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• Primary   The increase in primary CDO issuance that began in April has carried
into May. CDOs backed by high yield loans continue to be most prevalent, followed
by structured finance CDOs and synthetic CDOs based on investment grade
corporate credits. Given collateral spreads and the tastes of investors, a larger
share of structured finance CDOs are concentrating on AA and AAA collateral
and/or incorporating prohibitions against “unusual” assets. Cash SF CDOs are
also copying their synthetic brethren by dividing their AAA tranche into two
classes. Sometimes, as in synthetic CDOs, there is true junior-senior credit
tranching of these classes. Other times, the tranching is only to provide different
maturities. If the CDO experiences credit difficulties, the two tranches become
pari-passu.

• Secondary   The market continues to enjoy activity derived from the Abbey
liquidation bid lists and more entrants continue to explore and participate in the
market. Trading is centered among first priority notes with fewer trades getting
done in mezzanine and equity tranches. What happens after the last Abbey bid
list?  We think the secondary market will continue to grow, albeit after a fall from
the one time effect of the Abbey bid lists. Can the primary market maintain or
increase issuance without secondary pricing falling closer in line with primary
offerings?  Two answers. First, secondary pricing has tightened relative to primary
among first priority notes. Second, for whatever reason, there seem to be CDO
buyers who do not wish to venture out of the primary market.

• This month’s article   is about nth (1st, 2nd, 3rd) to default swaps and notes. We
explain their mechanics and compare them to single name default swaps and
senior and subordinated basket swaps. We use Venn diagrams to portray the
risks of various nths. Nth to default swaps and notes are plays on default correlation,
as well as on default probability. Thus, our article, and its two lengthy appendices,
is also a basic to advance guide to default correlation. It turns out that the on-off
nature of default gives default correlation unusual characteristics. These
characteristics may be surprising to those more familiar with the correlation of
continuous variables such as stock returns or interest rates.

Rating 5/30/2003 4/30/2003 3/31/2003
AAA 60-70 58-70 60-70
AA 110-130 105-130 110-130
A 180-250 175-250 180-230

BBB 310-400 310-400 320-390
BB 850-900 850-900 850-900
B 950+ 950+ 950+

Spreads to 3-month LIBOR
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Nth to Default Swaps and Notes:
All About Default Correlation

An nth to default swap is a credit default swap that references a basket of underlying credits,
typically three to five names. The protection seller under the swap is exposed to the default of the
reference credit that defaults “nth” (first, second, third…). An nth to default note is a credit-linked
note that embeds this type of default swap in its terms. The purchaser of the note is the seller of
credit protection in the embedded default swap. In this CDO Insight, we delve into nth to default
swaps and notes, define their characteristics, and compare their risks to other derivative and
funded instruments.

More than other financial instruments, nth to default swaps and notes are plays on default
correlation. Simply put, default correlation measures whether credit risky assets are more likely
to default together or separately. For example, default correlation answers the following question:
does a 10% probability of default mean that one out of 10 credits is going to default, or that 10%
of the time, all 10 credits are going to default? If the answer is “in between,” where in between?

Default correlation is essential to understanding the risk of nth to default swaps and notes. In fact,
default correlation is essential to understanding the risk of credit portfolios generally. Along with
default probability and loss in the event of default, default correlation determines the credit risk
of a portfolio and the economic capital required to support that portfolio. It is important to portfolio
managers, investors, CFOs, bankers, rating agencies, and regulators.

Yet, compared to knowledge about other credit factors, fewer people are familiar with the basic
principals of default correlation. Available papers on default correlation are often so mathematically
complex as to be obscure. In the process of describing the risks of nth to default swaps and notes,
this CDO Insight provides a basic to advanced guide to default correlation, making the maximum
use of graphic illustrations, the minimum use of algebra, and no use of calculus. To spare readers
who do not completely share our obsession with default correlation, we have parked the more
technical material on default correlation in two appendices.

Appendix I delves into pictorial representations of default probability and default correlation. But
the main focus of the Appendix I is what we term “higher orders of default correlation.”  For
example, we explore the default correlation that exists, once a pair of credits have defaulted,
between the joint default probability of that pair of credits and the probability that a third credit
will join them in default. Readers used to the correlation of continuous variables like stock prices
and interest rates may be surprised that pairwise default correlation does not fully describe default
distributions.

Appendix II shows the calculation and results of historic default correlation. We show that default
correlations among well-diversified portfolios vary by the ratings of the credits and also by the
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time period over which defaults are examined. We also describe some of the problems measuring,
and even thinking about, default correlation.1

Nth to Default Swaps
An nth to default swap is a credit default swap that references a basket of underlying
credits, typically three to five names. The protection seller2 under the swap is exposed
to the default of the reference credit that defaults “nth” (first, second, third, …). For

example, if a party has sold protection on the 3rd to default of five reference credits, the
protection seller is responsible for default losses associated only with the default of the third
reference credit to default. If only two reference credits default over the tenor of the swap, the
protection seller does not have to make a default payment to the protection buyer.

Upon the default of the third credit in our example, the protection seller pays default losses associated
with the reference credit to the protection buyer and the swap terminates. In physical settlement,
the protection buyer of a $10 million notional swap delivers $10 million par of a deliverable
obligation of the defaulted name to the protection seller. The protection seller pays $10 million to
the protection buyer. The protection seller is then free to retain or sell the obligation as it sees fit. In
cash settlement, the market price of $10 million par of a deliverable obligation of the defaulted
name is determined through a specified process of dealer polling. The protection seller pays the
protection buyer the difference between $10 million and the determined market value of the
deliverable obligation. Note that the severity of default losses associated with the first and second
defaults among the reference credits does not make a difference to the payout under a 3rd to
default swap.

After paying default losses on the nth to default credit, the protection seller has no responsibility for
subsequent defaults of reference entities. In return for this protection, the protection buyer pays a
periodic fee to the protection seller. These cash flows are depicted in Exhibit 1 (below). Most nth

1 Much of the material in this article and its appendices is expanded from our Rating Cash Flow Transac-
tions Backed by Corporate Debt, Moody's Investors Service, September, 1989 and “Default Correlation and
Credit Analysis,” Journal of Fixed Income, March 1995. What’s new is the application of default correlation
to nth to default swaps in the article, the quantification of higher orders of default correlation (beyond
pairwise default correlation) in Appendix I, and discussion of the difficulties in relying upon historic
empirical default correlations in Appendix II.
2 The expert in credit default swap documentation will note that we use a mix of official ISDA defined terms
and expressions whose meanings we feel are easier to understand. Thus “protection buyer” for “Fixed Rate
Payer,” “protection seller” for “Floating Rate Payer,” “default” for the occurrence of a “Credit Event,” and
“default losses” for the difference between par and market value of the cheapest “Deliverable Obligation.”

 

Exhibit 1. Nth to Default Swap Cash Flows 
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to default swaps are 1st to default swaps on three to five underlying names, each rated single-A or
above. Higher “nths” generally reference more names. Most portfolios are comprised of names
from different industries but often the same geographical region, i.e., U.S. or Europe. The most
popular nths are the first, second, and third.

It bears mentioning that like other credit default swaps, an nth to default swap is purely a play on
credit risk. It is not affected by interest rates movements and even currency risk is usually structured
away.

Nth to Default Notes
An nth to default note is a credit-linked note that embeds an nth to default swap in its terms. The
purchaser of the note is also the seller of credit protection on the embedded default swap. The note
issuer is also the buyer of credit protection on the embedded default swap. An nth to default note
therefore combines two separate financial instruments in one: (1) a note and (2) an nth to default
swap. Most notes are based on 1st to default swaps with three to five underlying reference names
rated A or AA. If rated, the nth to default note itself is usually rated A or BBB. The cash flows of an
nth to default note are shown in Exhibit 2 (above).

