3. Poisson Processes (9/10/04, cf. Ross)

Exponential Distribution

Poisson Processes

Poisson and Exponential Relationship

Generalizations

Exponential Distribution

Definition: The continuous RV X has the exponential distribution with parameter λ if its p.d.f. is $f(x)=$ $\lambda e^{-\lambda x}, x \geq 0$.

Facts: $F(x)=1-e^{-\lambda x}, x \geq 0$.
$\mathrm{E}[X]=1 / \lambda, \operatorname{Var}(X)=1 / \lambda^{2}$,
$M_{X}(t)=\lambda /(\lambda-t), t<\lambda$.

Theorem: The exponential distribution has the memoryless property. Namely, for $s, t>0$,

$$
\operatorname{Pr}(X>s+t \mid X>t)=\operatorname{Pr}(X>s)
$$

Example: If $X \sim \operatorname{Exp}(1 / 10)$, then
$\operatorname{Pr}(X>10 \mid X>5)=\operatorname{Pr}(X>5)=e^{-5 / 10}=0.607$.

Remark: The exponential is the only continuous distribution with this property.
3. Poisson Processes

Definition: For a continuous distribution, the hazard function (or failure rate) is

$$
r(t) \equiv \frac{f(t)}{1-F(t)}
$$

The hazard function is the conditional p.d.f. that X will fail at time t (given that X made it to t).

Why this interpretation?

$$
\begin{aligned}
r(t) d t & =\frac{f(t) d t}{1-F(t)} \\
& \approx \frac{\operatorname{Pr}(X \in(t, t+d t))}{\operatorname{Pr}(X>t)} \\
& =\frac{\operatorname{Pr}(X \in(t, t+d t) \text { and } X>t)}{\operatorname{Pr}(X>t)} \\
& =\operatorname{Pr}(X \in(t, t+d t) \mid X>t) .
\end{aligned}
$$

Example: $X \sim \operatorname{Exp}(\lambda)$ implies that $r(t)=\lambda$. This makes sense in light of the memoryless property. In fact, the $\operatorname{Exp}(\lambda)$ is the only RV with constant $r(t)$.
3. Poisson Processes

Remark: $r(t)$ (uniquely) determines $F(t)$. "Proof:"

$$
r(t)=\frac{f(t)}{1-F(t)}=-\frac{d}{d t} \ln (1-F(t)),
$$

so that

$$
F(t)=1-\exp \left(-\int_{0}^{t} r(s) d s\right) .
$$

Theorem: $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\lambda)$ implies that

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Erlang}_{n}(\lambda) \sim \operatorname{Gamma}(n, \lambda)
$$

Many proofs - m.g.f.'s, induction, you name it.

Poisson Processes

Definition: Consider discrete (non-fractional) events occurring in continuous intervals (time, length, volume, etc.). The counting process $N(t) \equiv$ the number of events occurring in $[0, t]$. Let the rate $\lambda>0$ be the average number of occurrences per unit time (or length or volume).

Examples: 1. Cars entering a shopping center (time);
$\lambda=5 / \mathrm{min}$.
2. Defects on a wire (length); $\lambda=3 / \mathrm{ft}$.
3. Raisins in cookie dough (volume); $\lambda=2.6 / \mathrm{in}^{3}$.

Definition: A counting process $N(t)$ satisfying the following three assumptions is called a Poisson process with rate $\lambda(P P(\lambda))$.
(A-1) Arrivals occur one-at-a-time, (A-2) Independent increments, and (A-3) Stationary increments.

