which were previously not accessible
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Global Credit Market, 2001

1 2 3 4 5 6 7

Bank Loans

Credit Insurance

Credit Derivatives

Corporate Bonds

Convertible Bonds

Credit Product Size $Tn

Source: Morgan Stanley Dean Witter

The Asian financial crisis in August ’97 and the Russian default in

August ’98 were milestones in the development of the structured credit

market.
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Market Development
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Emerging markets sovereign related, corporate name, and bank name

each account for one-third of underlyings. 55% of volume is based on

low investment grade, and 30% is based on sub-investment grade.
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Regulatory Considerations

Banks have to set aside capital against their aggregated (credit) risks.

Credit derivatives allow to lay off risks, and therefore provide the

potential to reduce regulatory capital.

Currently, there is a 8% flat charge, irrespective of the risk of the credit.

The buyer of protection via a credit derivative only gets a capital relief if

the transaction can be considered very similar to a loan guarantee. The

protection seller must account for the assumed credit risk as if it were a

loan. The exact rules differ by country.
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Basel II

From 2006 onwards, new capital adequacy rules (called the ’Basel II’

guidelines, www.bis.org) will be effective, which prescribe a risk-adjusted

capital charge. Reflecting their different nature, credit, market, and

operational risk are treated differently, i.e. with different methods.

Basel II recognizes the ability of credit derivatives to mitigate credit risks.

On the other hand, it acknowledges the need to assess the residual risks

carefully. A significant residual risk is when the protection seller is highly

correlated with the reference entity (for which protection is sought). This

reduces the capital relief that can be gained with the transaction.
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User Summary: Banks

• sell credit risk for regulatory capital management (improve return on

equity (ROE))

• sell credit risk for economic capital management (increase

diversification/reduce concentration while maintaining borrower

relationship, improve return on equity)

• buy and sell credit risk for the trading book (leverage expertise on

credit risk)
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User Summary: Insurers

Insurers buy credit risk for credit insurance and re-insurance. Motivation:

• Low insurance spreads compared to capital market credit spreads

• Leverage extensive credit expertise (investors)

• Pre-existing control and technology infrastructure

• Comfortable with contract-to-contract risk
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User Summary: Securities Firms

Securities firms sell credit risk. Motivation:

• Hedge extreme illiquidity and/or credit cycles

• Leverage pre-existing derivative infrastructure

• Leverage portfolio trading skills

• Leverage bond distribution capabilities

Investors in general buy credit risk profiles which are not available in the

cash market.
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Market Share
Protection Buyer/Seller Buyer Seller

Banks 64 54

Securities Firms 18 22

Corporations 7 3

Insurance Firms 5 10

Governments/Export Credit Agencies 4 1

Mutual Funds 1 4

Pension Funds 1 2

Hedge Funds 0 4
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Documentation

To reduce legal exposure due to disagreements about documentation

issues, the documentation of the terms of a credit derivative contract

should be standardized.

This is done in the contract definitions completed by the International

Swaps and Derivatives Association (ISDA, www.isda.org), which aims at

minimizing the administrative effort required to close transactions.
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Product Overview

Single-name instruments involve one reference entity, for example a

corporate or sovereign bond. The following credit derivatives are popular

in this class:

• Asset swap as basic building blocks

• Default swap (also called credit swap)

• Total return swap and index swaps

• Credit spread options

Structured credit products with a single reference entity include

• Credit linked note

• Synthetic revolver facility
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Product Overview (2)

Multi-name instruments involve several reference entities, e.g. a portfolio

of corporate or sovereign bonds. Basket default swaps are common credit

derivatives in this class.

Structured credit products with a several reference entities include

• Repackaging programs

• Collateralized debt obligations (CDO’s)
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Asset Swaps

An asset swap can be viewed as the basic building block in the structured

credit market. The transaction consists of two simultaneous steps:

• Purchase fixed-rate asset, e.g. a corporate coupon bond

• Enter into an interest rate swap with a bank that converts the fixed

rate into floating, where the term of the swap matches bond

maturity

Hence the investor extracts a floating rate from a fixed rate coupon

bond. The spread of this rate over LIBOR is due to the credit risk of the

bond; the asset swap strips this spread from the bond.
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More Complex Asset Swaps

• bond is in foreign currency, the swap then includes both an IR and

an FX component

• structured asset swap: strip away certain unwanted IR-features from

the bond, which lead to a discount in its value

• generate enhanced yield for an exposure not available in the cash

market; example: asset swaption, where the investor gets a fee for

being liable to enter an asset swap if spread or interest rates reach a

strike level
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Advantages and Disadvantages

Asset swaps are simple, transparent, flexible, and isolate the credit risk

of some underlying (bonds, loans, receivables). Its disadvantages led

eventually to the development of many structured credit products:

• Many investors cannot enter in derivative transactions due to

regulatory, accounting, or investment policy restrictions.

• Default of underlying security and swap in the package are not

linked; after a default the investors remains in the swap.

• (Highly rated) bank has exposure to the investor, which is often

unwanted (unless collateral is posted, which may affect the

economics of the transaction).
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Default Swaps

1. Structure of transaction

2. Synthesizing the default swap

3. Pricing the default swap

4. Example

5. Basis trade
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Definition

A default swap (or credit swap) is a bilateral financial contract in which

• one party (the protection seller) makes a payment upon some

specified credit event arrival before some stated maturity,

• and in return, the other party (the protection buyer) pays some

periodic fee until the credit event or the contract’s maturity,

whichever is first.

That is, the protection seller is buying the credit risk of the reference

credit, while the protection buyer is selling that risk.
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Payments

The periodic fee is called the swap rate, swap spread, or swap premium.

It is expressed in basis points (bp) per annum on the notional amount.

Normally, the contingent payment of the swap is (1−R) times the

reference notional, where R ∈ [0, 1] is the recovery rate.

If the contingent payment is some fixed pre-determined amount, we

speak of a binary or digital default swap (DS).

If one leg is denominated in a currency other then the base currency of

the reference bond, we speak of a quanto DS.
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Settlement Procedures

The settlement mechanism prescribes the way in which the swap is

closed out upon a default:

1. Physical delivery: protection buyer delivers the defaulted reference

asset (i.e. the recovery value) in exchange for its notional value

2. Cash settlement: protection seller pays the difference between the

notional and the value of the defaulted reference asset. The recovery

value is determined by a dealer poll some specified time after default.
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Remarks

Since no asset is transferred, the contract is not funded.

The reference credit does not need to be in a relation to any party.

The DS works like a default insurance contract, with the difference that

in a classic insurance contract the insurance buyer has to own the object

for which insurance is sought.

Sometimes the protection buyer is granted the right to cancel the

contract before its maturity (this is a cancellable DS).

