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Summary In recent years, there has been considerable interest in the application of credit
models to the analysis and valuation of credit risk. In this article we present and
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models should be used.

Dominic O’Kane
dokane@lehman.com
+44-20 7260 2628

Lutz Schlögl
luschloe@lehman.com
+44-20 7601 0011 ext. 5016

We would like to thank Jamil Baz, Robert Campbell, Lee Phillips and Paul Varotsis for their
comments and suggestions

Acknowledgements



Lehman Brothers International (Europe) 3

Analytical Research Series                                                                                                                                       February 2001

TABLE OF CONTENTS

Introduction to Credit Modelling 5

Single Issuer Credit Models 6

Structural Models of Default 6

The Merton Model 6
Extensions of the Merton Model 9
Empirical Testing of the Merton Model 10
Practical Applications of Firm Value Models 11

Reduced-Form Models 13

Modelling the Default Process 13
Risk-Neutral Pricing 14
Stochastic Hazard Rates 16
Simulating Default 17
Rating-Based Models 19

Recovery Assumptions 22

Credit Curve Construction 26

Portfolio Credit Models 31

Default Correlation 31

Default Correlation and Basket Default Swaps 32

Modelling and Valuing Collateralized Debt Obligations 35

The Firm Value Approach to Modelling Correlated Default 36

Large Portfolio Limit 37

Conclusions 42

Appendix 43

References 44



4

Analytical Research Series                                                                                                                                       February 2001

Lehman Brothers International (Europe)



Lehman Brothers International (Europe) 5

Analytical Research Series                                                                                                                                       February 2001

Introduction to Credit Modelling
In recent years, the combination of low government bond yields, low issuance of
government debt and the astonishing growth of the credit derivatives markets has
attracted a significant flow of investors to higher yielding corporate and emerging
market securities. Banks and other institutions which are in the business of taking
on credit exposures are also looking for more sophisticated ways to reduce their
credit concentrations, either through diversification or by securitising their port-
folios into first and second-loss products.

As a result there is a growing need for credit models. These can be used for a
variety of purposes - relative value analysis, marking-to-market of illiquid securi-
ties, computing hedge ratios, and portfolio level risk management. For marking to
market, models need to be arbitrage-free to guarantee consistent pricing, and must
be sufficiently flexible to reprice the current market completely.  Furthermore,
there is a need for models that can add value by providing some insight into the
default process. This is especially so in view of the relative paucity of market data
in the credit markets.

At a portfolio level, credit models are an invaluable aid to loan managers as they
can quantify the marginal diversification of adding a new loan to the balance sheet.
The introduction of new portfolio credit derivatives such as basket default swaps
has also created a need for a better understanding of the default correlation be-
tween different defaultable assets. Within the growing field of debt securitisation,
where the credit risk of a large pool of defaultable assets is tranched up into a
number of issued securities, portfolio credit models have become an essential
requirement to determine the rating and pricing of the issued securities.

However, credit modelling is a difficult business. Default is a rare event1, such that
there are barely enough observations for us to extract meaningful statistics.  In
addition, default can occur for many different reasons, ranging from the
microeconomic, e.g. bad company management, to the macroeconomic, such as
extreme currency or interest rate movements. In the case of sovereign debt, there
is the added complication that default can occur not just because of the inability to
pay but also because of an unwillingness to do so. The restructuring process initi-
ated at default can be quite complicated and time consuming, resulting in consider-
able uncertainty about the timing and magnitude of recovery payments. Further-
more, insolvency and bankruptcy laws vary from country to country.

There are several contending approaches to credit modelling. As a means of classi-
fication, models can mainly be split into two groups - structural and reduced-form.
The former type relates to models that have the characteristic of describing the
internal structure of the issuer of the debt, so that default is a consequence of
some internal event. The latter type - reduced-form- does not attempt to look at the
reasons for the default event. Instead it models the probability of default itself, or
more generally, the probability of a rating transition.

In this article we present a review of what we consider to be the most promising of
all of these models. In doing so, we pay particular attention to how they are used in
practice.

We also cover some of the portfolio credit risk models. These are an essential
requirement for the pricing and analysis of portfolio default trades such as credit
default baskets and collateralised debt obligations.

1 Moody’s counted 106 defaults of Moody’s rated issuers worldwide in the whole of 1999.
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Single Issuer Credit Models
Structural Models of Default

The structural approach to modelling default risk attempts to describe the under-
lying characteristics of an issuer via a stochastic process representing the total
value of the assets of a firm or company. When the value of these assets falls
below a certain threshold, the firm is considered to be in default.

Historically, this is the oldest approach to the quantitative modelling of credit risk
for valuation purposes, originating with the work of Black/Scholes (1973) and
Merton (1974). As the fundamental process being described is the value of the
firm, these models are alternatively called firm value models. As the name im-
plies, this approach is more suited to the study of corporate issuers, where an
actual firm value can be identified, e.g. using balance sheet data. For sovereign
issuers, the concept of a total asset value is much less clear-cut, though attempts
have been made to adapt this approach to sovereign credit risk using national stock
indices as proxies for firm values, c.f. Lehrbass (2000).

Within the Merton model, it is assumed that the firm’s capital structure consists
of:
• Debt with a notional amount K, in the form of zero coupon bonds with maturity

T and total value today (time t) equal to ),( TtBd .
• Equity with total value today (time t) equal to )(tS .

At each time before the bonds mature ( Tt ≤ ), we denote the total market value of
the firm’s assets by V(t). We shall refer to V(t) as the firm or the asset value
interchangeably.

Firms have limited liability. Therefore, by the fundamental balance sheet equation,
the firm’s total assets must equal the sum of its equity and its liabilities. This
means that the stock price and the bond price are linked to the firm value via the
equation

                                                                    ),()()( TtBtStV d+= (1)

The fundamental assumption of the Merton model is that default of the bond can
only take place at its maturity, since this is the only date on which a repayment is
due. The payoff at maturity is therefore

                                                                )),(min(),( KTVTTBd = (2)

If the firm value is greater than the redemption value of the debt, then the firm is
solvent and the debt is worth par. If the firm value is less than the redemption
value, the firm is insolvent and bondholders have first claim on its assets. This
means that the shareholders are residual claimants with a payoff at maturity of

                                                                )0,)(max()( KTVTS −= (3)

The bond and equity payoffs are shown in Figure 1.

In effect, the shareholders are long a European call option on the firm value. Sub-
ject to some assumptions2, this can be priced just as in the Black/Scholes model.

The Merton Model

Valuation

2 The main assumptions are that the firm value evolves according to a stochastic lognormal process
with constant volatility, and that interest rates are constant.
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Using equation (1), we can imply out the value of the corporate bond. If  P(t)
denotes the price of a put option on the firm value with a strike of K, and B(t,T) is
the price of a non-defaultable zero coupon bond with notional K and maturity T,
basic put-call parity implies that

                                                 )(),()()(),( tPTtBtStVTtBd −=−= (4)

The bondholders have sold the shareholders an option to put the firm back to them
for the bond’s notional value at maturity T. It is this additional risk which makes
them demand a yield spread over the default-free zero coupon bond.

The market price Bd (0,T) of the risky debt is calculated from the Black/Scholes
option pricing formula. We introduce the quotient

                                                                      
)0(

)exp(
V

rTK
d

−
= (5)

where r is the risk-free interest rate. This is the debt-to-assets ratio when the nomi-
nal value of the debt is discounted at the market’s risk-free interest rate. It is one
way of measuring the leverage of the firm. Clearly, a higher value of d leads to a
greater degree of risk for the firm. Also, we define
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where σF is the volatility of the firm value. Then, the market value of risky debt in
the Merton model is given by

                                               ( ) ( )





 +−= 21

1
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d
hNrTKTBd (7)

where N denotes the cumulative distribution function of the standard normal dis-
tribution. The definition of the T-maturity credit spread s implies that

                                                               r
K

TB
T

s
d

−







−= ),0(ln1 (8)

The spread s can be computed using equations (7) and (8) to give the curves shown
in Figure 2.

Figure 2 shows the three types of spread curve produced by the Merton model.
They were calculated using a risk-free rate of 5%, a debt face value of 100, and

Results

Figure 1. Value of debt and equity at maturity as a function of
asset value
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asset values of 140, 115 and 98 respectively. For a highly leveraged firm, where
the face value of outstanding debt is greater than the current firm value, the credit
spread is decreasing with maturity and actually explodes as the maturity of the
bond goes to zero. Clearly, if the bond were to mature in the next instant, the firm
would already be in default. In a sense, this behaviour results from the fact that the
condition for default is imposed only at the maturity of the bond.

The hump-shaped curve for the firm with medium leverage is typical of the Merton
model and can be interpreted as reflecting the fact that the credit quality of such a
firm is more likely to deteriorate in the short term.  However, should it survive,
the credit quality is likely to increase.