Details follow. . .
(A-1) For any interval of sufficiently small length h, (a) The prob of one arrival in that interval is

$$
\operatorname{Pr}(N(t+h)-N(t)=1)=\lambda h+o(h) \doteq \lambda h
$$

(b) The prob of no arrivals is
$\operatorname{Pr}(N(t+h)-N(t)=0)=1-\lambda h+o(h) \doteq 1-\lambda h$.
(c) The prob of more than one arrival is

$$
\operatorname{Pr}(N(t+h)-N(t) \geq 2)=o(h) \doteq 0
$$

where $o(h)$ is a function that $\rightarrow 0$ faster than $h \rightarrow 0$.
(A-2) Independent Increments: The numbers of arrivals in two disjoint intervals are independent. I.e., if $a<b<c<d$, then $N(d)-N(c)$ and $N(b)-N(a)$ are independent.
(A-3) Stationary Increments: The number of arrivals in a time interval depends only on its length. Thus, $N(t+s)-N(t) \sim N(s)-N(0)$ for all t.
(A-4) (bonus assumption): $N(0)=0$.

Example: People arriving to a restaurant is not a PP. Arrivals occur in groups (violating A-1), and arrival rates change throughout the day (violating A-3).

Theorem: If $N(t)$ is a $\operatorname{PP}(\lambda)$, then $N(t) \sim \operatorname{Pois}(\lambda t)$. In particular, $N(1) \sim \operatorname{Pois}(1)$. Further, $\mathrm{E}[N(t)]=$ $\operatorname{Var}(N(t))=\lambda t$.

Proof: See any reasonable probability text.
3. Poisson Processes

Remark: Be careful with units of time. For example, suppose that $X \sim \operatorname{Pois}(3)$ is the number of phone calls in a one-minute period.

Then the number of calls in a 3 -minute period is Pois(9) and the number in a $30-\mathrm{sec}$. period is Pois(1.5).

Poisson and Exponential Relationship

Definition: Let A_{1} denote the time until the first arrival of a $\operatorname{PP}(\lambda)$.

For $i \geq 2$, let A_{i} denote the time between the $(i-1)$ st and i th arrivals.

The A_{i} 's are called interarrival times.

We can get the distributions of the A_{i} 's. .

First of all, consider A_{1}.
$A_{1}>t$ iff no arrivals take place in $[0, t]$. Thus, for $t>0$,

$$
\operatorname{Pr}\left(A_{1}>t\right)=\operatorname{Pr}(N(t)=0)=\frac{e^{-\lambda t}(\lambda t)^{0}}{0!}=e^{-\lambda t}
$$ and so $A_{1} \sim \operatorname{Exp}(\lambda)$.

Now A_{2}. For $0<s<t$, we have

$$
\begin{aligned}
\operatorname{Pr} & \left(A_{2}>t \mid A_{1}=s\right) \\
= & \operatorname{Pr}\left(\text { no arrivals in }(s, s+t] \mid A_{1}=s\right) \\
= & \operatorname{Pr}(\text { no arrivals in }(s, s+t]) \\
& (\text { by independent increments) } \\
= & \operatorname{Pr}(\text { no arrivals in }(s, s+t]) \\
& (\text { by stationary increments) } \\
= & e^{-\lambda t} \quad \text { (by previous arguments) }
\end{aligned}
$$

3. Poisson Processes

Thus, $\operatorname{Pr}\left(A_{2}>t \mid A_{1}=s\right)=e^{-\lambda t}$ for all s.

So $\operatorname{Pr}\left(A_{2}>t\right)=e^{-\lambda t}$, i.e., $A_{2} \sim \operatorname{Exp}(\lambda)$, independent of the value of A_{1}.

This can be generalized...

Theorem: $A_{1}, A_{2}, \ldots \stackrel{\mathrm{iid}}{\sim} \operatorname{Exp}(\lambda)$.

Definition: The nth arrival time is $S_{n} \equiv \sum_{i=1}^{n} A_{i}, n \geq 1$.

Theorem: $S_{n} \sim \operatorname{Gamma}(n, \lambda) \sim \operatorname{Erlang}_{n}(\lambda)$. Thus, $E\left[S_{n}\right]=n / \lambda$ and $\operatorname{Var}\left(S_{n}\right)=n / \lambda^{2}$.

