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Abstract

This paper proposes and implements an equilibrium valuation framework for weather deriv-
atives. We generalize the Lucas model of 1978 to include the weather as a fundamental variable
in the economy. The model is specialized to temperature derivatives. Temperature behavior for
the period of 1979-1989 is closely studied for ¯ve major cities in the U.S., and a model is pro-
posed for the daily temperature variable which incorporates all the key properties of temperature
behavior including seasonal cycles and uneven variations throughout the year. The temperature
variable a®ects the aggregate output both contemporaneously and in a lagged fashion. The tem-
perature system is estimated using the 20-year data and numerical analyses are performed for
forward and option contracts on heating degree days (HDD's) and cooling degree days (CDD's).
The key advantages of our model include the use of weather forecasts as inputs and the ability
to handle contracts of any maturity, for any season. Numerical analyses show that the market
price of risk associated with the temperature variable is insigni¯cant in most cases, especially
when the aggregate dividend process exhibits mean reversion. The market price of risk becomes
important when the risk aversion is high or when the aggregate dividend process is close to
a random walk. Finally, we show that the so-called historical simulation method can lead to
signi¯cant pricing errors due to its erroneous implicit assumptions.
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Equilibrium Valuation of Weather Derivatives

Abstract

This paper proposes and implements an equilibrium valuation framework for weather deriva-

tives. We generalize the Lucas model of 1978 to include the weather as a fundamental variable in

the economy. The model is specialized to temperature derivatives. Temperature behavior for the

period of 1979-1989 is closely studied for ¯ve major cities in the U.S., and a model is proposed for

the daily temperature variable which incorporates all the key properties of temperature behavior

including seasonal cycles and uneven variations throughout the year. The temperature variable

a®ects the aggregate output both contemporaneously and in a lagged fashion. The temperature

system is estimated using the 20-year data and numerical analyses are performed for forward and

option contracts on heating degree days (HDD's) and cooling degree days (CDD's). The key advan-

tages of our model include the use of weather forecasts as inputs and the ability to handle contracts

of any maturity, for any season. Numerical analyses show that the market price of risk associated

with the temperature variable is insigni¯cant in most cases, especially when the aggregate dividend

process exhibits mean reversion. The market price of risk becomes important when the risk aversion

is high or when the aggregate dividend process is close to a random walk. Finally, we show that

the so-called historical simulation method can lead to signi¯cant pricing errors due to its erroneous

implicit assumptions.
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1. Introduction

It is estimated that about $ 1 trillion of the $ 7 trillion U.S. economy is weather sensitive (Challis

1999 and Hanley 1999). Weather conditions directly a®ect agricultural outputs and the demand

for energy products, and indirectly a®ect retail businesses. For instance, the inventory of winter

coats at a department store depends on weather forecast for the coming winter and the eventual

sales depend on the actual weather condition (Agins and Kranhold, 1999). Likewise, earnings in

the power industry depend on the retail prices and the sales quantities of electricity. Although

weather conditions may not directly determine the retail price of electricity, it is certainly one of

the most important factors a®ecting the demand. Until 1997, earnings stabilization for utility ¯rms

was primarily achieved through price hedging mechanisms while volumetric risks were largely left

unhedged. However, increasing competition due to ongoing deregulations has made it necessary for

companies to hedge the volumetric risk caused by unexpected weather conditions. Such needs have

created a new family of over-the-counter weather derivatives. Meantime, the Chicago Mercantile

Exchange has introduced futures contracts on the temperature of many U.S. cities. Recently,

the London International Financial Futures and Options Exchange (Li®e) and internet companies

Wire and Intelligent Financial Systems have joined forces to create a web-based service aimed at

establishing trading of European weather derivatives on the internet (Risk, March 2000).

The underlying variables for weather contracts include temperature, rainfall, snowfall and

humidity.1 However, the most commonly contracted weather variable in the ¯nancial industry

is temperature. Speci¯cally, most contracts are written on the so-called heating degree day (HDD)

1For a complete survery, see Hanley (1999).
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and cooling degree day (CDD) de¯ned on daily average temperatures. The daily average tempera-

ture, in turn, is the arithmetic average of the maximum and minimum temperature recorded on a

midnight-to-midnight basis. The precise expressions of HDD and CDD are de¯ned below:

Daily HDD = max(65 degree Fahrenheit - daily average temperature, 0);

Daily CDD = max(daily average temperature - 65 degree Fahrenheit, 0).

To simplify the language in the text, we refer to the daily average temperature as daily temperature.

Intuitively, HDD measures the coldness of the day compared to a benchmark of 65 Fahrenheit for

the winter season while CDD measures the extent to which a summer day is hot. For a typical

Northern or Midwest city, an HDD season includes winter months from November to March and

the CDD season (or summer season) from May to September. April and October are commonly

referred to as the shoulder months.