The interaction or intersection between the credit swap part the nth to default note and the note
part of the nth to default note occurs when the protection seller/note purchaser owes default losses
to the protection buyer/note issuer. The protection seller does not make a payment of default
losses to the protection buyer. Rather, the protection buyer either delivers the deliverable obligation
(physical settlement) or the protection buyer pays the protection seller the recovery value of the
deliverable obligation. The note is thereby redeemed and the embedded swap terminated.

It is sometimes convenient for the protection seller that the nth to default swap be embedded in a
note. There might be internal or external regulatory reasons for doing so, for example. For example,
the investor might be prohibited from entering into a derivative contract, but an nth to default note
might not be considered a derivative. An nth to default note isolates the protection buyer from the
credit risk of the protection seller. By buying the note, the protection seller has effectively collateralized
its potential obligation to the protection buyer. Almost the same result could be obtained, however,
by having the protection seller of an nth to default swap collateralize the mark-to-market of the

Exhibit 2. Nth to Default Note Cash Flows  
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swap to the protection buyer. Within limits, this would give the protection seller the ability to choose
what collateral it owns and posts to the protection buyer. The protection seller can also replace one
acceptable collateral instrument with another. But in an nth to default note, the protection seller must
buy the protection buyer’s debt instrument.3

Also, in note form, the protection seller is now at risk to the protection buyer for what we have
termed the protection seller’s collateral, a.k.a. the principal amount of the note. An nth to default
protection seller/note purchaser must consider not only the credit risks of the reference credits in
the swap basket, but also the credit risk of the note issuer.

Comparison of Nth to Default Swaps to Other Credit
Swaps
To help understand the risks of nth to default swaps, we will compare them to
single name default swaps and basket default swaps. We will look at the following
six credit default swaps:

• a $10 million 1st to default swap on five underlying credits;
• a $10 million 5th to default swap on five underlying credits;
• a portfolio of five separate $2 million single name credit default swaps;
• a portfolio of five separate $10 million single name credit default swaps;
• a $10 million subordinate basket credit default swap responsible for the first $10

million of default losses on a portfolio of five underlying credits of $10 million each;
• a $10 million senior basket credit default swap responsible for default losses above

$40 million on a portfolio of five underlying credits of $10 million each.

These credit swaps are shown in Exhibit 3 (next page), in order of their risk, which we define as the
amount of potential default losses the protection seller might have to absorb. We assume that all
credit swaps reference the same five names, and explain their relative risks.

The riskiest credit derivative in Exhibit 3 is the $50 million swap portfolio comprised of five separate
$10 million single name credit default swaps. This portfolio of separate swaps is more risky than
the subordinated basket swap. Protection sellers in both situations are equally exposed to the first
$10 million of default losses from the five names. But the protection seller’s aggregate exposure
under the subordinate basket swap is capped at $10 million. The protection seller of the five single
name swaps is exposed to an additional $40 million of potential default losses.

The subordinate basket swap is riskier than the 1st to default swap. Protection sellers under both
these swaps are equally exposed to default losses from the first of the credits to default. But the
subordinate basket swap protection seller is also exposed to the 2nd, 3rd, 4th, and 5th defaults in the
portfolio up to $10 million aggregate of default losses.

3 An alternative structure would have the protection seller buy a note for X amount of par, but be respon-
sible for some Y amount of losses where Y > X. In this manner, the protection buyer is collateralized for the
first X/Y% of default losses that might occur. X would be set relative to Y to allow for the expected loss in
the event of default.



 

UBS Warburg  CDO INSIGHT    

6PageMAY 30, 2003

The 1st to default swap is more risky than the $10 million swap portfolio comprised of five separate
$2 million single name credit default swaps, but the situation is not as clear cut. First, assume that
default losses on any credit will be of equal percentage of par, say 50%. Upon the first default
among the five names, the protection seller of the 1st to default swap pays $5 million and
the protection seller of the swap portfolio comprised of five separate $2 million
single name credit default swaps pays $1 million. The only way for the protection
seller on the portfolio of swaps to pay $5 million is if all five underlying credits
default.

The only way that the protection seller on the portfolio of swaps would have to
make larger total default loss payments is if there are specific patterns of defaults
and percentage default losses among underlying credits. For example, suppose
that default losses from the first defaulting credit were only 10% of par. The protection seller under
the 1st to default swap would have to pay $1 million while the protection seller on the portfolio of
swaps would have to pay $200,000. If one more credit defaulted with a default loss percentage
above 40%, or if all four remaining credits defaulted with an average default loss percentage above
10%, then the protection seller of the portfolio of swaps would pay more than the protection seller
of the 1st to default swap.

Note that if the loss percentage on the first credit to default was above 25%, it would take at least
three defaults for the protection seller of the portfolio to possible pay more than the protection
seller of the 1st to default swap. While certain scenarios of this sort are possible, they are not as
likely as situations where the 1st to default swap protection seller has to pay more default losses.

Similarly, the $10 million swap portfolio comprised of five separate $2 million single name credit
default swaps is more risky than the 5th to default swap. The only way that the protection seller of
the 5th to default swap would have to make the larger default loss payment is if (1) all five credits
default and (2) the average percentage loss on all five defaults was smaller than the default loss
percentage of the fifth credit to default.

Riskiness Credit Default Swap Losses

1 Portfolio of 5 separate $10 million single 
name credit default swaps

Default loss on each credit up to $10 million; 
capped at $50 million in aggregate

2
Subordinate basket swap.  First $10 

million of default losses on portfolio of 5 
names @ $10 million each name

Default loss on each credit up to $10 million; 
capped at $10 million in aggregate

3 $10 million 1st to default swap on 5 
names

Default loss on first credit to default;
capped at $10 million

4 Portfolio of 5 separate $2 million single 
name credit default swaps

Default loss on each credit up to $2 million; 
capped at $10 million in aggregate

5 $10 million 5th to default swap on 5 
names

Default loss on fifth credit to default;
capped at $10 million

6
Senior basket swap.  Last $10 million of 
default losses on portfolio of 5 names @ 

$10 million each name

Default loss after $40 million of losses have 
already occurred; capped at $10 million

Exhibit 3.  Comparison of Credit Swaps
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Finally, the 5th to default swap is more risky than the senior basket swap. Given that the protection
seller under the senior basket swap has $40 million of subordination below it, it is not exposed to
the 5th credit to default unless previous default losses exceed $30 million. Only if previous default
losses have been $40 million (i.e., if all four credits have defaulted and their default losses were
$10 million each) would it be as exposed to the 5th credit to default in a way equal to the protection
seller under the 5th to default swap.

Picturing Nth to Default Risk
In this section, we are going to explore nth to default risk another way, using Venn
diagrams. These are those intersecting circles that show the overlap or lack of overlap
between two or more events or conditions. The area of circles labeled A, B, and C in
Exhibit 4 (below) represent the probability that underlying credits A, B, or C are going

to default over the term of an nth to default swap. In Exhibit 4, the circles have some overlap with
one another. These overlaps represent the probability that more than one credit is going to default
over the term of the nth to default swap. The “2s” in the exhibit indicate the area where two of the
circles overlap and therefore represent the probability that two of the three credits will default.
There are three such overlaps, between circles (and credits) AB, BC, and AC. There is also an
area where all three circles overlap, representing the probability that all three credits will default
over the term of the nth to default swap.