Last of all, firms with low leverage, where the assets of the firm can easily cover
the debt, are very unlikely to default, and can really only become more likely to do
so over time. This results in a small but gradual increase in the credit spread until
it is almost flat and the asymptotic behaviour of the spread becomes dominant.

For reasonable parameters3 the credit spread tends to zero as the maturity of the
bond goes to infinity. The present value of the outstanding notional of the bond
falls in relation to the risk-free growth of the firm’s assets, so that the default risk
becomes negligible.

The decisive pricing inputs of the Merton model are the volatility σF  of the firm
value and the degree d of the firm’s leverage. Though the book value of assets and
the notional value of outstanding debt can be deduced from a firm’s balance sheet,
this information is updated on a relatively infrequent basis when compared to fi-
nancial markets data. For pricing purposes we need the total market value of all the
firm’s assets. This cannot be observed directly, but must be estimated. Conse-
quently, there is no time series readily available for it, and its volatility must also
be estimated.

For a publicly traded company, we can use the model to imply out the firm value
and its volatility from the notional of the outstanding debt and stock market data.

Calibration

3 in particular in the case where rF 2<σ

Figure 2 Term structure of credit spreads in the Merton model for
three firms with different degrees of leverage
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Recall that the stock is a call option on the firm value. As such, its price is given by
the equivalent of the Black/Scholes formula. In the notation of equation (6) this is

                                                  )()exp()( 12 hNrTKhVNS −−= (9)

Also, the stock’s delta with respect to the firm value is given by ∆ = N (h2). A
simple calculation then shows that the volatility σs of the stock price is given by

                                                                          
S
VF

S
∆

=
σ

σ (10)

Taking the outstanding notional K, as well as the stock price S and its volatility σS
as given, we simultaneously solve equations (9) and (10) for the firm value V and
its volatility σF . This has to be done numerically. We can then use these param-
eters as inputs for the valuation of debt.

For private companies, the whole estimation procedure is more involved, as there
is no publicly available equity data.

The Merton model is the benchmark for all structural models of default risk. How-
ever, some of its assumptions pose severe limitations. The capital structure of the
firm is very simplistic as it is assumed to have issued only zero coupon bonds with
a single maturity. Geske (1977) and Geske/Johnson (1984) analyse coupon bonds
and different capital structures in the Merton framework. The analytical valuation
of bonds is still possible using methods for compound options.

Also, the evolution of the risk-free term structure is deterministic. Several au-
thors have extended the model by combining the mechanism for default with vari-
ous popular interest rate models. Among these are Shimko/Tejima/van Deventer
(1993), who use the Vasicek (1977) specification for the (default) risk-free short
rate. Using the techniques well-known from Gaussian interest rate models, credit
spreads can be computed. The results are compatible with those in the determinis-

Extensions of the Merton
Model

Example 1: Assume that a firm has zero coupon debt outstanding with a face
value of $100MM and a remaining maturity of 3 years. The riskless rate is 5%.
Total stock market capitalization is $36MM, with a stock price volatility of 53%.

Using this information we can now determine the firm asset value and the asset
volatility by performing a two-dimensional root search to solve equations (9) and
(10) for V and σF. We obtain a total market value V for the firm of $119.8MM with
an asset volatilityσF of 17.95%. This implies a debt-to-assets ratio d of 71.85%,
where d is computed as in equation (5). The market value of the debt is given by
the difference between the firm value and the stock price, and is equal to $83.8MM.
The spread s can be calculated from equation (8). It turns out to be 91bp.

In our previous classification of firms into those with low, medium and high leverage,
the firm in this example qualifies as one with medium leverage. Its total market value
is higher than the face value of the outstanding debt, but its credit spread is quite
significant. The spread curve is similar to the middle one in Figure 2, with the maxi-
mum credit spread of 101bp being attained for a maturity of about 1.5 years.
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tic case, and credit spreads are generally an increasing function of the short rate
volatility and its correlation with the firm value.

It is clearly unrealistic to assume that the default of an issuer only becomes appar-
ent at the maturity of the bond, as there are usually indenture provisions and safety
covenants protecting the bondholders during the life of the bond. As an alternative,
the time of default can be modelled as the first time the firm value crosses a cer-
tain boundary. This specifies the time τ of default as a random variable given by

                                                        { })()(|0 min tKtVt =≥=τ (11)

where K(t) denotes some time-dependent, and possibly stochastic boundary. This
passage time mechanism for generating defaults was first introduced by Black/
Cox (1976), and has been extended to stochastic interest rates by, among others,
Longstaff/Schwartz (1995) and Briys/de Varenne (1997).

The main mathematical difficulty in a passage time model is the computation of
the distribution of default times, which is needed for risk neutral pricing. If the
dynamics of the firm asset value are given by a (continuous) diffusion process,
this is a reasonably tractable problem. However, if the paths of the firm asset value
are continuous, this has an important practical consequence for the behaviour of
credit spreads. If the firm value is strictly above the default barrier, then a diffu-
sion process cannot reach it in the next instant - default cannot occur suddenly.
Therefore, in a diffusion model, short-term credit spreads must tend towards zero;
this is at odds with empirical evidence. One remedy is to allow jumps in the firm
value, c.f. Schonbucher (1996) or Zhou (1997). The analytic computation of the
passage time distribution, however, becomes much more complicated, and often
recourse to simulation is the only option.

Allowing jumps in the firm value also introduces additional volatility parameters.
The total volatility of the firm value process is determined by that of the diffusion
component, as well as by the frequency and size of jumps. Qualitatively, it can be
said that early defaults are caused by jumps in the firm value, whereas defaults
occurring later are due primarily to the diffusion component. The additional vari-
ables give more freedom in calibrating to a term structure of credit spreads, but
also pose the problem of parameter identification.

There have been a number of empirical tests of the Merton model, which have
attempted to analyse both the shape and the level of credit spreads. Compared to
equity markets, data issues are much more challenging because of the relative lack
of liquidity for many corporate bonds. Most empirical studies have been carried
out with relatively small bond samples. At present, the empirical evidence is not
wholly conclusive, in particular on the shape of credit spreads for medium and low
quality issuers. The main studies are summarised as follows:

• Jones, Mason and Rosenfeld (1984) have studied monthly prices for the pub-
licly traded debt of a set of 27 companies between 1975 and 1981, and found
that, on the whole, the Merton model does not explain spreads very well, tend-
ing to overprice bonds.

• Based on monthly price quotes for corporate zero coupon bonds, Sarig and
Warga (1989) have found that credit spreads in the market resemble the shapes
produced by the model. However, this evidence is qualified by the small sample

Empirical Testing of the
Merton Model

The Passage Time Mechanism
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used. Also, zero coupon bonds arguably do not constitute a representative sample
of the corporate bond market.

• Helwege and Turner (1999) provide evidence for the fact that the hump-shaped
and downward sloping credit spreads observed in empirical studies may just be
a consequence of pooling issuers in the same rating class when constructing
credit curves. They argue that issuers in the same rating class are not identical
with respect to credit risk and that better-quality names tend to issue debt with
longer maturities than the lower-quality ones in the same class. When consid-
ering individual issuers, they find that high yield debt exhibits an upward slop-
ing term structure of spreads in the same manner as investment grade debt.

An industrial application based on the firm value approach is given by the Expected
Default Frequencies (EDF) provided by the KMV corporation. KMV compute
default probabilities for individual issuers. A default boundary is inferred from
balance sheet data about the firm’s liabilities. An approach based on the Merton
model is used to infer the firm value and its volatility from equity prices; i.e. to
“delever” the equity price movements. These data give a measure of what is called
the “distance to default”, which is then mapped to actual default frequencies via a
very large proprietary database of corporate defaults. It has been argued by KMV
that their model is a better predictor of default than credit ratings, cf. Crosbie
(1998). Using EDF’s to characterize credit quality, Bohn (1999) does find evi-
dence that the term structure of credit spreads is hump-shaped or downward slop-
ing for high yield bonds.

The fact that firm value models focus on fundamentals makes them useful to ana-
lysts adopting a bottom-up approach. For example, corporate financiers may find
them useful in the design of the optimal capital structure of a firm. Investors, on
the other hand, can use them to assess the impact of proposed changes of the
capital structure on credit quality. One caveat to this is that it is extremely diffi-
cult to apply the firm value model in special situations such as takeovers or lever-
aged buyouts, where debt might become riskier while equity valuations increase.

The calibration of a firm value model is very data intensive. Moreover, this data is
not readily available. It is a non-trivial task to estimate asset values and volatilities
from balance sheet data. If one follows the firm value concept to its logical con-
clusion, then it is necessary to take into account all of the various claims on the
assets of a firm - a highly unfeasible task. Furthermore, fitting a term structure of
bond prices would require a term structure of asset value volatilities and asset
values, which is simply not observable

In terms of analytical tractability, one has to note that firm value models quickly
become cumbersome and slow to compute when we move away from the single
zero coupon bond debt structure. If instead we introduce a coupon paying bond
into the debt structure then its pricing is dependent on whether the firm value is
sufficient to repay the coupon interest on the coupon payment dates. Mathemati-
cally the form of the equations become equivalent to pricing a compound option.
Similarly, if the issuer has two zero coupon bonds outstanding, the price of the
longer maturity bond is conditional on whether the company is solvent when the
shorter maturity bond matures. This also makes the pricing formulae very compli-
cated. The pricing of credit derivatives with more exotic payoffs is beyond the
limits of this model.

