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1 The Monte Carlo Framework

Suppose we wish to estimate some quantity, θ = E[h(X)], where X = {X1, . . . , Xn} is a random vector in Rn,
h(·) is a function from Rn to R, and E[|h(X)|] < ∞.

Note that X could represent the values of a stochastic process at different points in time. For example, Xi

might be the price of a particular stock at time i and h(·) might be given by

h(X) =
X1 + . . . + Xn

n

so then θ is the expected average value of the stock price. To estimate θ we use the following algorithm:

Monte Carlo Algorithm

for i = 1 to n

generate Xi

set hi = h(Xi)

set θ̂n = h1+h2+...+hn

n

Note: If n is large, it may be necessary to keep track of
∑

i hi within the for loop, so that we don’t have to
store each value of hi.

Question: Why is θ̂ a good estimator?

Answer: As we saw previously, there are two reasons:

1. θ̂n is unbiased. That is

E[θ̂n] =
E[

∑n
i hi]

n
=

E[
∑n

i h(Xi)]
n

=
nθ

n
= θ

2. θ̂n is consistent. That is
θ̂n → θ wp 1 as n →∞.

This follows from the Strong Law of Large Numbers (SLLN).

Remark 1 We can also estimate probabilities this way by representing them as expectations. In particular, if
θ = P(X ∈ A), then θ = E[IA(X)] where

IA(X) =
{

1 if X ∈ A
0 otherwise
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2 Examples from Finance

Example 1 (Portfolio Evaluation)

Consider two stocks, A and B, and let Sa(t) and Sb(t) be the time t prices of A and B, respectively. At time
t = 0, I buy na units of A and nb units of B so my initial wealth is W0 = naSa(0) + nbSb(0). Suppose my
investment horizon is T years after which my terminal wealth, WT , is given by

WT = naSa(T ) + nbSb(T ).

Note that this means that I do not trade in [0, T ]. Assume Sa ∼ GBM(µa, σa), Sb ∼ GBM(µb, σb), and that
Sa and Sb are independent. We would now like to estimate

P

(
WT

W0
≤ .9

)
,

i.e., the probability that the value of my portfolio drops by more than 10%. Note that we may write

Sa(T ) = Sa(0) exp
(
(µa − σ2

a/2)T + σaBa(T )
)

Sb(T ) = Sb(0) exp
(
(µb − σ2

b/2)T + σbBb(T )
)

where Ba and Bb are independent SBM’s.

Let L be the event that WT /W0 ≤ .9 so that that the quantity of interest is θ := P(L) = E[IL]. The problem
of estimating θ therefore falls into our Monte Carlo framework. In this example, X = (Sa(T ), Sb(T )) and

IL(X) =





1 if naSa(T )+nbSb(T )
naSa(0)+nbSb(0)

≤ 0.9

0 otherwise

Let’s assume the following parameter values:

T = .5 years, µa = .15, µb = .12, σa = .2, σb = .18, Sa(0) = $100, Sb(0) = $75 and na = nb = 100.

This then implies W0 = $17, 500.

We then have the following algorithm for estimating θ:

Monte Carlo Estimation of θ

for i = 1 to n

generate Xi = (Si
a(T ), Si

b(T ))
compute IL(Xi)

set θ̂n = IL(X1)+...+IL(Xn)
n
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Sample Matlab Code

> n=1000; T=0.5; na =100; nb=100;
> S0a=100; S0b=75; mua=.15; mub=.12; siga=.2; sigb=.18;
> W0 = na*S0a + nb*S0b;

> BT = sqrt(T)*randn(2,n);
> STa = S0a * exp((mua - (siga^2)/2)*T + siga* BT(1,:));
> STb = S0b * exp((mub - (sigb^2)/2)*T + sigb* BT(2,:));

> WT = na*STa + nb*STb;

> theta_n = sum(WT./W0 < .9) / n

2.1 Introduction to Security Pricing

We assume again that St ∼ GBM(µ, σ) so that

ST = S0e
(µ−σ2/2)T+σBT .

In addition, we will always assume that there exists a risk-free cash account so that if W0 is invested in it at
t = 0, then it will be worth W0 exp(rt) at time t. We therefore interpret r as the continuously compounded
interest rate. Suppose now that we would like to estimate the price of a security that pays h(X) at time T ,
where X is a random quantity (variable, vector, etc.) possibly representing the stock price at different times in
[0, T ]. The theory of asset pricing then implies that the time 0 value of this security is

h0 = EQ[e−rT h(X)]

where EQ[.] refers to expectation under the risk-neutral probability1 measure.

Risk-Neutral Asset Pricing

In the GBM model for stock prices, using the risk-neutral probability measure is equivalent to assuming that

St ∼ GBM(r, σ).