Exhibit 4 says something about the relative risks of 1st, 2nd, and 3rd to default swaps. The area
within all three circles represents the probability that one or more credits will default. This is the
probability that the protection seller of a 1st to default swap on these three underlying credits will
have to pay default losses. The sections of Exhibit 4 labeled “2” and “3” represent the probability
that two or three credits will default. This is the probability that the protection seller of a 2nd to
default swap on these three underlying credits will have to pay default losses. Finally, the section of
Exhibit 4 labeled “3” represents the probability that three credits will default. This is the probability
that the protection seller of a 3rd to default swap on these three underlying credits will have to pay

default losses. (The undefined area outside the
three circles represents the probability that no
credits will default.)

From Exhibit 4, we can tell a lot about the
probability of a default loss pay out under an nth to
default swap. However, this particular drawing is
not the only way that credits A, B, and C might
behave with respect to defaulting. It might be, for
example, that Exhibit 5 (next page) is a more
accurate representation of how defaults occur
among these credits.

What we see in Exhibit 5 is the situation where
credits A, B, and C never default at the same time.
This is represented in the exhibit by the lack of
overlap among circles A, B, and C. In this

Exhibit 4. Number of Defaulting Credits 
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scenario, there is no risk to the
protection seller of a 2nd or 3rd to
default swap because 2nd and 3rd
defaults among the portfolio will never
occur. However, comparison of
Exhibits 4 and 5 shows that there is
more risk of one credit defaulting. The
overlaps in Exhibit 4 are spread out
in Exhibit 5 with the result that there
is greater area covered by the circles
representing greater probability that
one credit will default.

Exhibit 6 (below) shows the opposite
situation as Exhibit 5. Instead of
defaults being spread out, and never
occurring together, in Exhibit 6

defaults are bunched up and never occur separately. (Note that we draw the circles in Exhibit 6 a
little offset so you can see that there are three of them. In theory, they rest exactly on top of each
other.)  Compared to both Exhibits 4 and 5, there is a lot of probability that two or three of the
credits will default. In this scenario, there is a relatively more risk to the protection seller of a 2nd or
3rd to default swap. However, there is less risk of one or more credits defaulting and therefore less
risk to the protection seller of a 1st to default swap.

The difference between the default probability
pictures in Exhibits 4, 5, and 6 is default
correlation.

Default Correlation Defined
Default correlation is the phenomenon that
the likelihood of one obligor defaulting on its
debt is affected by whether or not another
obligor has defaulted on its debts. A simple
example of this is if one firm is the creditor of
another: if Credit A defaults on its obligations
to Credit B, we think it is more likely that
Credit B will be unable to pay its own

obligations. This is an example of positive default correlation. The default of one credit makes it
more likely the other credit will default.

There could also be negative default correlation. Suppose that Credit A and Credit B are
competitors. If Credit A defaults and goes out of business, it might be the case that Credit B will get
Credit A’s customers and be able to get price concessions from Credit A’s suppliers. If this is true,
the default of one credit makes it less likely the other credit will default. This would be an example
of negative correlation.

 A

B C

Exhibit 5. Defaulting Credits Default Separately 

Exhibit 6. Defaulting Credits Default Together  

A

B C
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But default correlation is not normally discussed with respect to the particular business relationship
between one credit and another. And the existence of default correlation does not imply that one
credit’s default directly causes the change in another credit’s default probability. It is a maxim of
statistics that correlation does not imply causation. Nor do we think negative default correlation
is very common. Primarily, we think positive default correlation generally exists among credits
because the fortunes of individual companies are linked together via the health of the general economy
or the health of broad subsets of the general economy.

Drivers of Default Correlation
The pattern of yearly default rates for U.S. corporations since 1920, shown in Exhibit 7
(below), is notable for the high concentrations of defaults around 1933, 1970, 1991, and
2001. A good number of firms in almost all industries defaulted on their credit obligations
in these depressions and recessions. The boom years of the 1950s and 1960s, however,
produced very few defaults. To varying degrees, all businesses tend to be affected by the

health of the general economy, regardless of their specific characteristics. The phenomena of
companies tending to default together or not default together is indicative of positive default
correlation.

But defaults can also be caused by industry-specific events that only affect firms in those particular
industries. Despite a favorable overall economy, low oil prices caused 22 companies in the oil
industry to default on rated debt between 1982 and 1986. Bad investments or perhaps bad regulation
caused 19 thrifts to default in 1989 and 1990. Recently, we experienced the defaults of numerous
dot coms due to the correction of “irrational exuberance.”  Again, the phenomena of companies in
a particular industry tending to default together or not default together is indicative of positive
default correlation.

 

Exhibit 7.  U.S. Corporate Default Rates Since 1920
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There are other default-risk relationships among businesses that do not become obvious until they
occur. The effect of low oil prices rippled through the Texas economy in the 1980s affecting just
about every industry and credit in the state. A spike in the price of silver once negatively affected
both film manufacturers and silverware makers. The failure of the South American anchovy harvest
one year drove up the price of grains and put cattle farmers under pressure. These default-producing
characteristics hide until, because of the defaults they cause, their presence becomes obvious.

Finally, there are truly company-specific default factors such as the health of a company’s founder
or the chance a warehouse will be destroyed by fire. These factors do not transfer default contagion
to other credits.

Defaults are therefore the result of an unknown and unspecified multi-factor model of default that
seems akin to a multi-factor equity pricing model. Default correlation occurs when, for example,
economy-wide or industry-wide default-causing variables assume particular values and cause
widespread havoc. Uncorrelated defaults occur when company-specific default-causing variables
cause trouble.

Why We Care About Default Correlation
Default correlation is very important in understanding and predicting the behavior of credit
portfolios, including nth to default swaps. It directly affects the risk-return profile of investors
in credit risky assets and is therefore important to the creditors and regulators of these
investors. Default correlation even has implications for industrial companies that expose
themselves to the credit risk of their suppliers and customers through the normal course of

business. We will prove these assertions via an example.

Suppose we wish to understand the risk of a bond portfolio and we know that each of the 10
bonds in the portfolio has a 10% probability of default over the next five years. What does this tell
us about the behavior of the portfolio as a whole? Not much, it turns out, unless we also understand
the default correlation among credits in the portfolio.

It could be, for example, that all the bonds in the portfolio always default together. Or to put it
another way, if one of the 10 bonds default, they all default. If so, this would be an example of
“perfect” positive default correlation. Combined with the fact that each bond has a 10% probability
of default, we can make a conclusion about how this portfolio will perform. There is a 10%
probability that all the bonds in the portfolio will default. And there is a 90% probability that none
of the bonds will default. Perfect positive default correlation, the fact that all the bonds will either
default together or not default at all, combines with the 10% probability of default to produce this
extreme distribution, as shown in Exhibit 8 (next page).

At the other extreme, it could be the case that bonds in the portfolio always default separately. Or
to put it another way, if one of the 10 bonds default, no other bonds default. This would be an
example of “perfect” negative default correlation. Combined with the fact that each bond has a
10% probability of default, we can make a conclusion about how this portfolio will perform: there
is a 100% probability that one and only one bond in the portfolio will default. Perfect negative
default correlation, the fact that when one bond defaults no other bonds default, combines with the
10% probability of default to produce this extreme distribution, as shown in Exhibit 9 (next page).
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The difference in the distributions depicted in Exhibit 8 and 9 has profound implications for investors
in these portfolios. Remember that in both cases, the default probability of bonds in the portfolio is
10%. The expected number of defaults in both portfolios is one. But one knows with certainty the
result of the portfolio depicted in Exhibit 9: one and only one bond is going to default. This certainty
would be of comfort to a lender to this investor. The lender knows with certainty that nine of the
bonds are going to perform and that par and interest from those nine performing bonds will be
available to repay the investor’s indebtedness.

The investor in the portfolio depicted in Exhibit 8 has the greatest uncertainty. Ninety percent of
the time the portfolio will have no defaults and 10% of the time every bond in the portfolio will
default. A lender to an investor with this portfolio has a 10% risk that no bonds in the portfolio will
perform.