The DS is the most fundamental and most popular credit derivative.
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Example

We consider a DS with the following characteristics:

• Swap parties: B (protection buyer), S (protection seller)

• Inception: March 1, 2000

• Maturity: 5 years

• Reference asset: DaimlerChrysler (DCX) bond XYZ

• Notional amount: 100 million Euro

• Credit event: default

• Swap rate: 90 basis points (=900.000 Euro) per annum, paid

annually, starting March 1, 2001
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Example (continued)

If DCX does not default before March 1, 2005: B pays 5 · 900.000 to S

at the respective coupon dates and receives nothing from S.

If DCX does default on September 1, 2003: B pays to S 3 · 900.000 at

the respective coupon dates and 0.5 · 900.000 at the default date and

• can deliver the defaulted DCX bonds to S, who pays 100 mio (=par

value) for them (physical delivery)

• S pays 70 mio to B, given the dealer poll has resulted in an recovery

estimate of R = 30%, and B retains the defaulted bonds (cash

settlement).

With either settlement procedure, B does not suffer a loss due to the

default of DCX. This has its price for B, namely the fee paid to S.
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Pricing a Default Swap

A DS involves two pricing problems:

• When making markets, one is interested in the fair swap rate at

inception of the contract.

• When hedging or marking-to-market, one is interested in the market

value of the swap, which need not be zero after origination due to

changing interest rates and credit quality of the reference credit.

We will focus on the first problem.
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Synthesizing a Default Swap

Suppose the underlying reference credit is a defaultable floating rate

note (FRN, or floater), with floating rate Dt = Ut + Q at date t, where

Ut is the floating rate of some default-free FRN and Q is some constant

contractually agreed spread.

Now consider the position of an investor who longs the default-free FRN

and shorts the defaultable reference FRN. This portfolio is hold until the

credit event or the swap’s maturity (which is assumed to be that of the

reference note). The investor pays Dt and receives Ut, and pays hence

net Q.
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Synthesizing a Default Swap (Continued)

If there is no default, both notes mature and there is no net cash flow.

If there is a default, the investor liquidates his positions and receives (at

the following coupon date) the difference between the par value of the

default-free FRN and the market value of the defaulted FRN (=R times

notional). His net cash flow is (1−R) times notional.

In both scenarios, the position of the investor has the same cash flows as

those to the protection buyer in the DS. Therefore, in the absence of

arbitrage opportunities, the swap rate must be equal to Q, the spread on

the reference FRN. (We have assumed here that the accrued swap rate

is not paid.)
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Shorting the Reference Note

The reference note can be shorted through a reverse repo and a cash

sale. This involves receiving the note as collateral for a loan in a repo

and a sale of the note in the cash market.

If the note is on special, then shorting requires an additional annuity, the

term repo special S (this can be due to the ’scarcity’ of the note). The

investor’s net position is then Ut +Q+S−Ut = Q+S. By our arbitrage

argument, the swap rate must then be equal to Q + S. This is exact if

the repo terminates at default (if not, the error is however small).

These arguments can also be extended to include transaction costs,

accrued credit swap premium, and accrued interest on the reference note.
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Hedging the Default Swap

We can hedge the DS by the replicating (synthesizing) portfolio strategy

just described. If we are the protection seller (and are liable to the

default of the reference FRN), we would just short the underlying

defaultable FRN and long a default-free FRN.
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Shorting Credit

Two possibilities: short bond via reverse repo or via buying protection in

a DS. The former, however, involves the risk of a short squeeze.

Due to a market-wide in short activity, after inception of the repo the

repo rate can decrease substantially, which increases the funding costs

for the shorting investor, i.e. shorting becomes more expensive.

If one uses a DS to short a bond, the shorting costs are fixed at

inception, i.e. there is no risk of a short squeeze.
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Example

Consider an investor who wants to short 10 mio of face of some bond.

The asset swap spread is 120 bp, and the repo rate at inception is

LIBOR. 3 months after inception, short activity increases and the repo

rate is now LIBOR minus 20 bp. The costs for a 6 months short are then

120bp · 0.25years · 10mio + 140bp · 0.25years · 10mio = 65.000.

Alternatively, the investor can short the bond by buying protection in a

DS on the bond with a spread of 120 bp. The total costs are then

120bp · 0.5years · 10mio = 60.000.
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Valuing the Fee Leg

Suppose the swap rate Q as a fraction of notional in bp/year is paid at

dates t1 < t2 < . . . < tn = T with ∆(ti−1, ti) representing the interval

between payments dates (i.e. approximately 0.5 for semi-annually

payments). Assuming that defaults are independent of interest rates, we

get for the value f of the fee leg

f =
n∑

i=1

Ẽ[B̄ti
0 Q∆(ti−1, ti)1{τ>ti}] = Q

n∑

i=1

∆(ti−1, ti)(1− p(ti))B̄ti
0

where B̄t
0 is the price of a riskless bond maturing at t and

p(t) = P̃ [τ ≤ t] is the risk-neutral default probability.
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Valuing the Contingent Leg

Suppose the recovery rate R is a random variable whose mean can be

estimated, and suppose that R is independent of the default. Assuming

that default can only occur at a set of discrete dates, the value of the

contingent leg c is

c = Ẽ[B̄τ
0 (1−R)1{τ≤T}]

= Ẽ[1−R]
∫ T

0

B̄u
0 P̃ [τ ∈ du]

≈ Ẽ[1−R]
m∑

i=1

[p(ti)− p(ti−1)]B̄ti
0

Letting m →∞ the approximation is exact.
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Swap Rate

The swap rate should be such that it compensates the protection seller

for the potential contingent payment. That is, the swap rate should

make the market values of the swap legs equal. From c = f we find

Q =
Ẽ[1−R]

∑m
i=1[p(ti)− p(ti−1)]B̄ti

0∑n
i=1 ∆(ti−1, ti)(1− p(ti))B̄ti

0

For the computation of Q we hence need risk-neutral default

probabilities p(t). These can be implied out from defaultable bond prices.

Note that we assume here that the protection seller has no default risk.
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Bootstrapping Default Intensities

Sometimes default probabilities are stripped of DS quotes instead of

bond prices. These are then used to price more complex structures.

Suppose we observe price quotes of DSs of the same issuer but for

various maturities T1, T2, . . . , Tm. We can then calibrate an intensity

based model with piece-wise constant intensity λ̃(t) = ai for

t ∈ [Ti−1, Ti] and i ∈ {1, 2, . . . , m}. Then p(t) = 1− e−
R t
0 λ̃(u)du.