Because of the high correlation between the electricity consumption and HDD/CDD, most

contracts are written on the accumulation of HDD or CDD over a certain period (e.g., a calendar

month or a season) so that one contract can be used to hedge a particular period. The popular

transactions in the OTC market include HDD / CDD swaps and options for large cities like Atlanta,

Chicago, Dallas, New York and Philadelphia. 2 The swap contracts or forward contracts are similar

to the exchange-traded futures contracts. There are four basic elements in these contracts: (i) the

underlying variable: HDD or CDD; (ii) the accumulation period: a season or a calendar month;

(iii) a speci¯c weather station reporting daily temperatures for a particular city; and (iv) the tick

size: the dollar amount attached to each HDD or CDD. Table 1 presents the typical transactions

of an HDD swap (or forward) for New York and a CDD option for Chicago. In the New York HDD

swap, the tick size is set at $5,000 per HDD. XYZ Co. agrees to pay ABC Co. a ¯xed rate of

2See Smithson and Choe (1999) for a brief survey of the market.
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1,000 HDD and in return for a °oating rate which is the actual accumulated HDD during January,

1999. The realized HDD for January, 1999 is 956. Then the payo® for XYZ Co. at maturity is

$5000 £ (956 ¡ 1000) = ¡$220; 000: Similarly, the Chicago CDD option has a tick size of $5,000

and a strike level of 190 CDD. The actual accumulated CDD in June, 1999 is 196, which is higher

than the strike level. Thus, xyz Co. would exercise the call option at maturity and receive a payo®

of $5; 000 £ (196 ¡ 190) = $30; 000. These contracts can be used by a power generation company

to hedge against revenue losses due to abnormal temperatures.

Table 1: Examples of HDD- and CDD-based Swap and Option

HDD Swap (or Forward) CDD Call Option

Location La Guardia Airport, New York O'Hare Airport, Chicago
Buyer YYY Co. (paying ¯xed rate) xyz Co. (paying call premium)
Seller AAA Co. (paying °oating rate) abc Co.
Accumulation
Period

January 1 - 31, 1999 June 1 - 30, 1999

Tick Size $5,000 per HDD $5,000 per CDD
Fixed Rate 1,000 HDD
Strike Level 190 CDD

Floating Rate
the actual HDD
for January, 1999

= 956 HDD

Settlement Price
the actual CDD
for June, 1999

= 196 CDD

Payo®s at Maturity
for the Buyer

(956 ¡ 1000) £ 5000 = ¡$220; 000 (196 ¡ 190) £ 5000 = $30; 000

Despite the rapid growth of weather derivatives, the bid / ask spread is still very large and there

is not yet an e®ective pricing method. In addition, some key questions are yet to be answered.

For example, insofar as weather variables are not tradeable, is the market price of risk a signi¯cant

factor in valuations?
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The objective of this paper is four-fold. First, we will propose a general equilibrium model to

price weather derivatives, and we specialize it to temperature derivatives. Second, we will present

a realistic model for the dynamics of the daily average temperature, which is very di®erent from

that of a security price. For example, temperatures are seasonal and cyclical, can be predicted

with reasonable accuracy for the very near future, and will vary within a well-de¯ned range in

the long run. Third, we would like to establish whether the market price of risk associated with

the temperature variable signi¯cantly a®ects the valuation of weather derivatives. Fourth, we

will develop a pricing framework for derivatives based on the accumulated HDD or CDD. Here,

challenges arise because the underlying is the accumulation of the daily HDD/CDD which are

non-linear in daily temperatures.

The key contributions of this paper lie in the accomplishments of the aforementioned objectives.

First, we extend Lucas' (1978) equilibrium asset-pricing model where fundamental uncertainties in

the economy are generated by aggregate dividend and a state variable representing the weather

condition. When specialized to temperature derivatives, it is shown that the equilibrium deriva-

tive prices depend on the agent's risk preference and the correlations, both contemporaneous and

lagged, between the temperature variable and the aggregate dividend. Second, we propose an

auto-regressive, mean-reverting dynamic system for the daily temperature. This system is capable

of capturing the seasonality and the global warming trend and can incorporate weather forecast.

We use Maximum Likelihood method to estimate the temperature dynamics for Atlanta, Chicago,

Dallas, New York and Philadelphia. Lastly, based on the estimated parameters, we simulate deriv-

ative prices and analyze in an equilibrium framework the market price of risk associated with the

temperature variable. We attempt to answer an important question: is it valid to ignore the market
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price of risk when pricing weather derivatives, as the industry commonly does?