A complete analysis of the risk of these two example portfolios would depend on the distribution
of default recoveries. But it is obvious that the portfolio depicted in Exhibit 8 is much more risky
than the portfolio depicted in Exhibit 9, even though the default probabilities of bonds in the
portfolios are the same. The difference in risk profiles, which is due only to default correlation, has

Exhibit 8.  Extreme Positive Default Corre lation
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Exhibit 9.  Extreme Negative Default Corre lation
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profound implications to investors, lenders, rating agencies, and regulators. Debt backed by the
portfolio depicted in Exhibit 8 should bear a higher premium for credit risk and be rated lower. It
this is a regulated entity, it should be required to have more capital.

Default Probability and Default Correlation in 1st to De-
fault Swaps
In Exhibit 10 (below), we relate default correlation to 1st to default swaps. The
exhibit shows the probability that at least one of five credits will default. This is
the risk to the protection seller of a 1st to default swap on five reference names.
The exhibit shows this probability assuming different levels of default correlation,

from –0.05 to 1.00.4  The line labeled “5% Default Probability” also incorporates the assumption
that each credit in the reference portfolio has a 5% probability of default.

Focusing on that line, note that over different default correlation assumptions, it moves from 25%
probability of at least one reference credit defaulting to 5% probability of at least one reference
credit defaulting. At the most extreme negative default correlation, which is –0.05 for this default
probability, none of the five underlying credits default at the same time. The probability of one
underlying credit defaulting is therefore 5 * 5% or 25%. At 1.00 default correlation, when one of
the credits default, they all default. The probability of all five credits defaulting is 5%.

 

Exhibit 10. Correlation and 1st to Default Risk
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4 We assume that default correlations between pairs of credits, the default correlation between a pair of
credits and a third credit, the default correlation between three credits and a forth credit, and the default
correlation between four credits and a fifth credit are all equal. In Appendix I, we discuss the insufficiently of
pairwise correlations in describing the probability distributions of binomial events like default and the effect
of “higher order” default correlations.
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Higher default correlation always reduces the risk to a 1st to default protection seller. Recall from
Exhibit 6 that when defaults happen together, there is more of a chance that no defaults will occur.
(In the exhibit, the probability of no defaults occurring is represented by the area outside circles A,
B, and C.)  As default correlation increases, we are moving from a picture of defaults like the one
shown in Exhibit 5 to a picture of default like the one shown in Exhibit 6. A probability distribution
like the one pictured in Exhibits 6 is more likely to produce cases where there are multiple
defaults and more likely to produce cases where there are no defaults. The increase in the probability
of no underlying reference defaults reduces 1st to default risk.

Also in Exhibit 10, is a line labeled “7% Default Probability,” which incorporates the assumption
that every reference credit has a 7% probability of default. Just like the 5% line, it moves, left to
right, from only one credit defaulting at a time to all credits defaulting together. In this case, that
means a 35% probability of a swap payout at –0.08 default correlation and a 7% probability of a
payout at 1.00 correlation. From being 10% above the 5% default line in extreme negative
correlations, the 7% default line declines at a faster rate than the 5% default line until it is 2% higher
than the 5% line.

We can also compare, in Exhibit 10, the relative effects of underlying reference credit default
probability and default correlation on the probability of a payout under a 1st to default swap. But
first we need to decide where to look.

In Appendix II, we display a wealth of data on historical default correlations. The historical evidence
is that default correlation among well diversified investment grade credits over five years is 0.00
or 0.01. In Appendix II, we also show how, if anything, our measure of default correlation is
biased to report results that are too high. Other researchers looking at intra-industry default
correlation have estimated default correlation for names in the same industry at as much as 0.10 or
0.20. So a very generous range of likely default correlations for a 1st to default swap is from 0.00
to 0.30. On the other hand, it seems pretty easy to us for someone to get default probability wrong
by 2% over five years.

Looking at the line for 5% underlying reference credit default probability over the range of default
correlation from 0.00 to 0.30, the risk that at least one reference credit will default ranges from
22.6% to 15.8%. This is a difference of 6.9%. Changing the underlying reference credit default
probability from 5% to 7% increases the risk that at least one reference credit will default an
average of 6.9%. It seems to us much more likely that a protection seller will be off 2% on the true
probability of default for the underlying reference credits than off by 0.30 in their estimation of
default correlation. Since both mistakes would have the same result, this shows that 1st to default
swaps are much more sensitive to estimates of default probability than estimates of default correlation.

Default Probability and Default Correlation in 2nd to Default
Swaps
In Exhibit 11 (next page), we address the risk of 2nd to default swaps, or the risk that at
least two defaults will occur in our five-credit five-year 2nd to default swap example.
The situation with respect to default correlation is ambiguous. At first, default correlation
increases the risk of a 2nd to default swap and then it decreases that risk. What happens
is that as default correlation first increases the probability that credits default together,
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there is a greater chance that two, three, four, and five credits will default together. The chance of
two or more defaults increases. But as default correlation increases still more, the chance of
exactly two defaults peaks and then declines while the probability of three, four, and five credits
defaulting continues to increase. It happens that the decrease in the probability of exactly two
defaults is greater than the increase in the probability of two or more defaults. Thus, 2nd to default
risk decreases. We show this effect in Exhibit 12 (below).

In the relevant range of default correlation, 0.00 to 0.30, the probability of a 2nd to default payoff,
assuming 5% underlying reference credit default probability, ranges from 0.0% to 6.1%. Over this
same range of default correlations, an increase in underlying reference default probability from 5%
to 7% increases the probability of a 2nd to default payout an average of 2.4%. So we see that
default correlation is much more important in the pricing of 2nd to default swaps than it is in the

Exhibit 11. Correlation and 2nd to Default Risk
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pricing of 1st to default swaps. This result generally holds for higher “nths” and different underlying
reference credit default probabilities.

Conclusion
In this CDO Insight, we explained the mechanics of nth to default swaps and notes and
then compared them to portfolios of single name default swaps and to senior and
subordinated credit swaps on a portfolio of names. We ranked different credit swaps in
order of their risk to the protection seller. We next “pictured” nth to default risk via the use
of Venn diagrams representing credits defaulting together or separately. This lead right

into a discussion of default correlation. We explained what negative and positive default correlation
are, why default correlation is important in analyzing credit risky portfolios like nth to default swaps,
and even the causes of default correlation.

Finally, we turned back to nth to default swaps and applied our understanding of default probability
and default correlation. We addressed the probability of at least one credit defaulting out of a
portfolio of five (1st to default risk) and the probability of at least two credits defaulting out of a
portfolio of five (2nd to default risk). We saw that higher default correlation decreases 1st to default
risk. But we said that reference credit default probability was relatively more important in estimating
1st to default risk than default correlation. We also saw that default correlation first increases and
then decreases 2nd to default risk. And we pointed out that reference credit default correlation is
relatively more important in estimating 2nd to default risk than default probability.

Nth to default swaps and notes allow investors to take on increase credit risk, but remain exposed
only to investment grade credits. The limited number of names in the portfolio allows protection
sellers to thoroughly vet the names to which they are exposing themselves. And the static nature of
the reference portfolio eliminates any surprise from an asset manager and allows the purchase of
single name default swaps later to hedge credit risks. Nth to default swaps are a particularly attractive
product in low spread environments. We expect to see greater use of nth to default swaps and
notes to take on credit risk.

Appendix I. Beyond Pairwise Default Correlation

In this appendix we show default probability and default correlation pictorially, present the basic
algebra of default correlation, and then delve into the deficiency of pairwise correlations in explaining
default distributions.