Practical Applications of
Firm Value Models
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Finally, if a diffusion process is used for the firm value, default is predictable in
the sense that we can see it coming as the asset price falls. This means that default
is never a surprise. In the real world, it sometimes is. For example, the default of
emerging market sovereign bonds is not just caused by an inability to pay, which
can be modelled within a firm value approach, but also by an unwillingness to pay,
which cannot.
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Reduced-Form Models
In contrast to structural models, reduced-form credit models do not attempt to
explain the occurrence of a default event in terms of a more fundamental process
such as the firm value or an earnings stream. Instead, the aim is to describe the
statistical properties of the default time as accurately as possible, in a way that
allows the repricing of fundamental liquid market instruments and the relative valu-
ation of derivatives. This approach was initiated by Jarrow/Turnbull (1995) and has
found wide application since then. The methodology used is closer to that of the
actuarial sciences and of reliability theory than to the corporate finance methods
used in structural models, and the pricing techniques are similar to those used in
traditional models of the term structure, as opposed to the more equity-like struc-
tural models.

In a reduced-form model, default is treated as an exogenous event. The central
object of the modelling procedure is the default counting process N. This is a
stochastic process which assumes only integer values. It literally counts default
events, with N(t) denoting the number of events that have occurred up to time t.
Each such event corresponds to the time of a jump in the value of N, Figure 3
shows a typical path of the process.

Usually, we are only interested in the time τ of the first default. This can be written as

                                                               { }1)(|0 min ≥≥= tNtτ (12)

Empirical evidence shows that the majority of defaults do not result in liquidation,
cf. Franks/Torous (1994). Instead, the defaulting firm is often restructured, with
creditors being compensated by new debt issues; the economic life of a security
does not necessarily end with the first default event. On the other hand, defaults
are relatively rare, and as most credit derivatives condition on the occurrence of
any default, it is usually justified to focus just on the time τ of the first default by
any specific issuer.

The simplest example of a default counting process is that of a Poisson process.
The stochastic behaviour of the process is determined by its hazard rate λ(t). It
can be interpreted as a conditional instantaneous probability of default:

                                                          
[ ] dtttdttP )(| λττ =>+≤ (13)

Modelling the Default
Process

Figure 3.   Typical path of a default counting process
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Equation (13) states that, conditional on having survived to time t, the probability
of defaulting in the next infinitesimal instant is proportional to λ(t) and the length
of the infinitesimal time interval dt. The function λ describes the rate at which
default events occur, which is why it is called the hazard rate of N. Equation (13)
can be integrated to give the survival probability for a finite time interval as

(14)

Note that the purpose of the model is the arbitrage-free valuation of default-linked
payoffs. The probability measure P is therefore a risk-neutral measure, meaning
that the survival probability under P is not directly related to historical default
frequencies but where the default risk can be hedged in the market. Also, the inten-
sity function λ(t) governs the behaviour of N under P, and must therefore incorpo-
rate the risk premium demanded by the market.

In this framework, one uses the risk-neutral approach to compute contingent claims
prices. Suppose that )(TX  is a random payoff made at time T if no default event
occurs until then. The initial price )0(dC of this claim is given by the risk neutral
expectation of the discounted payoff

                                                           { }







= >T

d

T
TXEC τβ

1
)(
)()0( (15)

where                                                







∫=
T

duurT
0

)(exp)(β

is the value of the money market account. If the default time τ  is independent of
the random payoff )(TX  and the non-defaultable term structure, we can separate
the two terms in the expectation in equation (15) to obtain

                                                            [ ]TP
T
TXECd >








= τ

β )(
)()0( (16)

The remaining expectation is the price )0(C  of a claim to the payoff )(TX , which
has no default risk; it is multiplied by the survival probability to time T. We have:

                                                                 [ ]TPCCd >= τ)0()0( (17)

This shows that, under the independence assumption, the price of a defaultable claim
is obtained by multiplying the price of the equivalent non-defaultable claim by the
probability of survival until time T. Analogously, if )0(

d
C  is the price of a claim

which pays )(TX  at time T if a default event has occurred before that time, we have

                                                                [ ]TPCC
d

≤= τ)0()0( . (18)

Another type of claim that is often encountered makes a random payment of X(τ)
at the time of default, if this should occur before some time horizon T. Its initial
price )0(D  can be written as

                                                                    { }







= ≤T

XED ττβ
τ 1
)(
)()0( (19)

Risk-Neutral Pricing

[ ] ( )sdstP t
∫−=> 0 )(exp λτ
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To compute this expectation, we need the probability density of the default time.
Using the definition of conditional probabilities, equation (13) tells us that the
probability of defaulting in the time interval from t to t + dt is given by

                                (20)

i.e. the probability of surviving to time t multiplied by the probability of defaulting
in the next time interval dt. We obtain )0(D  by integrating over the density of τ,
so that

                                               ∫ 







∫−








=

T t
dtduut

t
tXED

0 0
)(exp)(

)(
)()0( λλ

β
(21)

An important special case is the one where X is constant and equal to one. We
denote the price of this claim by )0(D . It is an important building block for pric-
ing bonds which recover a fraction of their par amount at the time of default. If

),0( tB  denotes the price of a non-defaultable zero coupon bond with maturity t,
we see from equation (21) that

                                                   dtduuttBD
T t

∫ 







∫−=

0 0
)(exp)(),0()0( λλ (22)

We see that )0(D  is just a weighted average of non-defaultable zero coupon bond
prices, where the weights are given by the density of τ.

Example 2: Suppose that the hazard rate has a constant value λ. We consider a
zero coupon bond with maturity T under the zero recovery assumption, i.e. the
bond pays $1 if no default occurs until T and nothing otherwise. The survival prob-
ability is

                                                                    
[ ] )exp( TTP λτ −=>

If y  is the continuously compounded yield of the corresponding non-defaultable
bond, we obtain from equation (17):

                                                            
))(exp(),0( TyTBd λ+−=

This shows that in the zero recovery scenario, the yield spread of the
defaultable bond is exactly equal to the hazard rate of the default process.

dtduutdttPtdtttP
t









∫−=>=+≤<
0

)(exp)(][)(][ λλτλτ
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Example 3: We price a defaultable zero coupon bond which pays a fraction
%30=R  of its notional at the time of default. We assume a maturity T of 3 years,

riskless interest rates are constant at %4=r , and the hazard rate is %1=λ . If
this were the hazard rate under the objective or real-world probability measure, it
would translate into a default probability of 2.96% over the three year time horizon,
which corresponds roughly to that of an issuer with a rating of BBB. However, note
that we are considering the hazard rate under the risk-neutral measure, so that it
also incorporates a risk premium.

The price of the defaultable bond is made up of the recovery payment and the pay-
ment at maturity, which is contingent on survival:

                                         [ ]TPTBRDTBd >+= τ),0()0(),0(

Because the hazard rate and interest rates are constant, we can explicitly calculate
the integral in equation (22) to obtain

Inserting the numbers gives a bond price of 91.86$),0( =TBd  on a $100 notional.
Using continuous compounding this translates into a credit spread of 68bp. If we
compare this spread with actual credit curves, we see that it corresponds roughly
to an issuer rating of single A. This reflects the risk premium investors demand for
holding the bond.

Stochastic Hazard Rates

( )( )Tr
r

D )(exp1)0( λ
λ

λ +−−
+

=

In this last example, we modelled the hazard rate process as being deterministic
i.e. we know today how the hazard rate will evolve over time. For most instruments
there is no need to model explicitly the dynamics of the hazard rate. This only
becomes necessary when we wish to price instruments with an embedded spread-
linked optionality or when we wish to examine the effect of the correlation be-
tween the hazard rate and other model factors such as interest rates and FX rates.

A general class of default counting processes with a stochastic hazard rate is given
by the so-called Cox processes, introduced to financial modelling by Lando (1998).
Here, the default counting process N is modelled in such a way, that, when condi-
tioning on the complete information provided by the path of the stochastic hazard
rate λ(t), it behaves just like a Poisson process.  Typically, a factor model is used
to drive the default-free term structure and the hazard rate λ. The formulae we have
seen before for Poisson processes now hold conditionally. For example, the for-
mula for the survival probability given in equation (14) now takes the form

                                              [ ] ( )∫−=> ≤≤
t

tu dssutP 00 )(exp))(( λλτ (23)

By using a method known as iterated conditional expectations, it is possible to
price derivatives in the Cox process setup in the same way as is used in ordinary
term structure modelling. We consider a survival-contingent random payoff X to
be made at time T if no default has taken place until then. As before, the initial
price of this claim is given by equation (15). We first condition on the trajectory
of the hazard rate up to time T, and then compute the unconditional expectation on
the default process to obtain
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This iteration of conditional expectations allows us to remove all explicit refer-
ence to the default event. The payoff is priced just as if it didn’t have any default
risk in a world where the short rate is adjusted by the hazard rate. If the hazard rate
is independent of the payoff and the non-defaultable term structure, then, just as
before, the price of the claim is obtained by multiplying the price of the equivalent
non-defaultable claim by the probability of survival.