We now solve first for a1 using the swap with maturity T1, then for a2

using a1 and the T2-swap quote, and so on.
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Example

Suppose the following DSs of Daimler-Chrysler are quoted:

Maturity Currency Payments Recovery Market Swap Rate

0.5 EUR Semi-annually 30% 50 bp

1 EUR Semi-annually 30% 60 bp

3 EUR Semi-annually 30% 80 bp

5 EUR Semi-annually 30% 105 bp

7 EUR Semi-annually 30% 120 bp

10 EUR Semi-annually 30% 140 bp
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Example (continued)

We let

λ̃(t) =





a1 : 0 ≤ t < 0.5

a2 : 0.5 ≤ t < 1

a3 : 1 ≤ t < 3

a4 : 3 ≤ t < 5

a5 : 5 ≤ t < 7

a6 : 7 ≤ t < 10
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Example (Continued)

p(0.5) = 1− e−
R 0.5
0 a1du = 1− e−0.5a1

p(1) = 1− e−
R 0.5
0 a1du−R 1

0.5 a2du = 1− e−0.5a1−0.5a2

p(3) = 1− e−
R 0.5
0 a1du−R 1

0.5 a2du−R 3
1 a3du = 1− e−0.5a1−0.5a2−2a3

...

Knowing that Q(0.5) = 50bp, with p(0.5) we can solve our swap value

formula for a1 (given an estimate of riskless bond prices). Using that

result, the fact that Q(1) = 60bp and our expression for p(1), we can

solve for a2, and so on:

a1 = 0.7, a2 = 1.0, a3 = 1.25, a4 = 2.13, a5 = 2.4, a6 = 3.0
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Default Swap Basis

The basis is the difference between DS spread and asset swap (AS)

spread on the same bond.

A positive basis is typical:

• natural credit hedgers use the DS market

• shortage of underlying bond

• convertible bond issuance

• trading of structured bonds with unusual features

• delivery option of protection buyer

One can pick up the differential yield by a short basis trade: sell bond

and simultaneously protection via a DS.
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Default Swap Basis (Continued)

The basis can also be negative:

• firm has issued securities with different liquidity

• counterparty default risk of the protection seller

• residual risk in the AS for the investor if note defaults before the

swaps maturity

One can pick up the differential yield by a long basis trade: buy bond

and simultaneously protection via a DS.
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Basket Default Swaps

1. Contract definitions and characteristics

2. Copulas

3. Default correlation

4. Valuing a kth-to-default swap

5. First-to-default swaps
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Definitions

Basket default swaps (BDS) have several underlying debt instruments;

their payoffs depend on the joint performance of this pool of instruments.

The following specifications for the contingent swap leg are typical:

• kth-to-default: pay upon the kth default in the reference pool

• First k out of n to default: pay upon the first k defaults in the

reference pool

• Last k out of n to default: pay upon the last k defaults in the

reference pool

Typically, 5 ≤ n ≤ 15.
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Contract Characteristics

• Compared with single-name DS, BDS offer multi-name exposure

without modifying the size of the contingent payment (depends on

notional and recovery of the defaulted credit(s))

• Allow to take a view on default correlation between credits

• Default correlation is the fundamental driver of BDS premiums
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Modeling Issues

• Need model for correlated defaults, i.e. for (risk-neutral) joint

default/survival probabilities

• Calibration of correlation parameters from market data is difficult,

which complicates the risk management for these products and leads

to uncertainty in pricing

– Structural: from equity price correlations

– Intensity based: from DS spread/credit spread co-movements or

DS spreads involving defaultable counterparties for example
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Default Time Copula

Consider n firms with respective continuous default times τi. Suppose

we have a model for risk-neutral joint survival probabilities s.

s can be uniquely represented by its copula Cτ and marginals si:

s(t1, . . . , tn) = P [τ1 > t1, . . . , τn > tn] = Cτ (s1(t1), . . . , sn(tn)),

so that Cτ describes the complete non-linear default dependence

structure. Cτ is a joint distribution function with standard uniform

marginals.

One can efficiently simulate correlated default times from Cτ .
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Copula Bounds

Define

CL(u1, . . . , un) = max(u1 + . . . + un − n + 1, 0)

CΠ(u1, . . . , un) = u1 · · ·un

CU (u1, . . . , un) = min(u1, . . . , un)

We have CL ≤ Cτ ≤ CU where

Cτ = CL iff defaults are countermonotone

Cτ = CΠ iff defaults are independent

Cτ = CU iff defaults are comonotone

Kay Giesecke



Basket Default Swaps 6 - 7

Perfect Dependence

Comonotonicity means that defaults are perfectly positively correlated.

In the bivariate situation, we then have τ2 = F (τ1) with F increasing.

Countermonotonicity means that defaults are perfectly negatively

correlated. In the bivariate situation, we then have τ2 = F (τ1) with F

decreasing.
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Examples

The Clayton copula family is given by

Cθ(u1, . . . , un) = (1− n + u−θ
1 + . . . + u−θ

n )−1/θ,

where the parameter θ > 0 controls the degree of correlation:

lim
θ→∞

Cθ = CU and lim
θ→0

Cθ = CΠ

The normal copula is given by

CΣ(u1, . . . , un) = Φn
Σ(Φ−1(u1), . . . , Φ−1(un)),

where Φn
Σ is the n-variate standard normal distribution function with

correlation matrix Σ and Φ−1 is the inverse standard normal distribution

function.
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Scalar-valued Default Correlation Measures

• Traditionally: linear indicator correlation ρ(1{τi≤t}, 1{τj≤t}). But

this can lead to severe misinterpretations of the dependence since

covariance is only the the natural measure of dependence for joint

elliptically distributed random vectors.

• Suggestion: Rank default correlation RC is copula based and does

not share these deficiencies:

RC(τi, τj) = 12
∫ 1

0

∫ 1

0

(Cτ
ij(u, v)− uv)dudv ∈ [−1, 1]

where Cτ
ij is the two-dimensional default time copula.
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Rank Default Correlation
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The figure shows RC(τi, τj) as function of θ if the default copula Cτ
ij is

the two-dimensional Clayton copula with parameter θ. Clearly, we have

RC = −1 iff Cτ = CL, RC = 0 iff Cτ = CΠ, and RC = 1 iff

Cτ = CU .

Kay Giesecke



Basket Default Swaps 6 - 11

Valuing a kth-to-default Swap

Consider a kth-to-default swap, in which the swap rate Q (bp per year)

is paid up to the kth default or the maturity T of the swap, whichever is

first. Maintaining our assumptions of the previous lecture, the market

value of the fee leg f is

f =
l∑

i=1

Ẽ[B̄ti
0 Q∆(ti−1, ti)1{Tk>ti}] = Q

l∑

i=1

∆(ti−1, ti)(1− pk(ti))B̄ti
0

where Tk is the kth default time, and pk(t) = P̃ [Tk ≤ t] is the

risk-neutral probability that the kth default is before time t (taken from

the multi-firm model).
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Valuing a kth-to-default Swap (2)

The kth-to-default swap pays the random amount (1−Ri) upon Tk if

τi = Tk ≤ T . The market value c of this contingent swap leg is

c = Ẽ[B̄Tk
0

n∑

i=1

(1−Ri)1{τi=Tk≤T}]

The fair swap rate Q for a BDS can be calculated in the same manner

as with a single-name DS: Q is determined through the condition f = c.