Picturing Default Probability
Suppose we have two obligors, Credit A and Credit B, each with 10% default probability. The
circles A and B in Exhibit 13 (next page) represent the 10% probability that A and B will default,
respectively.
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There are four possibilities depicted in Exhibit 13:

(1) both A and B default, as shown by the overlap of circles A and B;
(2) only A defaults, as shown by circle A that does not overlap with B;
(3) only B defaults, as shown by circle B that does not overlap with A;
(4) neither A or B default, as implied by the area outside both circles A and B.

Recall that we defined positive and negative default correlation by how one revises their assessment
of the default probability of one credit once one finds out whether another credit has defaulted. If
upon the default of one credit you revise the default probability of the second credit upwards, you
implicitly think there is positive default correlation between the two credits. And if upon the default
of one credit you revise the default probability of the second credit downwards, you implicitly
think there is negative default correlation between the two credits.

Exhibit 13 is purposely drawn so that knowing whether one credit defaults does not cause us to
revise our estimation of the default probability of the other credit. Exhibit 13 pictorially represents
no or zero default correlation between Credits A and B, neither positive or negative default
correlation. In other words, knowing that A has defaulted does not change our assessment of the
probability that B will default.

Here’s the explanation. Recall that the probability of A defaulting is 10% and the probability of B
defaulting is 10%. Suppose A has defaulted. Now, pictorially, we are within the circle labeled A in
Exhibit 13. No or zero correlation means that we do not change our estimation of Credit B’s
default probability just because Credit A has defaulted. We still think there is a 10% probability
that B will default. Given that we are within circle A and circle A represents 10% probability, the
probability that B will default must be 10% of circle A or 10% of 10% or 1%. The intersection of
circles A and B depicts this 1% probability. This leads to a very simple general formula for calculating
the probability that both A and B will default when there is no or zero default correlation.

Recall the phrase in the above paragraph that the overlap of A and B, or the space where both A
and B have defaulted is “10% of 10% or 1%.”  What this means mathematically is the probability
of both Credits A and B defaulting (the joint probability of default for Credits A and B) is 10% *

           A      B

Exhibit 13. Credit A and Credit B Default Probability, Pictorially



 

UBS Warburg  CDO INSIGHT    

17PageMAY 30, 2003

10% or 1%. Working from the specific to the general (which we label Equation 1), our notation
gives us the following:

10% x 10% = 1%

P(A) * P(B) = P(A and B) (1)

Where:
• P(A) = the probability of Credit A defaulting (10% in our example);
• P(B) = the probability of Credit B defaulting (10% in our example);
• P(A and B) =  the probability of both Credits A and B defaulting, a.k.a., the joint

probability of default for Credits A and B (1% in our example).

This is the general statistical formula for joint default probability assuming zero correlation.

Now that we have calculated the joint probability of A and B defaulting, we can assign probabilities
to all the alternatives is Exhibit 13. We do this in
Exhibit 14 (left). We assumed that the default
probability of Credit A was 10%, which we
represent by the circle labeled A in Exhibit 14.
We have already determined that the joint
probability of  Credit A and Credit B defaulting,
as represented by the intersection of the circles
labeled A and B, is 1%. Therefore, the probability
that Credit A will default and Credit B will not
default, represented by the area within circle A
but also outside circle B, is 9%. Likewise, the
probability that Credit B will default and Credit
A will not default is 9%. The probabilities than
either or both Credit A and Credit B will default,
the area within circles A and B, adds up to 19%.
Therefore, the probabilities that neither Credit A

nor Credit B will default, represented by the area outside circles A and B, is 81%.

These results are also shown in Exhibit 15 (below) throwing some “nots,” “ors,” and “neithers” into
the notation. P(A not B) means that A defaults and B does not default. P(A or B) means that either
A or B defaults and includes the possibility that both A and B default. “Neither” means neither A or
B defaults.

Exhibit 15. Default Probabilities, Notationally

P(A) = 10%
P(A and B) = 1%
P(A not B) = P(A) – P(A and B) = 10% - 1% = 9%
P(A or B) = P(A) + P(B) – P(A and B) = 10% + 10% - 1% = 19%
P(neither A or B) = 100% - P(A or B) = 100% - 19% = 81%

Exhibit 14. Default Probabilities, Pictoria lly

9% 9%

1%

           A      B

81%
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Picturing Default Correla-
tion
We’ve pictorially covered scenarios of
joint default, single default, and no-default
probabilities in our two credit world
assuming zero default correlation.
Exhibit 14, showing moderate overlap of
the “default circles” has been our map to
these scenarios. There are, of course,
other possibilities. There could be no
overlap, or 0% joint default probability,
between Credit A and Credit B, as

depicted in Exhibit 16 (above). Or there could be complete overlap as depicted in Exhibit 17
(below). The joint default probability equals 10% because we assume that Credit A and B each
have a 10% probability of default and in Exhibit 17 they are depicted as always defaulting together.
(Note that we draw the circles in Exhibit 17 a little offset so you can see that there are two of
them. In theory, they rest exactly on top of each other.)

One will recall, hopefully, that Exhibit 16 depicts
perfect negative default correlation since if one credit
defaults we know the other will not. Exhibit 17 depicts
perfect positive default correlation since if one credit
defaults we know the other one will too. Unfortunately,
our Equation 1 (previous page) does not take into
account the situations depicted in Exhibits 16 and 17.
That formula does not help us calculate joint default
probability in either of these circumstances or in any
circumstance other than zero default correlation. Which
leads us to the next section in this appendix.

Calculating Default Correlation Math-
ematically
We are perhaps already further than most introductory

statistics courses would go with respect to correlation. But with Venn diagrams under our belt, we
can become more precise in understanding default correlation with a little high school algebra.
What we are going to do in this section is mathematically define default correlation. The equation
will allow us to compute default correlation between any two credits given their individual default
probabilities and their joint default probability. Then, we are going to solve the same equation for
joint default probability. The reworked equation will allow us to calculate the joint default probability
of any two credits given their individual default probabilities and the default correlation between
the two credits.

What we would like to have is a mathematical way to express the degree of overlap in the Venn
diagrams or the joint default probability of the credits depicted in the Venn diagrams. From no
overlap depicted in Exhibit 16 to “moderate” overlap depicted back in Exhibit 15, to complete

Exhibit 16. No Joint Probability 

           A       B

Exhibit 17. Maximum Joint Probability

           A             B
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overlap depicted in Exhibit 17. One way is refer to the joint probability of default. It’s 0% in
Exhibit 16, 1% in Exhibit 14, and 10% in Exhibit 17. All possible degrees of overlap could be
described via the continuous scale of joint default probability running from 0% to 10%. However,
this measure is tied up with the individual credit’s probability of default. A 1% joint probability of
default is very high default correlation if both credits have only a 1% probability of default to begin
with. A 1% joint probability of default is very negative default correlation if both credits have a
50.5% probability of default to begin with. We would like a measure of overlap that does not
depend on the default probabilities of the credits.

This is exactly what default correlation, a number running from –1 to +1, does. Default correlation
is defined mathematically as:

Default Correlation(A and B) =  Covariance(A,B) (2)
      Standard Deviation(A) * Standard Deviation(B)

What we are going to do now is to delve more into the right side of Equation (2) and better define
default correlation between A and B.

In denominator of the formula, standard deviation is a measure of how much A can vary. A, in
this case, is whether or not Credit A defaults. What this means intuitively is how certain or uncertain
we are that A will default. We are very certain about whether A will default if A’s default probability
is 0% or 100%. Then we know with certainty whether or not A is going to default. At 50% default
probability of default, we are most uncertain whether A is going to default.