Note that we are not saying that the true stock price process is a GBM(r, σ). Instead, we are saying that for
the purposes of pricing securities, we pretend that the stock price process is a GBM(r, σ).

Example 2 (Pricing a European Call Option)

Suppose we would like to estimate2 C0, the price of a European call option with strike K and expiration T ,
using simulation. Our risk-neutral pricing framework tells us that

C0 = e−rT E
[
max

(
0, S0e

(r−σ2/2)T+σBT −K
)]

and again, this falls into our simulation framework. We have the following algorithm.

1The risk-neutral probability measure is often called the equivalent martingale measure or EMM.
2C0 can be calculated exactly using the Black-Scholes formula but we ignore this fact for now!
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Estimating the Black-Scholes Option Price

set sum = 0
for i = 1 to n

generate ST

set sum = sum + max (0, ST −K)

set Ĉ0 = e−rT sum/n

Example 3 ( Pricing Asian Options)

Let the time T payoff of the Asian option be

h(X) = max

(
0,

∑m
i=1 S iT

m

m
−K

)

so that X =
(
S T

m
, S 2T

m
, . . . , ST

)
.

We can then use the following Monte Carlo algorithm to estimate C0 = EQ[e−rT h(X)].

Estimating the Asian Option Price

set sum = 0
for i = 1 to n

generate S T
m

, S 2T
m

, . . . , ST

set sum = sum + max
(

0,

∑m

i=1
S iT

m

m −K

)

set Ĉ0 = e−rT sum/n

3 Generating Correlated Normal Random Variables and
Brownian Motions

In the portfolio evaluation example of Lecture 4 we assumed that the two stock price returns were independent.
Of course this assumption is too strong since in practice, stock returns often exhibit a high degree of correlation.
We therefore need to be able to simulate correlated random returns. In the case of geometric Brownian motion,
(and other models based on Brownian motions) simulating correlated returns means simulating correlated
normal random variables. And instead of posing the problem in terms of only two stocks, we will pose the
problem more generally in terms of n stocks. First, we will briefly review correlation and related concepts.

3.1 Review of Covariance and Correlation

Let X1 and X2 be two random variables. Then the covariance of X1 and X2 is defined to be

Cov(X1, X2) := E[X1X2]− E[X1]E[X2]
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and the correlation of X1 and X2 is then defined to be

Corr(X1, X2) = ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)Var(X2)
.

If X1 and X2 are independent, then ρ = 0, though the converse is not true in general. It can be shown that
−1 ≤ ρ ≤ 1.

Suppose now that X = (X1, . . . , Xn) is a random vector. Then Σ, the covariance matrix of X, is the (n× n)
matrix that has (i, j)th element given by Σi,j := Cov(Xi, Xj).

Properties of the Covariance Matrix Σ

1. It is symmetric so that ΣT = Σ

2. The diagonal elements satisfy Σi,i ≥ 0

3. It is positive semi-definite so that xT Σx ≥ 0 for all x ∈ Rn.

We will now see how to simulate correlated normal random variables.

3.2 Generating Correlated Normal Random Variables

The problem then is to generate X = (X1, . . . , Xn) where X ∼ MN(0,Σ). Note that it is then easy to handle
the case where E[X] 6= 0. By way of motivation, suppose Zi ∼ N(0, 1) and IID for i = 1, . . . , n. Then

c1Z1 + . . . cnZn ∼ N(0, σ2)

where σ2 = c2
1 + . . . + c2

n. That is, a linear combination of normal random variables is again normal.

More generally, let C be a (n×m) matrix and let Z = (Z1 Z2 . . . Zn)T . Then

CT Z ∼ MN(0,CT C)

so our problem clearly reduces to finding C such that

CT C = Σ.

Question: Why is this true?

Finding such a matrix, C, requires us to compute the Cholesky decomposition of Σ.

3.3 The Cholesky Decomposition of a Symmetric Positive-Definite Matrix

A well known fact from linear algebra is that any symmetric positive-definite matrix, M, may be written as

M = UT DU

where U is an upper triangular matrix and D is a diagonal matrix with positive diagonal elements.

Since our variance-covariance matrix, Σ, is symmetric positive-definite, we can therefore write

Σ = UT DU

= (UT
√

D)(
√

DU)

= (
√

DU)T (
√

DU).

The matrix C =
√

DU therefore satisfies CT C = Σ. It is called the Cholesky Decomposition of Σ.
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3.3.1 Cholesky Decomposition in Matlab

It is easy to compute the Cholesky decomposition of a symmetric positive-definite matrix in Matlab using the
chol command. This means it is also easy to simulate multivariate normal random vectors as well.