The pricing of a payment made at the time of default gives an analogous formula to
the one we have presented in the deterministic case:
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Consider an instrument which pays $1 immediately following default and zero
otherwise. The corresponding process X is constant and equal to 1. If we also
assume that the hazard rate and non-defaultable interest rates are independent, the
formula in equation (25) simplifies to
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This extends the result we obtained in equation (22). As the derivation of equa-
tions (25) and (26) is somewhat more involved than the deterministic case, we
discuss it in the appendix.

For credit contingent securities where there is no analytically tractable model and
which do not have any American optionality, Monte-Carlo simulation is usually
the favoured pricing methodology. It is both intuitive, flexible and extends easily
to multiple factors. There are essentially two ways to simulate default within the
Poisson framework we have laid out.

Valuing a Default Digital
Payoff

Simulating Default

Method 1: Simulating using Bernoulli Trials
Suppose we have a simulation of the hazard rate process so that  λ (n,i) is the
value of the hazard rate in simulation path number i  and at time interval n. Assum-
ing that the asset has not yet defaulted along this simulation path. To determine
whether a default occurs at this time interval, we:

1. Perform a Bernoulli trial by drawing a random number u from a uniform distribu-
tion on the interval [0,1].

2. The condition for default is to test whether u < λ (n,i) ∆t. If so we have a default,
otherwise the asset survives to the next time step.

For example, consider the case when λ (n,i) ∆t equals 0.027 and we draw a random
uniform equal to 0.29. As the random uniform is greater than 0.027 the asset does
not default at this time. However, in another path at this time interval the random
uniform draw equals 0.013. In this case the asset defaults.
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This method is based on the idea that the hazard rate describes the rate at which
defaults occur. It is very simple, and can be implemented in all situations. How-
ever, as the condition for default must be checked in every interval of the
discretization, it is computationally intensive. As default is a rare event, we can be
much more efficient by simulating the time of default directly.

If the default process is independent of the interest rate and has a deterministic
hazard rate, we can take advantage of the fact that we know the distribution of the
survival time explicitly. It is exponential as shown in Equation (14).

If the intensity is stochastic, we can still use a variant of the second method. This
relies on equation (23), which states that, after conditioning on the path of the
hazard rate, the distribution of the survival time is still exponential.

Method 2: Simulating the Time To Default
For each simulation trial we draw a random uniform u (i). We then equate this to
the survival probability function for the asset P[τ > t] in simulation trial i and solve
for t such that

                                                                    [ ]tPiu >= τ)(

Searching for the value of t can be accomplished using a simple search down the
monotonically decreasing survival probabilities.  In the simple case where the
hazard rate is flat, we have

                                                               
[ ] ( )ttP λτ −=> exp

so that solving for the realisation t of τ  is trivial:

                                                                    

( )
λ
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For example, suppose λ equals 0.03 and the random uniform equals 0.281, the
time to default is then equal to 42.3 years. A simple check for this simulation is to
verify that the average time to default is close to 1/λ, to within simulation accuracy.

This method is very efficient in that it avoids the need to step through time in small
increments and instead jumps directly to the time of the default event.

Method 3: Simulating the Time to Default with a Stochastic Hazard Rate
As before, for each simulation trial we draw a random uniform u(i). We also simu-
late a discretized version of the path λ(n,i) of the hazard rate and approximate its
integral Λ(n,i), which is monotonically increasing, by the sum

                                                               ∑ ∆=Λ
=

n

k
tikin

1
),(),( λ

As the conditional distribution of the default time is exponential, we can simulate it in
the discretization by setting it equal to the first n such that

                                                               ( ) )(),(exp iuin =Λ−
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Up until now we have focused on the modelling of the default counting process.
This approach is sufficient provided we are doing arbitrage-free pricing of
defaultable securities which have no explicit rating dependency. The variations in
the price of the security which occur as a result of market perceived deteriora-
tions or improvements in the credit quality of the issuer, and which can lead to
changes in credit ratings, can be captured by making the hazard rate stochastic. An
increase in the stochastic hazard rate reflects a credit deterioration scenario and a
decrease represents a credit improvement scenario.

However some securities do have an explicit credit rating dependency. Very re-
cently, a number of telecom bonds have been issued with rating dependent step-
ups on their coupons. And though they are a small fraction of the overall market,
credit derivative contracts do exist which have payoffs linked to a credit rating4.
Within the world of derivatives, ratings-linked models are also useful for examin-
ing counterparty exposure, especially if collateral agreements are ratings-linked.
Other potential users of ratings-linked models include certain types of funds which
are only permitted to hold assets above a certain ratings threshold. Finally, rat-
ings-linked models have recently been given a new impetus by the fact that the
Basle Committee on Banking Supervision has proposed allowing ratings-based
methodologies for computing Bank Regulatory Capital.

Moreover, given the wealth of information available from rating agencies, a natu-
ral development has been to enrich the binary structure given by the default indi-
cator to one incorporating transitions between different rating classes. The gener-
ally used approach is to model these transitions by a Markov chain; it was initiated
by Jarrow/Lando/Turnbull (1997) and is described in the following section.

Suppose that a rating system consists of rating classes l,...,K, where K denotes
default. The quantity to be modelled is the ratings transition matrix

( )
Kjiji TtqTtQ

,,1,, ),(),(
K=

= , where the entry qi,j(t,T) denotes the probability that
an issuer in rating class i at time t will be in rating class j at T. The default state is
assumed to be absorbing, which means that an issuer never leaves the default state
once it has been entered. Economically, this implies that there is no reorganisation
after a default.

In this setup, the ratings transition process is Markovian, i.e. the current state of
the credit rating is assumed to contain all relevant information for future rating
changes. This implies that the transition probabilities satisfy the so-called Chapman-
Kolmogorov equations. For 21 TTt ≤≤ , we have

                                                         ),(),(),( 2112 TTQTtQTtQ = (27)

In other words, the transition matrix between time t and T2 is the matrix product of
the two transition matrices from time t to T1 and T1 to T2. If Q is the one-year
transition matrix, and the Markov chain is time-homogeneous, the transition prob-
abilities for an n year period are given by nQnQ =),0( . In the simplest continu-
ous-time case, the transition matrix is constructed from a time-independent gen-
erator ( ) Kjiji K,1,),( ==Λ λ  via the matrix exponential
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Rating-Based Models

Description

4 According to the British Bankers’ Association 1998 survey of the credit derivatives market, derivatives
conditioning on downgrades are not widely used, and have been phased out of the ISDA master
documentation.
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For small time intervals, we can consider equation (28) up to first order to obtain

                                                             dtIdtttQ Λ+≈+ ),(
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Equation (29) gives the natural interpretation of the generator matrix Λ. For i ≠ j,
λ (i,j) is the transition rate between the rating classes i and j. Furthermore, λ (i,i) is
negative, and can be interpreted as the exit rate from the ith class. As such, the
generator Λ is the natural generalisation to a rating class framework of the hazard
rate introduced in equation (13).

We stress the fact that only risk-neutral probabilities are relevant for pricing. There-
fore, the risk premium must be modelled in some way, in order to relate model
transition probabilities to historical transition probabilities such as those given
above. Typically, one uses a tractable parametric form for a time-dependent gen-
erator and attempts to calibrate to the market prices of bonds.

The Markov chain approach to the description of ratings transitions is elegant and trac-
table, but oversimplifies the actual dynamics, especially in the time-homogeneous
formulation. Also, the relatively small amount of data available makes itself felt.

A closer look at empirical transition matrices shows this clearly. Standard and
Poor’s provide one-year transition matrices for all the years from 1981 to 1999,

Discussion

Example 4: A typical example for a transition matrix is the average one-year ma-
trix provided by Moody’s for the period between 1980 and 1999 shown in Table 1.

Using the equation 5)5,0( QQ =  we can matrix multiply the transition matrix to
obtain the 5-year transition probabilities. By examining the likelihood of ending in
the default state, we can compute the following 5-year default probabilities condi-
tional on starting in the corresponding rating category. These are shown in Table 2.