The term for an event like default, where either the event happens or does not happen, and there
is no in between, is binomial. And the mathematical formula for the standard deviation of a binomial
variable is:

Standard Deviation(A) = {P(A) * [1-P(A)]}1/2 (3)

In the example we have been working with, where the default probability of A is 10%, or P(A) =
10%, the standard deviation of A is:

Standard Deviation(A) = {P(A) * [1-P(A)]}1/2

 = {10% * 90%}1/2

 = {9%}1/2

 = 30%

All the possible standard deviations of a binomial event, where the probability varies from 0% to
100%, are shown in Exhibit 18 (next page). Above 10% probability on the X axis we can see that
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the standard deviation is indeed 30%. The chart also illustrates the statements we made before
likening standard deviation to the uncertainty of whether or not the credit is going to default. At 0%
and 100% default probability, where we are completely certain what is going to happen, standard
deviation is 0. At 50% default probability, where we are least certain whether the credit is going to
default, standard deviation is at its highest.

The covariance of A and B is a measure of how far the actual joint probability of A and B is from
the joint probability that would obtain if there was zero default correlation. Mathematically, this is
simply actual joint probability of A and B minus the joint probability of A and B assuming zero
correlation. Recall from Equation 1 above that the joint probability of A and B assuming zero
correlation is P(A) * P(B). Therefore the covariance between A and B is: 5

Covariance(A, B) = P(A and B) – P(A) * P(B) (4)

In our example, from our work around Exhibit 14, we worked out that the joint probability of
default assuming zero default correlation is 1%. From Exhibit 16, we know that given perfect
negative default correlation, the actual joint probability can be as small as 0%. From Exhibit 17, we
know that given perfect positive default correlation, the actual joint probability can be as high as
10%. Exhibit 19 (next page) depicts the relationship between joint default probability and covariance
graphically.

Recall that a few pages back in Equation 2 we presented this formula for default correlation.

Exhibit 18. Standard Deviation and Default Probability
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5 Covariance is more formally defined as the Expectation(A*B) – Expectation(A) * Expectation(B). When
one defines default as 1 and no default as 0, Equation 4 is the result.
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Correlation(A and B)  =  Covariance(A,B) (2)
      Standard Deviation(A) * Standard Deviation(B)

In Equations 3 and 4, we refined the numerator and denominator of Equation 2. Substituting
Equations 3 and 4 into Equation 2 we have:

Correlation(A and B)  =  P(A and B) – P(A) * P(B) (5)
      {P(A) * [1-P(A)]}1/2  * {P(B) * [1-P(B)]}1/2

Now, finally, we can define mathematically the default correlation we saw visually in Exhibits 14,
16, and 17. In Exhibit 14, the joint default probability of A and B, P(A and B), was 1%, simply
because we wanted to show the case where the default probability of one credit did not depend
on whether another credit had defaulted. The product of A’s and B’s default probabilities, P(A) *
P(B), is 10% * 10% or 1%. Moving to the denominator of Equation 5, the product or A’s and B’s
standard deviations, {P(A) * [1-P(A)]}1/2  * {P(B) * [1-P(B)]}1/2  is 9%. Putting this all together,
we have

Correlation(A and B)  = 1% – 1% =  0.00
    9%

Similarly, for Exhibit 16, where joint default probability is 0%, default correlation is -0.11. And in
Exhibit 17, where joint default probability is 10%, default correlation is +1.00. In our example, as
joint default probability moves from 0% to 10%, default correlation decreases linearly from –0.11
to +1.00, as shown in Exhibit 20 (next page).

Exhibit 19. Covariance and Joint Probability
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Theoretically, correlation can range from –1.00 to +1.00. But for binomial events like default, the
range of possible default correlations is dictated by the default probabilities of the two credits. With
10% probability of default for both credits, the possible range of default correlation is reduced to
the range from –0.11 to +1.00. If both credits do not have the same default probability, they can
not have +1.00 default correlation. Only if the default probability of both credits were 50% would
it be mathematically possible for default correlation to range fully from –1.00 to +1.00. Exhibit 21
(below) shows the relationship between default correlation and joint default probability when the
individual default probability of both credits is 50%, when the individual default probability of both
credits is 10%, and when the individual default probabilities of credits are 10% and 50%,
respectively.6

Exhibit 20. Default Correlation and Joint Default Probability
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Exhibit 21. Default Corre la tion, Joint Default Probability and 
Underlying Default Probability
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6 These restrictions on the range of default correlation are a surprise to people used to dealing with the
correlation of continuous variables. In fact, we’ve seen mistakes made on this point by people and firms that
hold themselves out to be experts in default correlation, even among those who cite our 1995 paper as a
reference.
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Note that as described, default correlation in the case where the default probability of both credits
is 50% ranges from +1 to -1. Also, note the slope of the lines. The same increase in default
correlation has a bigger effect on the joint probability of default when individual default probabilities
are 50% than when individual default probabilities are 10%, or 10% and 50%.

We will see in Appendix II that Equation 5 allows us to calculate historic default correlations from
empirical default data. Rearranging Equation 5 to solve for the joint probability of default, we have
a formula that will allow us to calculate the joint default probability of A and B given their individual
probabilities of default and their default correlation.

P(A and B)  =
Correlation(A and B) * {P(A) * [1-P(A)]}1/2  * {P(B) * [1-P(B)]}1/2 + P(A) * P(B)        (6)

Default Correlation in a Ménage à Trois
As this point, readers who are familiar with the concept of correlation for continuous variables like
stock returns or interest rates are apt to find some surprises. Perhaps you are used to looking at
portfolio risk in the context of Harry Markowitz’s portfolio theory and covariance-variance
matrixes.7  In that framework, if you know the standard deviation of each variable, and the correlation
of each pair of variables, you can explain the behavior of the entire portfolio. Not so with a
binomial variable like default. We illustrate the difference in this section.

Instead of the two credit world we have been focused on, let’s suppose we have three credits, A,
B, and C, each with a 10% probability of default. Let us suppose that the default correlation
between each pair of credits is 0.00. As we have discussed before, around Exhibit 14, this means
that the joint default probability between each pair of credits is 1%. We illustrate this situation in
Exhibit 22 (below).

1% 1%

           A      B            B      C

1%

           A      C

Exhibit 22. Pairwise Joint Default Probabilities

7 H.M. Markowitz, “Portfolio Selection,” Journal of Finance, March 1952. But really any introductory
finance text.
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Now we are eager to understand the behavior of all three credits together. We seem to have a lot
of information: each credit’s default probability and the default correlation between each pair of
credits. What does this tell us about how defaults will occur among all three credits? Not much, it
turns out. Exhibit 23 and 24 show the extremes of possible outcomes. (Note the switch from
circles to rectangles and ovals in these Venn diagrams to show the overlapping probabilities clearly.)
In Exhibit 23, whenever two credits default, the third credit joins them in default. This sounds like
positive default correlation: if you know that any two credits have defaulted, your estimate of the
probability of the third credit defaulting is 100%. But it occurs while all pairwise default correlations
are zero.

In Exhibit 23 (above), there is no situation where only two credits default. Exhibit 25 shows the
probabilities of all possible default outcomes under the heading “Positive Three-Way Default
Correlation.”  There is a 1% probability that all three credits default, 0% probability that two
credits default, 27% probability that one credit will default and 72% probability that no credits will
default.

In Exhibit 24 (below), in contrast, there is no situation where all three credits default. In this case,
if you know that two credits have defaulted, you are sure that the third will not default. Exhibit 25
(next page) shows the probabilities of all possible default outcomes under the heading “Negative
Three-Way Default Correlation.”  There is a 0% probability that all three credits default, 3%

probability that two
credits default, 24%
probability that one credit
will default and 73%
probability that no credits
will default.