Example: A UGA student can read $X \sim$ Pois(1) pages of Dick and Jane a day. (a) The expected time until the 10 th page is completed is $\mathrm{E}\left[S_{10}\right]=n / \lambda=10$ days. (b) The prob that it takes >2 days to read the 11th page is $\operatorname{Pr}\left(A_{11}>2\right)=e^{-2} \doteq 0.135$.

Theorem: Consider a $\operatorname{PP}(\lambda), N(t)$. Suppose arrivals are either Type I or II (e.g., male or female), with $\operatorname{Pr}($ Type I $)=p, \operatorname{Pr}($ Type II $)=1-p$. Let $N_{1}(t)$ and $N_{2}(t)$ denote the numbers of Type I and II events during $[0, t]$. Note that $N(t)=N_{1}(t)+N_{2}(t)$.

Then $N_{1}(t)$ and $N_{2}(t)$ are independent PP's with resp. rates λp and $\lambda(1-p)$.

Proof: Long and tedious. See, e.g., Ross.

Example: Suppose cars entering a parking lot follow a $\mathrm{PP}(5 / \mathrm{min})$. Further, suppose the prob that a driver is female is 0.6. Find the prob that exactly 3 cars driven by females will enter the lot in the next 2 minutes.

The \# of cars entering in two min. $\sim \operatorname{Pois}(\lambda t=10)$.

The \# driven by females is $\operatorname{Pois}(\lambda t p=6)$.

So the desired prob is

$$
\operatorname{Pr}(\operatorname{Pois}(6)=3)=\frac{e^{-6} 6^{3}}{3!}=0.0892
$$

Conditional Distribution of Arrival Times

Theorem: $\operatorname{Pr}\left(A_{1}<s \mid N(t)=1\right)=\frac{s}{t}$.

In other words, suppose we know that one arrival has occurred by time t, i.e., $N(t)=1$. What's the (conditional) distribution of the time of that arrival? Answer: Unif($0, t)$!

Proof: We have

$$
\begin{aligned}
& \operatorname{Pr}\left(A_{1}<s \mid N(t)=1\right) \\
& \quad=\frac{\operatorname{Pr}\left(A_{1}<s \text { and } N(t)=1\right)}{\operatorname{Pr}(N(t)=1)}
\end{aligned}
$$

$$
=\frac{\operatorname{Pr}(1 \text { arrival in }[0, s] ; \text { none in }(s, t])}{\operatorname{Pr}(N(t)=1)}
$$

$$
=\frac{\operatorname{Pr}(1 \text { arrival in }[0, s]) \operatorname{Pr}(\text { none in }(s, t])}{\operatorname{Pr}(N(t)=1)}
$$

(by independent increments)
$=\frac{\operatorname{Pr}(N(s)=1) \operatorname{Pr}(N(t)-N(s)=0)}{\operatorname{Pr}(N(t)=1)}$

Proof (cont'd): Then

$$
\begin{aligned}
\operatorname{Pr} & \left(A_{1}<s \mid N(t)=1\right) \\
= & \frac{\operatorname{Pr}(N(s)=1) \operatorname{Pr}(N(t-s)=0)}{\operatorname{Pr}(N(t)=1)} \\
& \text { (by stationary increments) } \\
= & \frac{e^{-\lambda s}(\lambda s)^{1}}{1!} \frac{e^{-\lambda(t-s)}(\lambda(t-s))^{0}}{0!} / \frac{e^{-\lambda t}(\lambda t)^{1}}{1!} \\
= & s / t . \diamond
\end{aligned}
$$

Can generalize above result...

Theorem: Given that $N(t)=n$, the joint probability distribution of the n arrival times $S_{1}, S_{2}, \ldots, S_{n}$ is the same as the joint distribution of n i.i.d. Unif $(0, t)$ RV's.

Thus, if we know that n arrivals have occurred by time t, the arrivals can be treated as if they were i.i.d. $\operatorname{Unif}(0, t)$.