Table 2. 5-year default probabilities for an issuer starting in a
rating category using Moody’s one-year transition matrix

Aaa Aa A Baa Ba B Caa-C
0.05% 0.28% 0.62% 2.97% 11.58% 31.23% 69.77%

Table 1.  Average one-year transition matrix for 1980-1999 by
Moody’s Investor Service, probabilities are conditional on rating not
being withdrawn

Aaa Aa A Baa Ba B Caa-C Default
Aaa 89.31% 10.15% 0.50% 0.00% 0.03% 0.00% 0.00% 0.00%
Aa 0.96% 88.42% 10.04% 0.38% 0.16% 0.02% 0.00% 0.04%
A 0.08% 2.34% 90.17% 6.37% 0.81% 0.22% 0.00% 0.02%
Baa 0.09% 0.39% 6.42% 84.48% 6.92% 1.39% 0.12% 0.20%
Ba 0.03% 0.09% 0.50% 4.41% 84.25% 8.65% 0.52% 1.54%
B 0.01% 0.04% 0.17% 0.58% 6.37% 82.67% 2.98% 7.17%
Caa-C 0.00% 0.00% 0.00% 1.10% 3.06% 5.89% 62.17% 27.77%
Default 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
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c.f. their annual study of long-term defaults and ratings transitions in Standard and
Poor’s (2000). In theory, if the dynamics of historical ratings changes were de-
scribed by a homogeneous Markov chain, then all matrices should be the same up
to sampling errors. Actually, the one-year default probabilities show huge varia-
tions, especially in the sub-investment grade sector, cf. Figure 4.

The small number of actual defaults means that many entries in the empirical tran-
sition matrix are zero, cf. Table 1. This leads to a slight problem when trying to
extract a generator of the Markov chain via equation (28). It can be proven math-
ematically that an exact solution of equation (28), which satisfies the parameter
constraints for a generator, does not exist for the matrix in Table 1. Therefore one
must be satisfied with an approximate solution. For more on this topic see Israel/
Rosenthal/Wei (2000).

On the other hand, the advantage of using a rating-based model for calibration is
that it allows the construction of credit curves for issuers of different quality in a
unified and consistent manner. This is particularly useful when there are only very
few instruments available for calibration in each rating class. However, the cali-
bration procedure is much more involved than with the standard hazard rate ap-
proach, due to the larger number of parameters and the internal consistency con-
straints imposed by the Markov chain framework.

It is well known that market spreads tend to anticipate ratings changes. However,
stochastic fluctuations in the credit spread in between ratings changes cannot be
modelled with a deterministic generator, it has to be made dependent on additional
state variables. In particular, this is crucial for the pricing of payoffs contingent on
credit spread volatility. For extensions along these lines, see Lando (1998) and
the article by Arvanitis/Gregory/Laurent (1999).

In general, the case for implementing a rating-based model instead of a hazard rate
model with a single intensity process is not completely clear due to the trade-offs
mentioned above. Put simply, ratings-linked models are essential for evaluating
ratings-linked contingencies in the real-world measure. It is therefore an approach
which works best for risk managers and investors that have an explicit exposure to

Figure 4.  One-year default probability of ratings BB, B and CCC,
conditional on rating not being withdrawn, based on Standard and
Poor’s rating transitions 1981-1999
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downgrade risk as opposed to spread risk. However, for pricing bonds and credit
derivatives with no explicit ratings dependency, it is more natural to model the
spread or hazard rate, especially if we are pricing within the risk-neutral measure.

Recovery Assumptions
Within the structural approach, the amount recovered by a bondholder in the event
of a default emerges naturally from the model - it is simply the value of the assets
of the firm at the bond’s maturity. However, within the reduced-form approach,
the recovery process must be modelled explicitly. Therefore to completely de-
termine the price process of a security subject to default risk, the payoff in the
event of default must be specified in addition to the mechanism describing the
occurrence of default events. Currently, there are several conventions in wide-
spread use, which we now survey.

Historically, the first assumption made is that of equivalent recovery, intro-
duced by Jarrow/Turnbull (1995). Under this assumption, each defaulting security
is replaced by a number 10 ≤≤ R  of non-defaultable, but otherwise equivalent
securities. Consider a defaultable zero coupon bond. For simplicity we assume
independence between interest rates and the hazard rate. If the recovery rate is
zero, its price ),0(0 TBd  is given by

                                                        [ ]TPTBTBd >= τ),0(),0(0 (30)

Note that we have added a subscript of zero to the bond price to emphasize that
this is the price obtained under the zero recovery assumption. For a general recov-
ery rate R, a simple static replication argument shows that the defaultable bond
price ),0( TBd must be

                                               ),0()1(),0(),0( 0 TBRTRBTB dd −+= (31)

One advantage of equivalent recovery is that it allows us to calculate implied sur-
vival probabilities from bond prices using equations (30) and (31) for a given
recovery rate R. On the other hand, a fixed recovery rate implies an upper bound
on the credit spread. If y(0,T) and yd(0,T) denote the continuously compounded
yield of the default-free and the defaultable zero coupon bond, respectively, then
equation (31) implies that

                       
( ) ( )TTyRTBRTBTTy dd ),0(exp),0(),0(),0(exp −=≥=−

   (32)

so that
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This means that assuming an equivalent recovery imposes an upper bound on the
credit spread based on the recovery rate. For example, if R is 50%, then for a
maturity of 10 years, the maximum credit spread is 693bp. This constraint can
become restrictive when one is modelling the senior bonds of a high-yield issuer,
but is normally not a problem unless the bonds have a very long maturity.

The fractional recovery assumption was introduced by Duffie/Singleton (1999)
and extended to multiple defaults by Schonbucher (1998). The idea is that, at each
default event, the bond loses a fraction q of its face value, and continues to trade

Equivalent Recovery

Fractional Recovery
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after a restructuring. The strength of this approach is that it allows default-risky
claims to be valued as if they were default-free and discounted by an adjusted
interest rate. If r denotes the default-free short rate, it can be shown that the price
of a defaultable zero coupon bond is given by
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where the expectation is taken under the risk-neutral measure. This simplifies the
modelling process for defaultable bonds, as only the loss rate qλ needs to be speci-
fied. In particular, the recovery rate does not impose any bounds on the credit
spreads. However, knowledge of the default probabilities is necessary for the pric-
ing of credit derivatives, e.g. digital default swaps. These cannot be directly in-
ferred from defaultable bond prices under the fractional recovery assumption with-
out specifying the stochastic dynamics of q and λ.

Both the equivalent and the fractional recovery assumptions do not correspond to
market conventions for bonds. When a real-world bond defaults, the bondholders
recover a fraction R of the bond’s principal value (and perhaps of the accrued in-
terest since the last coupon date, but we will ignore this for expositional simplic-
ity). The outstanding coupon payments are lost. In the literature, this convention is
sometimes called recovery of face value. Similar to the case of equivalent recov-
ery, the recovery rate does impose bounds on credit spreads under recovery of
face value. However, the effects are more complex than in the equivalent recovery
case and are best analysed on a case-by-case basis. In general, these constraints
only become binding for long maturities or in extreme cases.

As an example for bond pricing under recovery of face value, consider a bond with
a face value of one, paying a coupon of c at times T1 < ...< TN. Again, we denote by
D(0) the initial price of a payment of $1 made at the time of default, if this should

Recovery of Face Value

Figure 5. Equivalent recovery according to Jarrow/Turnbull. At
default the bondholder receives an equivalent default-free bond with
a face value of R.
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Example 5: We price a defaultable zero coupon bond in a simple discrete time
setting, highlighting the differences between the various recovery assumptions. In
each case, we consider a 3-period model. The non-defaultable term structure is flat
with a continuously compounded interest rate per period of 6%. The default prob-
ability per period is 5%, and we assume a recovery rate of 60%. Given that the
bond has survived to the current period, it either defaults with a probability of 5%, or
survives with a probability of 95% until the next period. The payoff in the default
nodes is specified by the recovery assumption. In the survival nodes, the price of
the bond is the discounted expectation of the next period’s payoffs using these
probabilities. At each node, we give the bond price for a face value of 100.

Figure 5 computes the bond price under the equivalent recovery assumption ac-
cording to Jarrow/Turnbull. At each default node, the bond price is equal to the
recovery rate multiplied by the price of a non-defaultable zero coupon bond that
matures at the end of the third period. The payoff of the recovery rate at maturity is
discounted back to each default node via the non-defaultable interest rate.

In Figure 6, we compute the defaultable bond price using the assumption of frac-
tional recovery of face value according to Duffie/Singleton. At each default node,
the bond price is equal to the recovery rate multiplied by the price of the defaultable
bond at the survival node of the same period.

Finally, in Figure 7 the bond price is computed while assuming recovery of face
value. In this case the bond’s payoff is simply the recovery rate at each default
node.

Table 3.  Bond yield under different recovery assumptions

Recovery Assumption Yield
recovery of face value 7.76%
equivalent recovery 7.96%
fractional recovery 8.02%

Each recovery assumption leads to a different yield for the bond. The bond’s yield
is lowest if we assume recovery of face value. This is because the redemption
amount is paid out immediately upon default. Under equivalent recovery, the re-
demption payment is only made at maturity of the bond. Finally, the yield of the bond
is highest if we assume fractional recovery. This is because the payment at default
is a fraction only of the defaultable bond price at the corresponding survival node.

occur before TN. The value of the risky redemption is then given by
)0(),0(0 RDTB N

d + . The coupon payments are effectively a portfolio of risky zero
coupon bonds with a zero recovery rate. The total price )0(P  of the bond is given
by
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Figure 7.  Recovery of face value. At default the bondholder receives
a fraction R of the bond’s face value.