Note that the expected
number of defaults in each
three-way correlation
scenario is the same. In the
positive three-way
correlation scenario, the

A B

C

Exhibit 23. Zero Pairwise and Positive Three-Way Default Correlation

A     B

  C

Exhibit 24. Zero Pairwise and Negative Three-Way Default Correlation
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expected number of defaults in the portfolio is 27% * 1 + 1% * 3 or 0.3. In the negative three-way
correlation scenario, the expected number of defaults in the portfolio is 24% * 1 + 3% * 2 or also
0.3. Note also that the probability of any two pairs of credits defaulting at the same time is 1%. In
the negative three-way correlation scenario, defaults of pairs AB, BC, and AC each have a 1%
chance of occurring, which adds up to a 3% chance of two credits defaulting. In the positive three-
way correlation scenario, the probability of all three credits defaulting at the same time is 1%. This
also means that defaults of pairs AB, BC, and AC each have a 1% chance of occurring. This is
proof that pairwise default correlation is 0.00. But the sad truth of the matter, for those who
thought differently, is that knowing pairwise default correlations does not tell you everything you
would like to know about the behavior of this three credit portfolio. This is in direct contradiction

to the experience many people have had with continuous variables.8

Pairwise and Three-Way Default Correlation in Nth to Default
Swaps
In Exhibit 26 (below) we address pairwise and three-way default correlation in the context
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8 This is a point we have never seen mentioned outside our 1995 paper.

 



 

UBS Warburg  CDO INSIGHT    

26PageMAY 30, 2003

of a 1st to default swap on three underlying credits. We assume each credit has a 5% default
probability.

In the exhibit, we show the probability of at least one credit defaulting in the reference portfolio as
pairwise default correlation increases from -.0.05 to 1.00 under two different assumptions about
three-way correlation. The first is that three-way default correlation is as low as it can be, consistent
with pairwise correlation. The second is that three-way default correlation is as high as it can be,
again consistent with pairwise correlation.

It turns out that three-way default correlation makes a little bit of a difference in 1st to default risk,
especially as pairwise default correlation increases. The probability that at least one credit will
default is always greater when three-way default correlation is high. The biggest difference, 2.5%,
comes when pairwise default correlation is 0.47. The effect of high three-way default correlation is
to increase the probability that at least one reference credit will default. But wait, way back around
Exhibit 10 we said that higher correlation reduces 1st to default risk, the probability that at least one
credit will default. Exhibit 27 (above) shows what is going on.

When pairwise default correlation is 0.47 and three-way default correlation is –0.04, the probability
of two defaults is 7.44% and the probability of three defaults is zero. What is happening here is that
defaulting pairs of credits AB, BC, and AC each have a 2.48% default probability. When three-
way default correlation is 0.70, all those defaulting pairs are scrunched into a sort of default ménage
à trois ABC. To compensate for the loss of overall defaults, the probability of a single default
increases. The situation is identical to that pictured in Exhibits 23 and 24.

We said without explanation that in creating Exhibit 26 we picked three-way correlation to be as
high or as low as it can be “consistent with pairwise correlation.”  This bears some explanation.
Given a particular pairwise correlation value, the range of three-way correlation is restricted. For
example, if pairwise correlation is 0.00, three-way correlation can range from –0.01 to 0.22. If
pairwise correlation is 1.00, three-way correlation can only be 1.00. Exhibit 28 (next page) shows
the range of three-way default correlation versus pairwise default correlation.

Around Exhibit 11 we said that default correlation made more of a difference in 2nd to default
swaps and now is the time to see whether this holds true for three-way correlation. Exhibit 29 (next
page) shows the probability of two or more defaults out of three reference credits given that each
reference credit has a 5% probability of default. Three-way default correlation makes a great deal
of difference in 2nd to default risk.

Three-Way Default 
Correlation = -0.04

Three-Way Default 
Correlation = 0.70

Probability of 0 Defaults 92.45% 89.97%
Probability of 1 Defaults 0.11% 7.55%
Probability of 2 Defaults 7.44% 0.00%
Probability of 3 Defaults 0.00% 2.48%
Probability of 1 or More Defaults 7.55% 10.03%

Exhibit 27. Effect of Three-Way Default Correlation, 
Given Pairwise Default Correlation = +0.47
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Default Correlation in a Crowd
We wanted to make sure that higher orders of default correlation were also important for large
portfolios. So we considered a 100-credit portfolio where each credit has a 10% probability of
default. We computed the probabilities of zero to 100 credits defaulting under three correlation
scenarios:

• zero pairwise default correlation and zero higher correlations;

Exhibit 28. Possible Range of Three-Way Default Correlation
Given Pairwise Default Correla tion
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Exhibit 29. Pairwise and Three-Way Default Correlation in a 2nd to Default 
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• zero pairwise default correlation and maximum negative higher correlations;
• zero pairwise default correlation and maximum positive higher correlations.

The results are shown in Exhibit 30 (above) and show the extreme distribution of the positive
higher correlation portfolio and the very stable distribution of the negative higher correlation portfolio
relative to the zero higher correlation portfolio. Again, our conclusion is that pairwise default
correlations do not give us all the information we need to understand the behavior of a portfolio.

Intuitively, increasing higher-level default correlation seems logical. Assuming that positive pairwise
default correlation exists, the first default in the portfolio will cause us to revise our estimation of
the default probability of remaining credits in the portfolio upwards. It seems logical that if a
second credit defaults, we would want to again revise our estimation of the default probabilities of
remaining credits upwards. This is the effect of higher order positive default correlation. As more
and more credits default, we think it more likely that remaining credits will also default.

Appendix II. Empirical Default Correlations and Their
Problems

With enough data, and some assumptions, we can calculate historic default correlations. These
correlations might be useful in predicting the performance of portfolios. We are first going to show
how these calculations are made, and then circle around in the next section to discuss the
appropriateness of the underlying assumptions that go into calculating them. We go back to Equation
5, which we derived in Appendix I and show again here:

Exhibit 30. Default Probabilities in a  100 Credit Portfolio
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Correlation(A and B)  =  P(A and B) – P(A) * P(B) (5)
           {P(A) * [1-P(A)]}1/2  * {P(B) * [1-P(B)]}1/2

To compute, say, the default correlation of two B-rated companies over one year, we set P(A)
and P(B) equal to the historic one-year default rate for B-rated companies. The remaining variable
on the right side of Equation 5 is the joint probability of default, P(A and B). We compute P(A and
B) by first counting the number of companies rated B at the beginning of a year that subsequently
defaulted over that particular year. We then calculate all possible pairs of such defaulting B-rated
companies. If X is the number of B-rated companies defaulting in a year, the possible pairs are
[X * (X –1)]/2.

We next calculate all possible pairs of B-rated companies, whether or not they defaulted, using the
same formula, [Y * (Y –1)]/2, where Y is the number of B-rated companies available to default.
The joint default probability of B-rated companies in a particular year is:

[X * (X – 1)] / 2
[Y * (Y – 1)] / 2

The average of this statistic is taken over available years in the dataset. Having all the terms on the
right hand of Equation 5, we can solve for the default correlation between Credits A and B. In a
similar manner, it is possible to calculate default correlations over longer periods and between
groups of credits of different ratings, for example the default correlation between Aa and Ba
credits over five years.

In our 1995 paper on default correlation9, we computed default correlations between all
combinations of Moody’s rating categories for time periods from one to ten years. The data we
used included 24 years of default data covering the years 1970 through 1993, including industrial
companies, utilities, financial institutions, sovereign issuers, and structured finance entities. To our
knowledge, an update of the historic default correlations presented in that paper has never been
published, so we reproduce our old results in Exhibits 31A (page 30) and B (page 31).
Our conclusions from studying the results in Exhibit 31A and B are:

• default correlations increase as ratings decrease;
• default correlations initially increase with time and then decreases with time.