Bonus Theorem: Consider a $\operatorname{PP}(\lambda), N(t)$. Suppose there are k possible types of arrivals. Further suppose that the prob that an arrival is of Type i depends on the time that it occurs - if it occurs at time t, then the probability that it's a Type i is $P_{i}(t)$, where $\sum_{i=1}^{k} P_{i}(t)=1$. If $N_{i}(t)$ denotes the number of Type i arrivals by time t, then the $N_{i}(t)$'s, $i=1,2, \ldots, k$, are independent Poisson RV's with means

$$
\mathrm{E}\left[N_{i}(t)\right]=\lambda \int_{0}^{t} P_{i}(s) d s
$$

Proof: Ross.

Generalizations

Definition: The counting process $N(t)$ is a nonhomogeneous PP with intensity function $\lambda(t)$ if it satisfies: (A-1') Arrivals occur one-at-a-time. In particular,

$$
\begin{aligned}
& \operatorname{Pr}(N(t+h)-N(t)=1)=\lambda(t) h+o(h) \quad \text { and } \\
& \operatorname{Pr}(N(t+h)-N(t)=0)=1-\lambda(t) h+o(h)
\end{aligned}
$$

(A-2) Independent increments.
(A-4) $N(0)=0$.
Note: We don't require stationary increments.

Fact: $N(t+s)-N(t) \sim \operatorname{Pois}\left(\int_{t}^{t+s} \lambda(x) d x\right)$.

Remark: Arrivals may be more (or less) likely to occur as time progresses in a NHPP, since there is no stationarity requirement.

Example: Distribution of cars arriving to a lot as the day progresses is a NHPP. From 8:00-11:00 a.m., cars arrive at a steadily increasing rate: 5 cars/hr at 8:00 a.m. to $20 \mathrm{cars} / \mathrm{hr}$ at 11:00 a.m. I.e., $\lambda(t)=$ $5+5 t, 0 \leq t \leq 3 \mathrm{hrs}$.

Number of arrivals between 8:30-9:30 a.m. is
$N(1.5)-N(0.5) \sim \operatorname{Pois}\left(\int_{0.5}^{1.5}(5+5 x) d x\right) \sim \operatorname{Pois}(10)$.

Definition: A stochastic process $X(t)$ is a compound $P P$ if it can be written as

$$
X(t)=\sum_{i=1}^{N(t)} Y_{i}, \quad t \geq 0
$$

where $N(t)$ is a $\operatorname{PP}(\lambda)$ and the Y_{i} 's are i.i.d. and independent of $N(t)$.

Facts: $\mathrm{E}[X(t)]=\mathrm{E}[N(t)] \mathrm{E}\left[Y_{1}\right]=\lambda t \mathrm{E}\left[Y_{1}\right]$ and
$\operatorname{Var}(X(t))=\lambda t \mathrm{E}\left[Y_{1}^{2}\right]$.

Example: If the Y_{i} 's all equal 1, then $X(t)=N(t)$, the usual PP.

Example: Customers leave a market according to a PP. Let Y_{i} be the amount spent by customer i. If $X(t)$ is the total amount spent by time t, then $X(t)$ is a compound PP.

Example: A FB player makes Pois $(\lambda=2)$ scores/game.

$$
\operatorname{Pr}(\text { score }=x)= \begin{cases}1 / 6 & \text { if } x=1 \\ 1 / 3 & \text { if } x=3 \\ 1 / 2 & \text { if } x=6\end{cases}
$$

Let Y_{i} be the value of the i th score. $\mathrm{E}\left[Y_{i}\right]=\frac{25}{6}$, $\mathrm{E}\left[Y_{i}^{2}\right]=\frac{127}{6}$. Let $X(t)$ be the total points scored in t games.

$$
\begin{array}{r}
E[X(5)]=\lambda t E\left[Y_{1}\right]=125 / 3, \\
\operatorname{Var}(X(t))=\lambda t E\left[Y_{1}^{2}\right]=635 / 3 .
\end{array}
$$