Other payoff structures can be handled analogously.

Usually Q is estimated using Monte-Carlo-Simulation.
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First-to-default Intensity

Suppose one has bootstrapped the (risk-neutral) default intensities λ̃i of

the individual names in the first-to-default (FTD) basket swap (k = 1).

Then the FTD time T1 = min(τ1, . . . , τn) has intensity

n∑

i=1

λ̃i

The FTD survival probability is then given by

1− p1(T ) = P̃ [T1 > T ] = Ẽ[e−
R T
0 (λ̃1

t+...+λ̃n
t )dt]

This result can be used for the pricing of FTD swaps and the valuation

of counterparty default risk in (single-name) DS.

Kay Giesecke



Basket Default Swaps 6 - 14

Binary First-to-default Swap

We now consider a FTD swap, which pays at T the amount 1 (i.e.

Ri = 0 for all i) if there is at least one default in the reference basket in

return for a single up-front (i.e. l = 1) payment Q. Hence f = Q and

the fair rate is given by Q = c with

c = Ẽ[B̄T
0 1{T1≤T}] = B̄T

0 P̃ [T1 ≤ T ]

= B̄T
0 (1− P̃ [min

i
(τi) > T ])

= B̄T
0 (1− P̃ [τ1 > T, . . . , τn > T ])

= B̄T
0 (1− Cτ (s1(T ), . . . , sn(T ))

= B̄T
0 − B̄T

0 Cτ (s1(T ), . . . , sn(T ))
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Price Bounds for the FTD Swap

For fixed individual survival probabilities si(T ), the fair rate Q of the

FTD swap is determined through the correlation between the defaults.

Since the ’smallest’ default copula is the one for countermonotone

defaults and the ’largest’ the one where defaults are comonotone,

• Q is maximal if defaults are perfectly negatively dependent

(Cτ = CL);

• Q is minimal if defaults are perfectly positively dependent

(Cτ = CU )

and the FTD swap rate Q is decreasing in default correlation.
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FTD Swap vs. Single-name DS

Setting interest rates equal to zero, we have

1−min(s1(T ), . . . , sn(T ))︸ ︷︷ ︸
rate on riskiest name

≤ Q ≤ 1−max(s1(T ) + . . . + sn(T )− n + 1, 0)︸ ︷︷ ︸
sum of rates on all names

where we note that, under our current assumptions, the swap rate on an

individual name i is just Qi = 1− si(T ).

Hence, abstracting from transaction and documentation costs, a FTD

swap makes sense only if the underlying credits are not perfectly

correlated.
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Example

Consider a homogenous basket with n = 2 and 2% individual one-year

default probability, i.e. s1(1) = s2(1) = 0.98.

If the credits are perfectly negatively dependent,

Q = 1−max(s1(1) + s2(1)− 1, 0) = 1− (2 · 0.98− 1) = 400bp,

If the credits are independent, we get

Q = 1− s1(1)s2(1) = 1− 0.982 = 396bp,

With perfect positive dependence

Q = 1−min(s1(1), s2(1)) = 1− 0.98 = 200bp,
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FTD Swap Rate vs. Default Correlation
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We plot the fair FTD swap rate Q (we use the Clayton copula for Cτ

and assume positive default correlation). With increasing default

correlation, the probability of multiple defaults increases and the degree

of default protection provided by a FTD swap is diminished, leading to

lower premiums Q.
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FTD Swap Rate vs. Number of Credits
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We plot Q as a function of the number n of underlying credits for

varying degrees of rank default correlation. With increasing number of

underlyings, the probability of at least one default increases and so does

the value of the FTD swap protection.
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FTD Swap Characteristics

• Allow to hedge correlated defaults efficiently (i.e. with lower costs

compared with hedging the underlying credits individually)

• While FTD protection seller is positively exposed to an increase in

default correlation, the protection buyer is negatively exposed to an

increase in correlation

• After termination of the contract upon the first default, the

protection buyer remains unhedged on the remaining credits

– Structure low correlation basket with investment-grade quality

– Similar quality in the basket
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Credit-linked Notes

1. Repackaging

2. Asset swap repackaging

3. Credit-linked notes: structure and mechanism

4. Motivations of the parties

5. Valuing a credit-linked note

Kay Giesecke



Credit-linked Notes 7 - 2

Repackaging

Repackaging involves placing securities in an Special Purpose Vehicle

(SPV), which then issues customized notes that are backed by the

instruments in the SPV.

The goal is to take securities with attractive features that are

nevertheless unappealing/inaccessible to many investors and repackage

them to create viable investments that are not otherwise available to the

investor.

A security may be unappealing/inaccessible because it is denominated in

an foreign currency, does not trade locally, or because of onerous tax

features.
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Repackaging vs. Securitization

While repackaging is based on re-structuring securities, securitization

involves the re-structuring of non-security financial assets, for example

loan paper or accounts receivable originated by banks, credit card

companies, or other providers of credit.

Repackaging is often less complex. Because of higher fixed costs,

securitizations are typically larger than repackaging programs. While in

repackaging programs the notes are available in a variety of

documentation forms (medium-term notes, Schuldschein, commercial

paper, loans) to meet investors’ needs, in a securitization the notes are

less customized (many investors typically participate).
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Asset Swap Repackaging

Due to regulatory/investment policy restrictions, some investors cannot

enter into an interest rate swap. Solution:

• Fixed-rate bonds are placed in an SPV

• SPV enters into an interest rate swap to exchange fixed for floating

(LIBOR+credit spread) over the remaining term of the bonds

• SPV issues FRN to investor, who earns LIBOR+spread (lower than

on comparable straight asset swap)

• In case of default, the transaction terminates, including the interest

rate swap. Note investors receive any recoveries.
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Credit-linked Notes

A credit-linked note (CLN) is a special form of repackaging that is often

directly issued by a corporate issuer. Typical underlyings are individual

debt instruments (loans, bonds, etc.), portfolios of debt instruments, or

bond or emerging market indices.

The principal/coupon on the note is paid contingent on the occurrence

of a credit event.

A CLN is a funded (i.e. on-balance sheet) alternative to a default swap

(DS). Compared with a straight DS, the credit investment is de-leverd.

The reference credit is usually not aware of the transaction.
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Mechanism of a CLN

A CLN is a structured note with an embedded DS, in which

• Issuer/SPV issues notes to investors which are backed by the

reference assets, and receives the proceeds

• Issuer/SPV sells protection on the reference asset in a DS with a

third party (bank), and receives the swap rate

• Issuer/SPV pays an enhanced coupon to the note investors

Instead of a DS, the CLN may also embed a first-to-default swap or a

spread option.
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Payoffs to Note Investors

The CLN terminates at default of the reference asset or the maturity,

whichever is first.