Figure 6.  Fractional recovery of market value according to Duffie/
Singleton. At default the value of the defaulted security is a fraction
R of its price at the corresponding survival node.
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An empirical analysis of the behaviour of recovery rates is hampered by the fact
that defaults are relatively rare. The market standard source for recovery rates is
Moody’s historical default rate study, the results of which are plotted below in
Figure 8.

The graph shows how the average recovery rate depends on the level of subordina-
tion. By plotting the 1st and 3rd quartiles, we have shown that there is a wide varia-
tion in the recovery rate. Note that these recovery rates are not the actual amounts
received by the bondholders following the workout process, but represent the price
of the defaulted asset as a fraction of par some 30 days after the default event. This
is in line with the assumption of recovery of a fixed amount of the face value
following default
.

Credit Curve Construction
The construction of a credit curve from the prices of liquid instruments is the
prerequisite for the pricing of derivatives. One way of describing the credit curve
is via the term structure of discount factors for a risky issuer under the zero recov-
ery assumption. Inputs for the credit curve are typically bonds, whether fixed cou-
pon non-callable bonds or floating rate notes, asset swap spreads, or default swap
spreads.

In this section, we illustrate how to imply a deterministic intensity from a term
structure of default swap spreads. For a complete discussion of mechanics of
default swaps see the Lehman publication  O’Kane (2000). Suppose that the pay-
ment schedule is given by  T (1) <...< T (N). For a default swap with maturity date
T (n), the protection buyer pays a spread of s(n) at each date, so long as default has
not occurred. This is known as the premium leg. If a default event occurs during
the lifetime of the swap, the protection seller pays 1 - R. For simplicity, we as-
sume that this payment is made on the first schedule date immediately after the
default. This is the protection leg. Also for simplicity, we have assumed that the

Empirical Studies of
Recovery Rates

Figure 8.  Moody's historical recovery rate distributions, 1970-1999
for different levels of subordination. Each bar starts at the 1st
quartile then changes colour at the average and ends at the 3rd
quartile.
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protection buyer does not have to pay any premium accrued between the last pay-
ment date and the default event.

The value prem(n) of the n-maturity premium leg is given by

     prem(n) = s(n) θ(n) (36)

where

(37)

is the issuer PV01 of the default swap and δ denotes the year fraction between
premium payments. The value prot(n) of the n-maturity protection leg is
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Each default swap spread s(n) is determined by the breakeven condition prot(n)
= prem(n). Our goal is to recursively calculate the survival probability [ ])(nTP >τ .
Applying some simple algebra to equation (38) shows that

(39)

This equation makes it easy to solve for [ ])(nTP >τ . If we assume that the hazard
rate has a constant value of λ(n) on [ ])(),1( nTnT − , it can be calculated from

             ( )[ ] ( )[ ] ( )( ))1()()(exp1 −−−−>=> nTnTnnTPnTP λττ (40)

Figure 9.  Cashflows in a default swap
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The fact that the hazard rate should be non-negative imposes a constraint on the
term structure of default swap spreads. Indeed, if the term structure slopes down-
ward too sharply, this could theoretically lead to negative implied probabilities of
default. The monotonicity condition is that [ ] [ ])1()( −>≤> nTPnTP ττ . Insert-
ing this into equation (39) and simplifying gives the following inequality for s(n):

(41)

In actual practice, the problem is not very acute, as the following example shows.

Credit Curve Slope
Restrictions

Example 6: We consider a term structure of default swap spreads with annual
maturities out to ten years. We start out with a spread of 100bp for a maturity of one
year. For each year thereafter, we calculate the minimum spread according to equa-
tion (41) and assume the actual spread is the smallest whole basis point amount
greater than this value. We assume a recovery rate of 30% and constant interest
rates of 5%.

The spread term structure is plotted in Figure 10. We see that we can quite com-
fortably accommodate decreasing spreads at the front end of the term structure.
Also, the minimum spreads prove to be quite insensitive to the recovery rate.

Figure 10. Minimum default swap spread which ensures non-negative
hazard rates

The basis of our example is the LIBOR swap curve in Euros from the 11th October
2000. The discount factors ( ))(, iTtB  are obtained by bootstrapping the swap curve.

Strictly speaking, the swap curve is not a risk-free curve, as swap rates are quoted
for counterparties of AA-rated credit quality. Despite this, there are several good
reasons for using the swap curve. Since AAA corporate issuers trade close to
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LIBOR, it can be argued that the swap spread is more a measure of liquidity than
credit risk. In any case, given the collateralization and netting agreements in place
for swaps, the credit component must be seen more as a measure of systemic risk
in the banking sector than as a credit spread for a specific issuer. Finally, when
pricing derivatives, it is necessary to take into account the funding costs associ-
ated with the corresponding hedge. As the typical participants in the market for
default swaps are banks that fund at LIBOR or close to it, using the swap curve is a
viable way of including these costs.

For our example, we assume a term structure of default swap spreads as shown in
Figure 12 for a fictitious issuer with a recovery rate of 20%. On each default swap,
the premium is paid quarterly. For simplicity, we take each accrual factor as 0.25.

From the default swap spreads we have implied out the hazard rate as a function of
time, as discussed above. It is shown in Figure 13.

Figure 11. Libor Swap Curve

Figure 12 . Term Structure of Default Swap Spreads
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The relationship between Figure 12 and Figure 13 becomes clearer by interpreting
the deterministic hazard rate as the conditional forward default probability. In this
sense, it is related to spreads in much the same way as the forward curve is related
to the yield curve in the interest rate world. The easiest way to see this is to con-
sider a defaultable zero coupon bond with zero recovery and a maturity of T. Using
equation (17), we find that the spread s(T) of this bond over the risk-free rate is
given by

                                                                ∫=
T

duu
T

Ts
0

)(1)( λ (42)

This is analogous to the way the yield of a risk-free bond is determined as the
average over forward rates, and implies that the hazard rate is related to the slope
of the spread curve via

(43)

Figure 13. Hazard Rate implied from default swap spreads
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Portfolio Credit Models
Up to now, we have discussed the modelling of default risk on a single-issuer ba-
sis. However, tools for describing correlated defaults are essential. For one, due
to the limited upside and the potential for large losses, credit risk should be man-
aged on a portfolio basis. Also, derivatives conditioning on the payoff of multiple
credits, such as basket default swaps and collateralized debt obligations (CDO’s),
are increasingly used by investors to create credit risks which match their risk
appetites. In these sorts of structures, the factors that determine the credit risk
profile of the portfolio are:

• The number of assets and their weighting in the portfolio
• The credit quality of the assets
• The default correlation between the assets

Clearly, the more assets in the portfolio, the less exposed is the investor to a single
default. Equally, the higher the credit quality of the assets, the less likely a default
and the lower the expected loss on the pool of assets. Default correlation plays a
significant role in these structures. In simple terms, the default correlation between
two assets is a measurement of the tendency of assets to default together. If the
assets in a portfolio have a high default correlation then, when assets default, they do
so in large groups. This can significantly affect the credit risk profile, making large
portfolio losses more likely, fattening the tail of the loss distribution.

It is natural to expect that assets issued by companies which have common depen-
dencies would be more likely to default together. For example, companies in the
same country are exposed to a common interest rate and exchange rate. Compa-
nies within the same industrial sector have the same raw material costs, share the
same market and so could be expected to be even more strongly correlated. On the
other hand, the elimination of a competitor may be beneficial to companies in the
same sector.

Default Correlation
Empirical analysis of default correlation is limited by the lack of default events.
One study, Lucas (1995), which computed the default correlation between assets
in different rating categories, has made two particularly interesting observations.
The first is that default correlation increases as we descend the credit rating spec-
trum. This has been attributed to the fact that lower rated companies are more
vulnerable to an economic downturn than higher rated companies and so are more
likely to default together.

Introduction

Empirical Evidence of
Default Correlation

Table 4.  Empirical measurement of the 10-year default correlation as
a function of credit rating.  (D.J. Lucas, The Journal of Fixed Income, March
1995)

10-Year Default Correlations  (%)
Aaa Aa A Baa Ba B

Aaa 1
Aa 2 0
A 2 1 2

Baa 2 1 1 0
Ba 4 3 4 2 8
B 9 6 9 6 17 38
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The second observation is that default correlation is horizon-dependent and it has
been postulated that this may be linked to the periodicity of the economic cycle.

As mentioned above, computing industry-industry default correlations is difficult
due to the shortage of default events. In practice, default correlation is often proxied
using some other quantity such as credit spread correlation or stock price correla-
tion. While this may appear a reasonable assumption, strictly speaking there is no
model-independent mathematical relationship that can link the two together.