As before, let Σ be an (n× n) variance-covariance matrix and let C be its Cholesky decomposition. If
X ∼ MN(0,Σ) then we can generate random samples of X in Matlab as follows:

Sample Matlab Code

>> Sigma = [1.0 0.5 0.5;
0.5 2.0 0.3;
0.5 0.3 1.5];

>> C=chol(Sigma);
>> Z=randn(3,1000000);
>> X=C’*Z;
>> cov(X’)

ans =
0.9972 0.4969 0.4988
0.4969 1.9999 0.2998
0.4988 0.2998 1.4971

Remark 2 We must be very careful to premultiply Z by CT and not C.

Example 4 (A Faulty Σ)

We must ensure that Σ is a genuine variance-covariance matrix. Consider the following Matlab code.

Matlab Code

>> Sigma=[0.5 0.9 0.4;
0.9 0.7 0.9;
0.4 0.9 0.9];

>> C=chol(Sigma)

Question: What is the problem here?

More formally, we have the following algorithm for generating multivariate random vectors, X.

Generating Correlated Normal Random Variables

generate Z ∼ MN(0, I)
/∗Now compute the Cholesky Decomposition ∗/
compute C such that CT C = Σ
set X = CT Z
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3.4 Generating Correlated Brownian Motions

Generating correlated Brownian motions is, of course, simply a matter of generating correlated normal random
variables.

Definition 1 We say Ba
t and Bb

t are correlated SBM’s with correlation coefficient ρ if E[Ba
t Bb

t ] = ρt.

For two such SBM’s, we then have

Corr(Ba
t , Bb

t ) =
Cov(Ba

t , Bb
t )√

Var(Ba
t )Var(Bb

t )

=
E[Ba

t Bb
t ]− E[Ba

t ]E[Bb
t ]

t
= ρ.

Now suppose Sa
t and Sb

t are stock prices that follow GBM’s such that

Corr(Ba
t , Bb

t ) = ρ

where Ba
t and Bb

t are the standard SBM’s driving Sa
t and Sb

t , respectively. Let ra and rb be the continuously
compounded returns of Sa

t and Sb
t , respectively, between times t and t + s. Then it is easy to see that

Corr(ra, rb) = ρ.

This means that when we refer to the correlation of stock returns, we are at the same time referring to the
correlation of the SBM’s that are driving the stock prices. We will now see by example how to generate
correlated SBM’s and, by extension, GBM’s.

Example 5 (Portfolio Evaluation Revisited)

Recalling the notation of Example 1, we assume again that Sa ∼ GBM(µa, σa) and Sb ∼ GBM(µb, σb).
However, we no longer assume that Sa

t and Sb
t are independent. In particular, we assume that

Corr(Ba
t , Bb

t ) = ρ

where Ba
t and Bb

t are the SBM’s driving A and B, respectively. As mentioned earlier, this implies that the
correlation between the return on A and the return on B is equal to ρ. We would like to estimate

P

(
WT

W0
≤ .9

)
,

i.e., the probability that the value of the portfolio drops by more than 10%. Again, let L be the event that
WT /W0 ≤ .9 so that that the quantity of interest is θ := P(L) = E[IL], where X = (Sa

T , Sb
T ) and

IL(X) =





1 if
naSa

T +nbSb
T

naSa
0 +nbSb

0
≤ 0.9

0 otherwise.

Note that we can write

Sa
t+s = Sa

t exp
(
(µa − σ2

a/2)s +
√

s Va

)

Sb
t+s = Sb

t exp
(
(µb − σ2

b/2)s +
√

s Vb

)

where (Va, Vb) ∼ MN(0,Σ) with

Σ =
(

σ2
a σaσbρ

σaσbρ σ2
b

)
.

So to generate one sample value of (Sa
t+s, S

b
t+s), we need to generate one sample value of V = (Va, Vb). We do

this by first generating Z ∼ MN(0, I), and then setting V = CT Z, where C is the Cholesky decomposition of
Σ. To estimate θ we then set t = 0, s = T and generate n samples of IL(X). The following Matlab function
accomplishes this.
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A Matlab Function

function[theta] = portfolio_evaluation(mua,mub,siga,sigb,n,T,rho,S0a,S0b,na,nb);

% This function estimates the probability that wealth of the portfolio falls
%by more than 10% n is the number of simulated values of W_T that we use

W0 = na*S0a + nb*S0b;

Sigma = [siga^2 siga*sigb*rho;
siga*sigb*rho sigb^2];

B = randn(2,n);
C=chol(Sigma);
V = C’ * B;

STa = S0a * exp((mua - (siga^2)/2)*T + sqrt(T)*V(1,:));
STb = S0b * exp((mub - (sigb^2)/2)*T + sqrt(T)*V(2,:));

WT = na*STa + nb*STb;

theta = mean(WT/W0 < .9);

The function portfolio evaluation.m can now be executed by typing portfolio evaluation at the Matlab prompt.