• If there is no default, the DS terminates and the note investors

receive the full note principal (like a straight bond position with

enhanced coupon)

• In case of default, the SPV pays the default losses to the DS

protection buyer. Note investors receive not the full principal

repayment, but loose an amount equal to the default losses.

A (less-risky) principal-protected CLN is not terminated at default, but

interest payments to the notes cease. At maturity, the full principal is

returned to the note investors.
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CLN Spreads

Note investors bear the potential losses due to default of the reference

asset. In return, they pick up some yield. In essence, the position of the

note investors is if they had sold default protection on the reference

asset via a DS to the CLN issuer/SPV.

Thus, the spread picked up by the CLN investor must roughly equal the

DS rate paid by the SPV. In practice, the CLN spread is somewhat

higher than the DS spread, since the accrued swap rate is normally not

paid in a CLN.
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Protection Buyer in CLN

Usually, the SPV puts the proceeds of the note issuance in collateral. If

the reference entity defaults, the SPV liquidates the collateral and simply

pays less principal back to the note investors. This ’spared’ amount is

directly passed through to the protection buyer (a bank) in the DS.

Since the SPV has a very high rating (usually AAA), the bank is not

exposed to a significant counterparty default risk in the DS (it were

exposed if it had contracted the DS with the investors directly).
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CLN Investor

An investor (e.g. an investment management fund) may be prohibited

from buying bonds rated below AAA. The SPV’s rating is AAA, which

refers to its ’ability to pay ’, but not its ’obligation to pay’. So the fund

is allowed to invest into the CLN, although it is essentially investing into

the riskier reference asset (it bears the losses associated with them).

Thus a CLN can be used to circumvent certain investment constraints in

order to enhance yields.
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Why are CLNs Attractive?

• Provides a funded credit derivative investment opportunity which is

used by real-money DS investors such as mutual funds, investment

departments of insurance companies, pension plans, which are not

authorized to invest directly into credit derivatives

• Provides a yield pickup to other securities issued by the reference

entity

• Provides customized maturity structures and credit features that are

not otherwise available in the cash market

• If used by banks to lay off loan credit risks, a CLN provides access

to funded credit opportunities that are not otherwise available
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Mexican Default/Inconvertibility Structure

In 1995 following the financial crisis in Mexico, a short-term CLN was

designed to allow investors to capitalize on their bullish view on Mexico

(continue to meet obligations and to convert the Peso):

• A1+ issuer/SPV

• Up to USD 20 million notional

• Between 30 and 90 days maturity

• Issued at a discount (zero-coupon like structure)

• Credit event: any default on any reference security or inconvertibility

of the Peso to USD
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Mexican Default/Inconvertibility Structure

• Reference entity: Government of Mexico

• Reference securities: any issued or guaranteed by the reference entity

• Redemption: if there is no credit event, at par; if there is a credit

event, delivery of any of the reference securities or its cash equivalent

The spread on the notes was around 350-450bp, depending on market

conditions. Investors secured this yield enhancement for their willingness

to risk principal repayment with a deterioration of the credit quality of

Mexico.
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Valuing a CLN

Suppose the CLN pays coupons at dates t1 < t2 < · · · < tn = T , where

T is the maturity and the annual coupon rate is c. The notional is 1.

The value of the notes is CLN = CLNN + CLND, the sum of the

PV’s of no-default payments and default payments. We have

CLNN = Ẽ[
n∑

i=1

∆(ti−1, ti)cB̄ti
0 1{τ>ti} + B̄T

0 1{τ>T}]

=
n∑

i=1

∆(ti−1, ti)cB̄ti
0 (1− p(ti))

︸ ︷︷ ︸
PV of coupons

+ B̄T
0 (1− p(T ))︸ ︷︷ ︸

PV of principal

where p(t) = P̃ [τ ≤ t] is the risk-neutral default probability.
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Valuing a CLN (2)

Suppose the recovery rate is a constant R ∈ [0, 1]. Then

CLND = Ẽ[B̄τ
0 R1{τ≤T}]

= R

∫ T

0

B̄u
0 P̃ [τ ∈ du]

≈ R
m∑

j=1

P̃ [tj−1 ≤ τ < tj ]B̄
tj

0

= R
m∑

j=1

[p(tj)− p(tj−1)]B̄
tj

0

Letting m →∞ the approximation is exact (in practice, one usually sets

tj − tj−1 = 1 day).
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Pre-paid Default Swap

A pre-paid DS is another funded DS alternative. It is structured like a

DS with the difference that the protection seller pays at inception the

notional of the underlying to the protection buyer, who pays a periodic

fee, composed of funding costs and the swap rate, to the seller.

The structure terminates at maturity or the credit event, whichever is

first. If there is no default, the notional is returned to the seller. In case

of a default, only the recovered amount on the reference asset is

returned, so that the seller sustains the default losses on the underlying.
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Credit Spread Options

1. Contract definition

2. Payoffs

3. Pricing

4. Synthetic lending facilities
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Definition

A credit spread put (call) option involves the right, but not the

obligation, to sell (buy) the defaultable reference bond at a given strike

credit spread over treasury. The option can be European, Bermudean, or

American.

Besides fixed-rate and floating-rate bonds, underlyings include default

swaps and asset swaps (this is then called an asset swaption).

Options can survive a default or be knocked out upon default.

A variant is the downgrade option, which pays off if the reference asset

is downgraded.

Settlement of the contract is the same as with default swaps (cash

settlement, physical delivery).
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Credit Spread Put

The payoff to a spread put with strike spread K and maturity t < T

(=maturity of the underlying bond) is given by

max(0, B̄T
t e−K(T−t) −BT

t )

where e−K(T−t) ≤ 1 is the price of a bond with yield K over [t, T ], B̄T
t

is the price of a default-free bond, and BT
t of a defaultable one, both

with maturity T (note that B̄T
t ≥ BT

t ).

The put involves the right to exchange a defaultable bond with price BT
t

at the maturity of the option t into e−K(T−t) default-free bonds with

price B̄T
t .
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Credit Spread Put

In terms of yields, we can also write for the put payoff

max(0, e−K(T−t)−e−ST
t (T−t))B̄T

t

= max(0, e−(ȳT
t +K)(T−t) − e−(ȳT

t +ST
t )(T−t))

where ȳT
t is the non-defaultable yield, K is the strike spread, and ST

t is

the credit yield spread.