Before we can model default correlation, we need to define it mathematically. Let
us denote by pA the probability that asset A defaults before some time T.  Like-
wise, pA is the probability that asset B defaults before T. The joint probability that
both asset A and asset B default before T is pAB. Using the standard definition of
the correlation coefficient, we can compute the pairwise default correlation be-
tween the two assets A and B as:

                                                    

( ) ( )BBAA

BAAB
D

pppp

ppp

−−

−
=

11
ρ

(44)

It is important to note that the default correlation will typically depend on the time
horizon T considered.

Default Correlation and Basket Default Swaps
The simplest portfolio credit derivative is the basket default swap. It is like a de-
fault swap but for the fact that it is linked to the default of more than one credit. In
the particular case of a first-to-default basket, it is the first asset in a basket whose
credit event triggers a payment to the protection buyer. As in a default swap, the
protection buyer pays a fee to the protection seller as a set of regular accruing
cash flows, in return for protection against the first-to-default.

To see how default correlation affects pricing, consider a T-maturity first-to-de-
fault basket with two assets A and B in the basket. Pictorially one can represent the
outcomes of two defaultable assets using a Venn diagram as shown in Figure 14.
Region A encompasses all outcomes in which asset A defaults before the maturity
of the basket. Its area equals the probability pA. Similarly, region B encompasses
all scenarios in which asset B defaults before the maturity of the basket and its

Defining Default Correlation

Figure 14.  Venn Diagram representation of correlated default for two
assets
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Maximum Default Correlation

Example 7: If pA = 5.0% and pB = 3.0%, then we have  �(0) = 7.85%

Figure 15.  Venn Diagram for maximum (left) and minimum (right)
default correlation
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As the default correlation falls, there comes a point when there is a zero probability
of both assets defaulting together before time T - the default events for assets A and
B are mutually exclusive. Graphically, there is no intersection between the two circles
and we have pAB = 0, cf. the right-hand side of Figure 15. The probability that the
first-to-default basket is triggered is simply the sum of the two areas A and B

                                                                 ( ) BA
MIN
D pp +=Ω ρ (48)

Example 8: Using the above probabilities, we find that at the maximum default cor-
relation, %0.5%]0.3%,0.5max[ ==Ω .

Minimum Default Correlation

Example 8 continued: Using the above values for the probabilities we find that at
the minimum correlation

This is when the first-to-default basket is at its riskiest and so protection is at its
most expensive.

To complete the pricing, we need to discount payoffs, which means that we need
to have access to the time at which defaults occur. Also, as we increase the number
of assets in the basket, we increase the number of possible default scenarios and
the number of inputs required. One approach is to simulate the default times of the
assets in a similar manner to the one described on page 15.

While we do not typically know the form of the joint density distribution for the
default times, it is possible to impose one with the correct marginal distributions
using the method of copulas. This technique is explained in Li (2000) and we refer
the reader to that paper for details. Using such a model, we plot in Figure 16 the first
to default basket spread as a function of the default correlation for a 5-asset basket,
each asset in the basket has a 5-year default swap spread of 50bp. At zero correlation
the basket price is slightly less than 250bp, which is the sum of the spreads. As the

More Than Two Assets
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Figure 16.  First-to-default basket spread as a function of default
correlation for a 5 asset basket



Lehman Brothers International (Europe) 35

Analytical Research Series                                                                                                                                       February 2001

����������	��
�� ����
����� ��� ����������� ����������� ������� ������ �� ���������
����	��������������
����������������������������

�������������������������������

����������
��
�����������������������������������	������������������������
��	��
����������

Modelling and Valuing Collateralized Debt Obligations
 ������������	�
�
�������������� ������ ��� �� ���������� 	� 	����� ������ �������
���������������	
�������
����������������������	���	��
��������
�	���������
�����������!��������� ���
���� 
����� ���
���"� 
�����	� �������� ����"��"�������
������������������"�������������

��������������������	����������������������
�����

#����$%&����������� ������� ��� ������
� ��������������� ���� ������ ��������������"
�����������������
�����������������������������''�����������(��������������
!���������	��������

�����
����������������������������������	����������������
������������!�����������"����������������������������������������������''��
��������������	

�������������������������������(�������������� �����������
������������	���������������
�������������������������������������������	�����������
��   �������������"�

!���
���
����	�
����������������������������
�(��
����	�����������������
�

�����
�����������"����	��������	������������������
��!��������������	�������
�

�����
������
�������������	���������������������#����������	����������������
��������	���������������	���$%&������������
������������������

�����
�������
�
��#���������������$%&�����
��
����
�������������	��
���������������������(����
�����������
������	���������	��
����������������"�����������������
����������������
����	���������	��
����������� ����������
��

#�������������������������������������

��"�����)������	��
��������
����"��������
��	��
��������
������	����������������
��������

#�� ��������
������������	��
���	� ������������� �����������
��� #	������	
�����
������	���������������������������
�����������	��
��������
����	������������
����������������'�����������������������������	�������������"��
�����	����
���	
�����������
������

Introduction

Models for Introducing
Default Correlation

Figure 17.  Tranche losses in CDO as a function of portfolio loss
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In practically all applications the defaults of different issuers will be correlated to
some extent, and assuming independence will overestimate the portfolio diversi-
fication. In the rating of CDO’s, Moody’s applies the technique of a diversity
score to deal with this problem, cf. Moody’s (1999). The distribution used to
compute the portfolio losses is still the binomial one. However, the number m is
not the actual number of credits in the portfolio, but is adjusted downwards to take
the effects of correlation into account. This is done for credits within an industry
sector, different sectors are treated as independent.

Conceptually, the asset return of the ith issuer in a portfolio can be described
using a standard normally distributed random variable A(i). Rating transitions, and
in particular default, occur when the asset return A(i) crosses certain thresholds.
The default threshold C(i) is implied from the issuer’s default probability p(i) via
the equation

                                                        [ ] ( ))()()()( iCNiCiAPip =≤= (50)

where, as before, N denotes the cumulative distribution function of the standard
normal distribution.

In the single-issuer case, this is merely an exercise in calibration, as the default
thresholds are chosen to produce default probabilities which reprice market in-
struments. The concept of asset returns becomes meaningful when studying the
joint behaviour of more than one issuer. In this case, the returns are described by a
multivariate normal distribution. Using the threshold levels determined before, it
is possible to obtain the probabilities of joint rating transitions.

As standardized asset returns are used, it is only necessary to estimate the correla-
tion structure of asset return. One reasonable approximation is provided by the
correlation between equity returns.

With a completely general correlation structure, the calculation of joint default
probabilities becomes computationally intensive, making it necessary to resort to
Monte Carlo simulation. However, substantial simplifications can be achieved by
imposing more structure on the model. An important concept in this context is
that of conditional independence. We assume that the asset return of each of the m
issuers is of the form

                                                     )()(1)()( 2 iZiZiiA ββ −+= (51)

where )(,),1(, mZZZ K  are independent standard normal random variables. The
variable Z describes the asset returns due to a common market factor, while Z(i)
models the idiosyncratic risk of the ith issuer, and β(i) represents the correlation
of A(i) with the market.

The advantage of this setup is that, conditionally on Z, the asset returns are inde-
pendent. This makes it easy to compute conditional default probabilities. Let us
assume that the portfolio is homogeneous, i.e. that β(i) and C(i) are the same for

The Firm Value Approach to
Modelling Correlated Default
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all assets. The ith issuer defaults in the event that A(i) ≤ C. Using equation (51), we
see that this is equivalent to

                                                                      21
)(

β

β

−

−
≤

ZC
iZ (52)

The conditional default probability p(Z) of an individual issuer is given by
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If we also assume that the exposure to each issuer is of the same notional amount,
the probability that the percentage loss L of the portfolio is k/m is equal to the
probability that exactly k of the m issuers default, which is given by

                  

kmk

ZCNZCN
k
m

m
kLP

−





























−

−−













−

−






=



 =

22 1
1

1 β

β

β

β
             (54)

In other words, the conditional distribution of L is binomial. Again, this distribu-
tion becomes computationally intensive for large values of m, but we can use meth-
ods of varying sophistication to approximate it.

Large Portfolio Limit
One very simple and surprisingly accurate method is the so-called “large homoge-
neous portfolio” approximation, originally due to Vasicek. After conditioning on
Z, the asset returns are independent and identically distributed. By the law of large
numbers, the fraction of issuers defaulting will tend to the probability given in
equation (53). Therefore, one can assume that the percentage loss given Z is ap-
proximately equal to )(Zp . In particular, the expected loss of the portfolio is equal
to the individual default probability p. Using (53), we see that

                                                                   )(1 θθ −≥⇔≤ pZL (55)

Equation (55) states that the percentage loss of the portfolio will not exceed the
level θ if and only if the market return Z is sufficiently high. Because p(Z) is a
monotonically decreasing function, the upper bound for L is translated into a lower
bound for Z. The unconditional distribution for L follows immediately from (55):

                                                             [ ] [ ])(1 θθ −−=≤ pNLP
(56)

More involved calculations show that the distribution of L actually converges to
this limit as m tends to infinity. For a given individual default probability, the loss
distribution is quite sensitive to the correlation parameter β. In the limit of β = 0,
the portfolio loss is deterministic, as can be seen from the conditional loss given
in equation (53). As β tends to 100%, the loss distribution becomes bimodal, as
the portfolio effectively only consists of one credit.