3.4.1 Generating Correlated Log-Normal Random Variables

Let X be a multivariate lognormal random vector with mean µ′ and variance -covariance matrix3 Σ′. Then we
can write X = (eY1 , . . . , eYn) where

Y := (Y1, . . . , Yn) ∼ MN(µ,Σ).

Suppose now that we want to generate a value of the vector X. We can do this as follows:

1. Solve for µ and Σ in terms of µ′ and Σ′.

2. Generate a value of Y

3. Take X = exp(Y)

Step 1 is straightforward and only involves a few lines of algebra. (See Law and Kelton for more details.) In
particular, we now also know how to generate multivariate log-normal random vectors.

3For a given positive semi-definite matrix, Σ′, it should be noted that it is not necessarily the case that a multivariate
lognormal random vector exists with variance -covariance matrix, Σ′.
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4 Simulating Correlated Random Variables in General

In general, there are two distinct approaches to modelling with correlated random variables. The first approach
is one where the joint distribution of the random variables is fully specified. In the second approach, the joint
distribution is not fully specified. Instead, only the marginal distributions and correlations between the variables
are specified.

4.1 When the Joint Distribution is Fully Specified

Suppose we wish to generate a random vector X = (X1, . . . , Xn) with joint CDF

Fx1,...,xn
(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

Sometimes we can use the method of conditional distributions to generate X. For example, suppose n = 2.
Then

Fx1,x2(x1, x2) = P(X1 ≤ x1, X2 ≤ x2)

= P(X1 ≤ x1)P(X2 ≤ x2|X1 ≤ x1)

= Fx1(x1)Fx2|x1(x2|x1)

So to generate (X1, X2), first generate X1 from Fx1(·) and then generate X2 independently from Fx2|x1(·).
This of course will work in general for any value of n, assuming we can compute and simulate from all the
necessary conditional distributions. In practice the method is somewhat limited because we often find that we
cannot compute and / or simulate from the distributions.

We do, however, have flexibility with regards to the order in which we simulate the variables. Regardless, for
reasonable values of n this is often impractical. However, one very common situation where this method is
feasible is when we wish to simulate stochastic processes. In fact we use precisely this method when we simulate
Brownian motions and Poisson processes. More generally, we can use it to simulate other stochastic processes
including Markov processes and time series models among others.

Another very important method for generating correlated random variables is the Markov Chain Monte Carlo
(MCMC) method4.

4.2 When the Joint Distribution is not Fully Specified

Sometimes we do not wish to specify the full joint distribution of the random vector that we wish to simulate.
Instead, we may only specify the marginal distributions and the correlations between the variables. Of course
such a problem is then not fully specified since in general, there will be many different joint probability
distributions that have the same set of marginal distributions and correlations. Nevertheless, this situation often
arises in modelling situations when there is only enough data to estimate marginal distributions and correlations
between variables. In this section we will briefly mention some of the issues and methods that are used to solve
such problems.

Again let X = (X1, . . . , Xn) be a random vector that we wish to simulate.

− Now, however, we do not specify the joint distribution F (x1, . . . , xn)

− Instead, we specify the marginal distributions Fxi(x) and the covariance matrix R

4See Ross for an introduction to MCMC.
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− Note again that in general, the marginal distributions and R are not enough to uniquely specify the joint
distribution

Even now we should mention that potential difficulties already exist. In particular, we might have a consistency
problem. That is, the particular R we have specified may not be consistent with the specified marginal
distributions. In this case, there is no joint CDF with the desired marginals and correlation structure.

Assuming that we do not have such a consistency problem, then one possible approach, based on the
multivariate normal distribution, is as follows.

1. Let (Z1, . . . , Zn) ∼ MN(0,Σ) where Σ is a covariance matrix with 1’s on the diagonal. Therefore
Zi ∼ N(0, 1) for i = 1, . . . , n.

2. Let φ(·) and Φ(·) be the PDF and CDF, respectively, of a standard normal random variable. It can then
be seen that (Φ(Z1), . . . , Φ(Zn)) is a random vector where the marginal distribution of each Φ(Zi) is
uniform. How would you show this?

3. Since the Zi’s are correlated, the uniformly distributed Φ(Zi)’s will also be correlated. Let Σ′ denote the
variance-covariance matrix of the Φ(Zi)’s.

4. We now set Xi = F−1
xi

(Φ(Zi)). Then Xi has the desired marginal distribution, Fxi(·). Why?

5. Now since the Φ(Zi)’s are correlated, the Xi’s will also be correlated. Let Σ′′ denote the
variance-covariance matrix of the Xi’s.

6. Recall that we want X to have marginal distributions Fxi(·) and covariance matrix R. We have satisfied
the first condition and so to satisfy the second condition, we must have Σ′′ = R. So we must choose the
original Σ in such a way that

Σ′′ = R. (1)

7. In general, choosing Σ appropriately is not trivial and requires numerical work. It is also true that there
does not always exist a Σ such that (1) holds.