If the spread widens ST
t to the level K (the bond price declines to the

yield spread equivalent of K), the spread option comes into the money,

as it provides the right to sell the defaultable bond at a price

e−(ȳT
t +K)(T−t) corresponding to the spread level K.
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Characteristics

• Allows to capitalize on/hedge against changes in credit spreads

• Allows to trade forward credit spread expectations separately from

interest rate changes and provides an asymmetric payoff profile

(credit spread vol counts)

• Addresses both credit and default risk, which makes it appealing to

investors following a mark-to-market standard, who can hedge their

mark-to-market exposure to fluctuation in spreads (here also the

off-balance sheet nature of the deal is attractive)

• Interesting for portfolios that are forced to sell deteriorating assets:

here options can reduce risk of sales at distressed prices
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Default Swap vs. Credit Spread Put

Hedging against a significant spread change can also be accomplished

with a default swap (DS).

Consider a DS and a long American spread put. In a default both DS

and put will be in the money; i.e. the put can be used to hedge against

default. The put has a higher price (making protection more costly),

since it provides also protection to non-default credit events (spread

widens beyond the strike).

At-market premiums on the DS will change with a spread widening as

well–one can monetize this gain by unwinding the DS or selling

protection on a comparable asset.
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Example

An investor believes that the spread on an issuer narrows over a one-year

period. He can monetize this view by selling the following spread put:

• Notional up to USD25 million

• Maturity one year

• Option premium 0.75% flat

• Current spread 85bp

• Strike spread 100bp
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Example (2)

• Reference bond: ABC’s 7.75% 10 year

• Reference Treasury: current US Treasury 10 year

• Reference spread: yield on ref bond minus yield on Treasuries

• Payoff: purchaser can put the ref bonds to the seller at the strike

spread over the Treasury yield at maturity

The put is superior to a straight long bond position, since there is no

interest rate risk and there is the possibility of pocketing the return on

the high spread vol.
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Pricing

The value of the spread put at time zero is given by

B̄T
0 max(0, e−K(T−t)−e−ST

t (T−t))

so ST
t , the credit spread on the reference asset, needs to be modeled. In

the intensity based framework, assuming defaults to be independent of

riskless rate, we have simply

ST
t = − 1

T − t
ln P̃ [τ > T | Ft] = − 1

T − t
ln Ẽ[e−

R T
t

λ̃sds | Ft]

where Ft can be thought of as the information available at time t.

Hence, we need a model for the evolution of the risk neutral intensity λ̃

over time.
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Normal Model

One can assume a mean-reverting Gaussian process for the intensity

(called the extended Vasicek model):

dλ̃t = (k(t)− aλ̃t)dt + σdWt

where

• W is a standard Brownian motion

• σ is the volatility of the intensity

• λ̃ mean-reverts at speed a to the level k(t)/a

λ̃ is normally distributed, and becomes negative with (small) positive

probability. k(t) is calibrated from market swap spreads. In this model

spreads ST
t are available in closed form.
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Log-Normal Model

An alternative specification is

dλ̃t

λ̃t

= k(t)dt + σdWt

where

• W is a standard Brownian motion

• k(t) (σ) is the mean (volatility) of the intensity

λ̃ is log-normally distributed (fat tails!), and is therefore guaranteed to

stay positive. In this model spreads ST
t are not available in closed form,

which makes parameter calibration more difficult.
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Remarks

• Extension to stochastic interest rates, correlated to intensity

• Extension to jumps in intensity, but calibration is difficult

• Implementation: trinomial tree with a branch for default

• Fitting to market swap spreads of different maturities by shifting the

tree

• The higher the spread (intensity) volatility, the higher the option

price (note: due to an increasing default probability, the effect is

different from usual options for high vols)

• The higher the strike, the lower the option price (for

out-of-the-money puts lognormal model yields higher prices than the

normal model due to fat tails)
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Synthetic Lending Facility

In a revolver credit a bank agrees to make loans up to a specified

maximum up to a specified period. In addition to interest on the drawn

amount, the bank receives a commitment fee from the borrower.

In a synthetic lending facility (or synthetic revolver), a bank (the

investor) receives fee income in return for a forward commitment to

purchase a reference security at a pre-specified spread level via an asset

swap.
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Mechanism

• Bank receives a commitment fee for agreeing to extend funds at a

pre-specified rate to the SPV on demand

• SPV sells an asset swaption (an option to enter an asset swap) to a

market maker and receives a fee; the market maker has the option

to put the asset to the SPV

• If asset swaption is exercised, the SPV buys the the asset by drawing

the loan facility from the bank, which then receives Libor + spread
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Motivation for the Bank

• Higher fees than for funded revolving loan agreement

• Customized and liquid structure

• Transaction may benefit from regulatory capital arbitrage, because

unfunded lending transactions qualify for a reduced capital charge in

some countries (this is not the case for a default swap, which the

bank could sell alternatively to achieve a similar investment profile)
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Motivation for Market Maker

• Provide customized means to buy protection on the reference asset,

when there are mostly requests to sell protection (i.e., investors

want to buy protection)

• If spreads increase, demand on protection increases as well–now the

market maker has the valuable option to buy this protection via the

asset swaption at a pre-specified price and clear markets
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Collateralized Debt Obligations

1. Definition and structures

2. Mechanics

3. Waterfall

4. Motivation and risks for investors
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Definition

A Collateralized Debt Obligation (CDO) is a securitization in which a

portfolio of securities is transferred to a SPV which in turn issues

tranches of debt securities (notes) of different seniority and equity to

fund the purchase of the portfolio.

A Collateralized Bond Obligation (CBO) involves mostly bonds, while a

Collateralized Loan Obligation (CLO) involves mostly loans.

The debt tranches are typically rated based on portfolio quality,

diversification, and structural subordination.
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Characteristics

• CDO repackages the credit risk of the collateral pool

• Senior and mezzanine tranches concentrate ’good’ risks, while the

equity piece hosts ’bad’ risks (equity absorbs losses up to some

extent)

• Return on CDO securities depends on the joint default performance

of the assets in the collateral pool
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CDO Structures

CDOs can be classified as follows (purpose and credit structure):

• Balance-sheet CLOs

– Cash-flow type: there is no trading of collateral; only defaults in

the collateral cause loss risk for the investors

• Arbitrage CBOs

– Cash-flow type

– Market-value type: manager trades collateral assets; investors’

loss risk is due to credit and market risk

The majority of structures is of the cash-flow type.
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Arbitrage Structure

Typical collateral: high-yield bonds, leveraged loans, emerging market

and investment-grade debt, derivatives, hedge funds.

The sponsor seeks to capture an arbitrage between yield on collateral

acquired in the capital markets (largely sub-investment grade) and

investment-grade notes issued to investors (the high-risk pieces are

buffered by the equity tranche).

This provides note investors with sub-investment grade opportunities.
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Balance-Sheet Structure

Typical collateral: investment-grade and leveraged loans, emerging

market debt, ABS, project finance debt

• Used by banks (=sponsor) looking to securitize illiquid loans in the

banking book

• Release risk-based capital through the sale of loan assets

• Shrink balance sheet and improve ROE

• Arbitrage: issue securities that are more highly rated than the

sponsor

Note that the transfer of legal title of loans as well as keeping borrower

confidentiality is quite costly.
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Synthetic CLOs

In a synthetic CLO the credit risk of the collateral pool is transferred to

the SPV by means of a credit derivative (e.g. a portfolio default swap),

while the sponsor retains the assets on the balance sheet.