Calculating the Loss
Distribution
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Example 9: Consider a portfolio where the individual default probability is 7.17%,
which corresponds to the default probability of a single-B rated issuer over a one
year time horizon, cf. Table 1. Figure 18 shows the loss distribution if we assume a
market correlation of 20%, whereas Figure 19 shows the loss distribution if we
assume a market correlation of 55%. At the higher correlation the tail of the distribu-
tion is fatter than for the lower correlation as there is now a greater tendency for
multiple defaults. To ensure that the expected loss remains constant, this also means
that the likelihood of fewer defaults also increases.

Note that the correlation between issuers is actually the square of the market corre-
lation, cf. eq. (51). Values of 20% and 55% for the market correlation correspond to
issuer correlations of 4% and approximately 30%, respectively.

Figure 19.  Loss distribution of a large homogeneous portfolio with B
rated issuers and a market correlation of 55%
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Figure 18.  Loss distribution of a large homogeneous portfolio with B
rated issuers and a market correlation of 20%
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We can use the portfolio distribution to derive the loss distributions of individual
tranches. If ( ))2(),1( KKL  is the percentage loss of the mezzanine tranche with
boundaries K(1) and K(2), then

                           ( ) ( ) ( )
)1()2(

0),2(max0),1(max
)2(),1(

KK
KLKL

KKL
−

−−−
= (57)

Note that the percentage loss is scaled by the width of the tranche. If 1<θ , then

                                
( ) ( ))1()2()1()2(),1( KKKLKKL −+≤⇔≤ θθ (58)

Equation (58) shows that we can easily derive the distribution of ( ))2(),1( KKL  from
that of L. The distribution of ( ))2(),1( KKL  is discontinuous at the edges of [ ]1,0 , due
to the probability of the portfolio loss falling outside the interval [ ])2(),1( KK . This
discontinuity becomes more pronounced when the tranche is narrowed.

The Tranche Loss
Distribution

Example 10: We consider a mezzanine tranche of the same portfolio of B rated
issuers we examined earlier. We suppose that all portfolio losses between 2% and
15% are applied to this tranche. Figure 20 shows the loss distribution assuming a
correlation of 20%, while in Figure 21 the assumed correlation is 55%. Again, we
see that the loss distributions are fundamentally different.

Figure 20.  Loss distribution of mezzanine tranche taking losses
between 2% and 15% for a market correlation of 20%
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Figure 21.  Loss distribution of mezzanine tranche taking losses
between 2% and 15% for a market correlation of 55%
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We can compute the expected loss of a senior tranche analytically. For any K in
[ ]1,0 , we denote by L(K) the senior payoff

                                                             ( )0,max)( KLKL −= (59)

If we denote the density of the portfolio loss distribution by g(L), the expectation
of this payoff is given by

                                                         [ ] ( )∫ −=
1

)()(
K

dssgKsKLE (60)

After deriving the explicit form of the density from (56) and some algebra, it is
possible to rewrite the expectation in terms of the distribution function N2 of a
bivariate normal distribution1:
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From equation (60), we immediately conclude that the expected loss of a mezza-
nine tranche is given by
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1 An approximation formula for the cumulative distribution function of the bivariate normal distribution
is given in Hull (1997)

Figure 22.  Expected tranche loss as a function of market correlation
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Example 11: Again, we consider our portfolio of B rated issuers. We divide the
portfolio into three tranches. The equity tranche absorbs the first 2% of all portfolio
losses, the mezzanine tranche absorbs all losses between 2% and 15%, while the
senior tranche assumes all losses above 15%. Using equation (62) we compute the
expected loss of each tranche as a function of the market correlation parameter.
The expected losses are plotted in Figure 22. We see that the equity and the mez-
zanine tranches actually benefit from a higher market correlation, i.e. less diversifi-
cation in the portfolio. This is because the expected portfolio loss of 7.17% is well
within the range of the mezzanine and beyond the equity tranche. Therefore, these
tranches benefit from the all-or-nothing gamble that is taken if the correlation be-
comes very large. Of course, the senior note holders only stand to lose if the diver-
sification of the portfolio is significantly reduced.
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In addition to the asset-based approach presented in detail here, other methods
have been used to analyse correlated defaults. Intensity models can be generalized
to the multi-issuer case by specifying the joint dynamics of the individual intensi-
ties. This is another application of the conditional independence concept; after
conditioning on the joint realizations of the intensities, the default counting pro-
cesses are independent. For the simulation of correlated defaults in this intensity
framework see Duffie and Singleton (1998). An application to the analysis of CDO’s
is presented in Duffie and Garleanu (1999).

Davis and Lo (1999) have developed a model in this framework which explicitly
models default correlation. Each issuer can either default idiosyncratically or via
contagion from another issuer. The model is static in the sense that only idiosyn-
cratic defaults are transmitted via contagion, i.e. there are no “domino effects”. The
effect of contagion fundamentally alters the distribution of losses. For a given num-
ber of expected defaults, it exhibits fatter tails than the base case binomial distribu-
tion, making both very small and very large losses more likely. Unfortunately, the
model involves intensive combinatorial calculations for more complex portfolios.

Another approach, based on the firm value model of Merton, is implemented in
the third party system CreditMetrics, cf. Gupton/Finger/Bhatia (1997). It at-
tempts to assess the possible losses to a portfolio due to both defaults and rating
changes, where the rating system can be either internal or one provided by a rating
agency.

A very useful technique for generating correlated default times is the method of
copula functions. This effectively lets one separate the modelling of the depen-
dence structure from that of the univariate distributions of the individual default
times. For an introduction to the application of copula functions to finance, see Li
(2000).

Summary
Multi-issuer credit derivatives are assuming an increasing importance in the mar-
ket. The pricing of first and second loss products requires the use of models which
induce a default correlation between assets. In these models, the specification of
the independence structure is of primary importance. This was shown clearly in
the discussion of the first-to-default basket and the pricing of CDO tranches.

Further Modelling
Approaches
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Conclusions
As stated at the beginning, modelling credit is a difficult task for a wide variety of
reasons. Nonetheless, credit models have become an essential requirement in the
analysis, pricing and risk management of credit. An understanding and apprecia-
tion of the advantages and disadvantage of the various models is therefore neces-
sary to anyone wishing to apply a more quantitative approach.

Structural models were reviewed and shown to be best for performing a risk as-
sessment of publicly traded companies, or where a better understanding of the
effect of the capital structure of a firm is needed. Structural models are not how-
ever the preferred choice for pricing and hedging credit derivatives in a risk-neu-
tral framework.  This is where reduced form models win out since they are power-
ful enough to price even the more exotic credit derivatives and have the flexibility
to exactly reprice the observable market instruments.

We presented two approaches for studying portfolio credit default, looking first
at a simple two asset first-to-default basket and then at the large portfolio limit. In
between these limits we favour the use of the copula method to generate corre-
lated default times, which is described for example in Li (2000). The valuation
results that we presented show the absolutely crucial role played by correlation
parameters when valuing multi-issuer credit derivatives.

The models presented here represent the current state of quantitative credit mod-
elling. There are still many questions to be addressed, especially in the multi-
issuer context. As yet, valuation models do not play the same role in the credit
world as they do for the pricing of exotic interest rate derivatives. However, as the
credit derivatives markets continue to mature, the scope and usage of quantitative
models will undoubtedly increase.
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Appendix
In the Cox process framework we consider a payment that is made at the time of
default, should this occur before T. To be more precise, we assume that X is a
predictable process2, and that a payment of )(τX  will be made at time t if default
occurs before T.  The initial value D (0) of this claim is given by
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If we define the default indicator process H by }{1:)( ttH ≤= τ , we have
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The process M given by { }duuudHudM u τλ ≤−= 1)()()(  is a martingale by virtue
of the definition of the intensity, therefore
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Using iterated conditional expectations as before and changing the order of inte-
gration gives
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The price of the default contingent claim is therefore
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If the process X is determined by the non-defaultable interest rates and their evo-
lution is independent of the intensity, this can be rewritten as
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One payoff that is particularly important is the case when X  ≡ 1; i.e. a payoff of par
at the time of default. Then, equation (68) becomes
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Valuation of Payments made
at the Time of Default

6 Predictability is a measurability property of stochastic processes which ensures that martingale
properties are preserved under stochastic integration. A good example of a predictable process is one
which is adapted and has continuous paths. The exact technical definition of predictability is beyond
the scope of this overview.
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