We guess that default correlation increases as rating decreases because lower-rated companies
are relatively more susceptible to problems in the general economy while higher-rated companies
are relatively more susceptible to company-specific problems. Low-rated companies, being closer
to default already, are more likely to be pushed into default because of an economic downturn. As

9 “Default Correlation and Credit Analysis,” Journal of Fixed Income, March 1995.
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economic conditions affect all low-rated credits simultaneously, defaults among these credits are
likely to be correlated. In contrast, defaults of highly-rated companies, besides being rare, are
typically the result of company-specific problems. As these problems are by definition isolated to
individual credits, they do not produce default correlation.

With respect to default correlation increasing and then decreasing with the time period studied, we
note that default correlations peak at five and six year periods for rating pairs Baa/Ba, Baa/B, Ba/
Ba, and Ba/B. However, default correlations peak at nine years for rating pairs A/B and B/B.

Aaa Aa A Baa Ba B
One-Year Default Correaltions * 100
Aaa 0
Aa 0 0
A 0 0 0
Baa 0 0 0 0
Ba 0 0 0 0 2
B 0 1 0 1 4 7
Two-Year Default Correaltions * 100
Aaa 0
Aa 0 0
A 0 0 0
Baa 0 0 0 0
Ba 0 1 1 1 6
B 0 1 1 2 10 16
Three-Year Default Correaltions * 100
Aaa 0
Aa 0 0
A 0 1 1
Baa 0 0 0 0
Ba 0 2 2 1 9
B 0 2 3 3 17 22
Four-Year Default Correaltions * 100
Aaa 0
Aa 0 0
A 0 1 1
Baa 0 1 1 0
Ba 0 2 3 3 13
B 0 2 4 5 22 27
Five-Year Default Correaltions * 100
Aaa 0
Aa 0 0
A 0 1 1
Baa 0 1 1 0
Ba 0 3 4 3 15
B 0 4 6 7 25 29

Exhibit 31A. Historic Default Correlations
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We note that over arbitrarily short time periods, defaults are necessarily uncorrelated. Imagine a
database whose column headings are the names of credits and whose rows represent time intervals,
perhaps four-year intervals. The entry in a particular cell is 1 if the credit defaulted in that time
interval and 0 otherwise. Ones in the same row indicate that credits defaulted together in that time
interval and indicate the presence of positive default correlation. But if a shorter time period is
used, fewer ones will appear in the same row, lowering perceived default correlation. At some
arbitrarily short period of time, no more than one 1 will appear in a row and there will be no
evidence of positive default correlation.

The decrease in default correlation that occurs in most rating categories over longer time periods
may be caused by the relationship of the time period being studied to the average business cycle.

Aaa Aa A Baa Ba B
Six-Year Default Correaltions * 100
Aaa 0
Aa 1 1
A 1 1 1
Baa 0 1 1 0
Ba 1 3 4 3 15
B 1 4 7 7 25 29
Seven-Year Default Correaltions * 100
Aaa 0
Aa 1 0
A 1 1 2
Baa 0 1 1 0
Ba 2 2 4 3 13
B 3 3 9 8 24 30
Eight-Year Default Correaltions * 100
Aaa 1
Aa 1 0
A 1 1 2
Baa 1 1 1 0
Ba 3 3 5 2 10
B 6 5 11 7 23 37
Nine-Year Default Correaltions * 100
Aaa 1
Aa 1 0
A 2 1 2
Baa 2 1 1 0
Ba 4 3 5 2 8
B 8 6 12 6 20 39
Ten-Year Default Correaltions * 100
Aaa 1
Aa 2 1
A 2 2 2
Baa 2 1 1 0
Ba 4 3 4 2 8
B 9 8 9 6 17 38

Exhibit 31B. Historic Default Correlations
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If the time period studied covers the entire ebb and flow of the business cycle, defaults caused by
general economic conditions average out over the period, thus lowering default correlation. We
think that default correlation is maximized when the time period tested most closely approximates
the length of an economic recession or expansion.

Just as the pairwise default correlations in Exhibit 31 can be calculated, so too can higher order
default correlations. But rather than work out the mathematics of how this would be done, we
instead turn to a discussion of the reliability of empirically-observed default correlations.

Problems with Historical Default Correlations
Implicit in the previous section on empirical default correlation is the idea that wide swings
in default rates are an indicative of positive default correlation while small swings or steady
default rates are indicative of low or even negative default correlation. We illustrate this
concept explicitly in Exhibit 32 (above).

Exhibit 32 depicts simulated default rates for three 100-credit portfolios assuming 10%
default probability for each credit and pairwise default correlations of -0.01, 0.00, and 0.04,
respectively. The red line, steady at exactly 10%, is produced with perfect negative default
correlation, in this case –0.01. The green line that ranges between 3% and 16% was produced
with 0.00 default correlation. Finally, the most volatile series, the blue line, which varies between
0% and 23%, was produced with default correlation of 0.04. This shows that a little bit of default
correlation can cause great swings in default probabilities.

There is, however, an alternative interpretation of the positive default correlation series. Instead of
defaults being correlated, it could be the fact that default probability changes over time. For example,
the 23% default rate in 1976 could have been the result of the true probability of default increasing,

Exhibit 32. Simulated Annual Default Rates Under
Different Default Correlations
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for some reason,
into the low 20s.
Given that revised
default probability,
defaults in 1976
might have been
zero correlated.10

This simple and
plausible story
about fluctuating
d e f a u l t
probabilities puts
into question all the
work deriving
empirical default

correlations by rating category done in the previous section. In fact, it puts into question all
consideration of default correlation. We cannot be sure whether the variability in default rates from
year to year or over longer periods is due to default correlation or changing default probability.

Pragmatic scrutiny of credit ratings and the credit rating process suggests to us that ratings are
more relative than absolute measures of default probability and that default probabilities for
different rating categories change year-to-year. It is a hard enough job to arrange credits in an
industry in order of credit quality. It seems to us very difficult to assess credit quality against an
absolute measure like default probability and then calibrate these measures across different
industries. In fact, the rating agencies themselves say that ratings are relative measures of credit
quality.11

If ratings are relative measures of credit quality, or if for any reason the probabilities of default for
different rating categories change over time, this would mean that the historically-derived default
correlations presented in Exhibit 31 overstate true default correlation. But they are already low to
begin with, especially in the Baa and A rating categories and over three to five year periods that
correspond to the terms of most nth to default swaps.

Here’s another perspective on the interaction between default probability and default correlation.
In Exhibit 33 (above), we have rearranged the annual default rates of the positively correlated
series in Exhibit 32 so that the default rates are in strict order from lowest to highest. In our
calculation of default correlation, the order of default rates does not make a difference to default
correlation. This series would still have default correlation of 0.04.

10 Way back in Exhibit 7, we showed the variability in annual corporate default rates since 1920 and we said
that variability was evidence of default correlation. But it also seems logical that credit analysts in 1934 and
1952 would have had vastly different expectations of annual defaults.
11 Jerome Fons, Richard Cantor, and Christopher Mahoney, Understanding Moody’s Corporate Bond
Ratings and Rating Process, Moody’s Investors Service, May 2002.

Exhibit 33. Time Correlated Default Rates
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Over the time period, it is true that the average annual default rate is 10%. But who, looking at this
time series, could not think up a simple rule to better explain and predict default rates: defaults next
year will be what they were last year. Yet, our method of calculating default correlation would not
pick up the “memory,” or time series correlation, of default rates.

A final confounding issue regarding empirical default correlation is the possibility that default
correlation itself can vary. It could be the case that two different default correlations exist among
assets depending upon whether the economy is in “normal” or “crisis” times. In crisis times, default
correlation might take on more extreme values. Then the problem of measuring and using default
correlation to predict default distributions becomes even harder as one struggles to identify the
probabilities of normal and crisis times and the default correlation in each condition.♦
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