The SPV invests the proceeds from the note issuance in high-quality

assets and uses interest and swap rate to pay coupons on the notes. In

case of default, the SPV must sell collateral to pay in the credit

derivative, up to the total amount of collateral. What remains is used to

pay back the note investors.

Key problem: capital relief is not always granted
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Collateral Coverage Tests

Collateral coverage tests are used to decide whether the current

collateral is sufficient to cover the service payments on debt tranches.

• Haircut test: haircut collateral mark-to-market ≥ debt tranche par

+ accrued interest (haircut rate depends on asset class)

• Over-collateralization (OC) test: ratio of the total par collateral

value to the sum of par value of the tranche and all tranches senior

to this tranche ≥ threshold

• Interest coverage (IC) test: ratio of total collateral interest to the

sum of interest on the tranche and tranches senior to this tranche ≥
threshold
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Mechanics of Market Value CDOs

The CDO-manager trades the collateral to take advantage of

relative-value opportunities.

The collateral is marked-to-market periodically. If a tranche fails the

haircut test, then collateral is sold and debt is repaid until the test

passes. Alternatively, equity holders may contribute assets.

There is also a periodic check whether the value of equity (≈ the excess

of collateral market value over the par and accrued interest on all debt

tranches) is below some threshold. If this is the case, collateral must be

sold until all debt tranches are retired.
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Some Issues in Market Value CDOs

• Credit quality of notes depends on the effectiveness of the haircut

test (conservatism of rate vs. time between valuation)

• Volatility of the market value of collateral assets is affected by

interest rate vol and credit spread vol

• Diversification of collateral assets lowers market value vol:

restrictions with respect to concentrations by single-name, industry,

geography, etc.

• Liquidity of collateral assets can be a factor

• Market valuation of collateral assets must be available
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Mechanics of Cash Flow CDOs

The CDO collateral is not traded. The SPV collects any coupons,

principal, and default recoveries on the collateral. This is used to service

the issued securities. The credit quality of the tranches depends on the

credit quality of the collateral and the protectiveness of the CDO

structure.

Cash flow protection to investors is achieved by prioritizing the tranches:

• Priority in bankruptcy

• Priority in cash flow timing
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Waterfall

Tranches are serviced according to a prioritization scheme:

1. Pay fees to trustee, asset manager, etc.

2. Pay interest to the most senior notes; if OC and IC coverage tests

are not met, redeem notes until test is met

3. Pay interest to the next subordinated tranche; if OC and IC

coverage tests are not met, redeem first most senior notes, and

then, if necessary, this tranche until test is met

4. Service other tranches following this scheme

5. Pay down tranches according to their priority

6. Remains, if any, go to equity investors
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Equity Piece

Credit markets are imperfect.

• Moral hazard of sponsor/CDO-Manager:

– Selection of high-quality assets

– Costly enforcement of debt covenants

• Adverse selection due to asymmetric information about collateral;

investors demand a lemon’s premium

In order to mitigate the effects of moral hazard and asymmetric

information, the sponsor often signals commitment by retaining the

equity piece.
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Motivation for Investors
Notes:

• Higher yields as compared to corporates and asset-backeds of the

same maturity and rating

• Narrower default loss distribution (benchmark: individual bond)

• Customized exposure to new asset class, allows to overcome

investment restrictions

Equity:

• Leveraged position in collateral

• Sponsor in balance-sheet CDO: leverage collateral information

• Asset manager: increase assets under management and generate fees

quickly
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Primary Risks for CDO-Investors

• Credit risk of collateral: loss risk for investors (interest/principal)

• Interest-rate risk:

– In arbitrage cash-flow mostly in the form of basis risk

– Hedges are difficult and incomplete due to trading of assets

• Liquidity risk

– Secondary market for CDO-notes is limited

– Collateral is only limitedly liquid (concern in market-value

structure)
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Collateralized Debt Obligations

1. Analyzing a cash flow structure

2. Valuing the tranches

3. Moody’s Binomial Expansion Technique

4. Infectious default model

Kay Giesecke



Collateralized Debt Obligations 10 - 2

Waterfall in a Cash Flow Structure

1. Pay fees to trustee, asset manager, etc.

2. Pay interest to the most senior notes; if OC and IC coverage tests

are not met, redeem notes until test is met

3. Pay interest to the next subordinated tranche; if OC and IC

coverage tests are not met, redeem first most senior notes, and

then, if necessary, this tranche until test is met

4. Service other tranches following this scheme

5. Pay down tranches according to their priority

6. Remains, if any, go to equity investors
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Collateral Pool

Consider a (cash flow) CDO with the following collateral:

• Face value Mi of asset i

• Annualized coupon rate Ci of asset i, pays n times a year

• A(k) is the set of non-defaulted assets at coupon period k

• B(k) = A(k − 1)−A(k) is the set of assets defaulting between

coupon periods k − 1 and k

• Li is the loss in face value at default of collateral asset i
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Cash Flow to Collateral

The SPV collects any cash flows from the collateral pool: coupons,

principal, and recoveries on defaulted assets. The total cash flow Z(k)
available in coupon period k is given by

Z(k) =
∑

i∈A(k)

Ci

n
Mi +

∑

i∈B(k)

(Mi − Li)

These cash flows are allocated to the prioritized CDO-tranches. There

are several tranches of sinking fund bonds and an equity piece (most

subordinated).
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Sinking Fund Bond

• n coupon periods per year

• F (k) = F (k − 1)−D(k)− J(k) remaining principal at k, where

D(k) is the pre-payment of principal, and J(k) is the contractual

unpaid reduction in principal (prioritize tranches given defaults)

• c annualized coupon rate, so F (k) c
n is paid at k

• Y (k) actual interest paid at k; if Y (k) < F (k) c
n (note that

collateral may default) any difference is accrued at rate c

• U(k) accrued unpaid interest at k,

U(k) = (1 +
c

n
)U(k − 1) + F (k)

c

n
− Y (k)
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Assumptions

• Senior sinking fund bond, principal F1(0) = P1, coupon rate c1

• Mezzanine sinking fund bond, principal F2(0) = P2, coupon c2

• Equity with initial market value of P3 = P − P1 − P2, where P is

the principal value of the collateral, no guaranteed coupon

• Fixed maturity of the tranches (= coupon date K)

• Excess cash flow from the collateral is deposited in a reserve account

which earns interest at the risk-free rate r(k) (alternatively, these

funds may be used to purchase additional collateral)
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Uniform-Prioritization Scheme
Let W (k) =

∑
i∈A(k)

Ci

n Mi be the collateral interest at k.

1. Interest to senior bond: Y1(k) = min(U1(k),W (k))

2. Interest to mezzanine: Y2(k) = min(U2(k),W (k)− Y1(k))

3. Remains are deposited in a reserve account with value (before

payments)

R(k) = (1 +
r(k)
n

)[R(k − 1)− Y1(k − 1)− Y2(k − 1)] + Z(k)

4. Let H(k) be the losses since the previous coupon date, less collected

and undistributed interest:

H(k) = max
(
0,

∑

i∈B(k)

Li − [W (k)− Y1(k)− Y2(k)]
)
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Uniform-Prioritization Scheme (2)

5. Unpaid reductions in principal are applied in reverse priority order;

for equity J3(k) = min(F3(k − 1),H(k))

6. Mezzanine: J2(k) = min(F2(k − 1),H(k)− J3(k))

7. Senior: J1(k) = min(F2(k − 1),H(k)− J3(k)− J2(k))

8. There is no early redemption of principal, Di(k) = 0 for k < K. At

maturity K, remaining reserves are paid in priority order (wlog

Yi(K) = 0):

D1(k) = min(F1(K) + U1(K), R(K))

D2(k) = min(F2(K) + U2(K), R(K)−D1(K))

D3(k) = R(K)−D1(K)−D2(K)

Kay Giesecke



Collateralized Debt Obligations 10 - 9

Fast-Prioritization Scheme

1. Interest to senior bond: Y1(k) = min(U1(k), Z(k))

2. Principal to senior bond: D1(k) = min(F1(k − 1), Z(k)− Y1(k))

3. Interest to mezzanine: Y2(k) = min(U2(k), Z(k)− Y1(k)−D1(k))

4. Principal to mezzanine:

D2(k) = min(F2(k − 1), Z(k)− Y1(k)−D1(k)− Y2(k))

5. Equity: residuals D3(k) = Z(k)− Y1(k)−D1(k)− Y2(k)−D2(k)

For this scheme, there is no contractual reduction in principal, Ji(k) = 0.
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Change of Prioritization Schemes

In practice, failure to pass certain over-collateralization tests triggers a

change from uniform prioritization to some form of fast prioritization (to

increase loss protection for the senior tranche).

If such a feature is in fact in place, then the spreads on the senior tranche

applying with uniform prioritization would provide upper spread bounds,

while those applying with fast prioritization would provide lower bounds.
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Valuing the Tranches

The market value of the tranches can be estimated through simulation:

1. Simulate successive correlated defaults and the associated losses

2. Allocate cash flows to the tranches according to the chosen

prioritization scheme

3. Discount cash flows for each tranche at risk-free rates

4. For each tranche, average the discounted cash flows over

independently generated scenarios to obtain an estimate of the value

of the tranche

The challenging task is here to generate correlated default times (see

literature).
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Loss Distribution

The joint default behavior of the collateral pool determines the returns

of the CDO investors. In assessing the CDO, the quantity of interest is

the distribution of the total (default) losses in the collateral pool, and

associated risk measures (expected losses, variance, quantiles such as

VaR, expected shortfall).

The loss distribution can be simulated as follows:

1. Simulate successive correlated defaults and the associated losses

2. Aggregate losses up to the maturity of the structure

3. Generate many independent scenarios to calculate the frequency

distribution of aggregate losses
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Moody’s Binomial Expansion Technique

To assign a credit rating to the CDO debt tranches, Moody’s applies the

so-called Binomial Expansion Technique (BET) which aims at assessing

the ’diversity’ of the collateral pool.

Moody’s considers the original collateral pool with n names as

equivalent in terms of loss risk to an idealized comparison portfolio of

the same total face value with

• d ≤ n independent firms with equal face value and default

probability

• the same ’average’ default probability as the collateral bonds

• the the same loss risk according to some risk measure.

The number d is called the diversity score.
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Diversity Score

In the BET, Moody’s assumes that firms in different industries default

independently, while firms in the same industry are correlated. Moody’s

defines 32 industry sectors and the following diversity score table:

Number of Firms in Same Industry Score

1 1.00

2 1.50

3 2.00

4 2.33

5 2.67

6 3.00

7 3.25

8 3.50

9 3.75

10 4.00

>10 case by case
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Example

Consider a collateral portfolio of n = 60 bonds having equal (one-year,

say) default probability q and face value with the following structure:

Number of Firms in Same Industry 1 2 3 4 5

Number of Incidents 2 7 6 4 2

Diversity Score 2 · 1 7 · 1.5 6 · 2 4 · 2.3 2 · 2.6

Hence, the comparison portfolio has a diversity score of d = 39.

The maximal diversity is here n = 60, corresponding to independent

collateral bonds.
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Default Distribution

Since the defaults in the comparison portfolio are independent, the

distribution of the number N of defaults in the comparison portfolio is

binomial, i.e.

P [N = k] =
(

d

k

)
qk(1− q)d−k

where
(

d
k

)
= d!

k!(d−k)! . The expected number of defaults is E[K] = dq

and the variance is V ar[K] = dq(1− q).
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Determining the Comparison Portfolio
A way to determine d and the individual (comparison) default probability

q(t) such that the first two moments of the law of

n∑

i=1

1{τi≤t} and
n

d

d∑

i=1

1{σi≤t}

are equal for some fixed horizon t, say one year. The 1{σi≤t} are iid

Bernoulli with parameter q(t). This yields the relations

nq(t) =
n∑

i=1

pi(t)

n2

d
q(t)(1− q(t)) =

n∑

i=1

(
pi(t)(1− pi(t)) +

n∑

j=1,j 6=i

(pij(t)− pi(t)pj(t))
)

where pi(t) is the default prob. of i and pij(t) is the joint default prob.
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Infectious Default Model

Rather than to replace the original portfolio with some comparison

portfolio in order to account for the correlation between defaults of

collateral positions, one can also model interaction effects directly. Let

Zi = 1 if bond i defaults, and Zi = 0 otherwise, and define

Zi = Xi + (1−Xi)


1−

∏

j 6=i

(1−XjYji)




where Xi and Yij are independent Bernoulli random variables with

parameters q and c, respectively. That is, asset i may default ’directly’

with probability q, or may be infected through a default of some other

asset (there must be at least one defaulted asset j for which Yji = 1). c

is called the infection parameter.

Kay Giesecke



Collateralized Debt Obligations 10 - 19

Infectious Default Distribution

The probability of k defaults out of the n assets in the pool is

P [N = k] =
(

n

k

)(
qk(1− q)n−k(1− c)k(n−k)

+
k−1∑

i=1

(
k

i

)
qi(1− c)n−i[1− (1− c)i]k−1(1− c)i(n−k)

)

If c = 0, then this is the Binomial distribution with parameter q. Also

E[N ] = n[1− (1− q)(1− qc)n−1]

and V ar[N ] is available in closed-form as well.
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