The paper is organized as follows. Section 2 contains the general setup of the economy. Section

3 specializes the setup to a constant relative risk aversion preference and an autoregressive tem-

perature variable. Section 4 sets out the formulas and key results for HDD and CDD contracts.

Estimations for the temperature process for ¯ve U.S. cities are presented in Section 5. Numerical

analyses with an emphasis on market price of risk are presented in Section 6. A brief summary and

concluding remarks are given in Section 7. Proofs and exhibits are collected in appendices.

2. The Setup of the Economy

In a discrete-setting, consider an extension of the Lucas (1978) pure exchange economy where

the fundamental uncertainties in the economy are driven by two state variables: the aggregate

dividend (±) and the weather condition (Y ). Aggregate dividends can be viewed as aggregate

outputs or dividends on the market portfolio; the weather variable could be temperature, rainfall,

snowfall, or humidity. The dynamics governing the aggregate dividend and the weather variable are

exogenous processes on a given probability space (­, F , P). There is a representative investor whose

information structure is given by the ¯ltration Ft ´ ¾(±¿ ; Y¿ ; ¿ 2 (0; 1; 2; :::; t)). The agent has an

in¯nite lifetime horizon. In the ¯nancial market, the representative agent can trade a single risky

stock, pure discount bonds and a ¯nite number of other contingent claims at any time. The risky

stock can be viewed as the market portfolio. Therefore, its dividend stream f±tg is understood as

aggregate dividends in the economy. The total supply is normalized to one share and the contingent

claims are written on the risky stock, the pure discount bond or the weather variable. The net
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supply of all contingent claims and the riskless bond is zero.

The agent's preference is described by a smooth time-additive expected utility function

V (c) = E0

Ã 1X

t=0

U(ct; t)

!
; (2.1)

where U : R+ £ (0;1) ! R is smooth on (0;1) £ (0;1) and, for each t 2 (0; 1; 2; :::;1),

U(¢; t) : R+ ! R is increasing, strictly concave, and has a continuous derivative Uc(¢; t) on (0;1).

Initially, the agent is endowed with one share of the risky stock. Denote his portfolio holdings at

time t as µt = (µst ; µBt ; µx0t ), where µst ; µBt and µx0t represent the number of shares invested in the

risky stock, the discount bond and other contingent claims, respectively. Also denote the security

prices at time t by a vector Xt and the corresponding vector of dividends by Dt. The agent's

consumption over time is ¯nanced by a trading strategy fµt; t ¸ 0g. His decision problem is to

choose an optimal trading strategy so as to maximize his expected lifetime utility. The ¯rst order

conditions yield the standard Euler equation:

Xt = Et

Ã 1X

¿=t+1

Uc(c¿ ; ¿)

Uc(ct; t)
D¿

!
: (2.2)

Thus, the price of any security equals the sum of expected dividends, discounted at the stochastic

marginal rate of substitution.

In equilibrium, both the ¯nancial market and the goods market clear so that aggregate con-

sumption equals the dividends generated from the risky stock. Therefore, the time t price of a

contingent claim with a payo® qT at a future time T , denoted by Ct(t; T ), is

Ct(t; T ) =
1

Uc(±t; t)
Et (Uc(±T ; T)qT ) ; 8 t 2 (0; T ): (2.3)

In particular, at time t the equilibrium price of a riskless bond paying 1 unit of consumption goods
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at T and 0 at all other times, is

B(t; T) =
1

Uc(±t; t)
Et (Uc(±T ; T)) ; 8 t 2 (0; T ): (2.4)

Contingent claims based on a weather variable can be valued via (2.3) once the agent's preference,

the dividend process, and the weather variable process are speci¯ed. In the following, we will spe-

cialize the above setup to temperature related derivatives since they are by far the most commonly

traded products.

3. Valuation Framework for Temperature Derivatives

3.1. Dynamics of the Temperature Variable

3.1.1. Description of Temperature Behavior

To ensure accurate modeling of the temperature variable, we ¯rst examine its behavior. Historical

daily temperature data, covering the period from 1979 to 1998 (inclusive), for Atlanta, Chicago,

Dallas, New York and Philadelphia are obtained from the National Climate Data Center (NCDC),

a subsidiary of the National Oceanic Atmospheric Administration (NOAA). Exhibits 1 and 2 sum-

marize sample statistics and Exhibit 3 depicts the warming trend in Atlanta, which is typical of all

cities studied.3 The following remarks are in order.

Remark 1. The sample means of the two Southern cities (Atlanta and Dallas) are higher than

those of the three Northern counterparts. The highest and lowest sample means are 66 and 50 of

Dallas and Chicago, respectively.

3To simplify the analysis, we have omitted the observations for February 29 from the sample. Therefore, each year
consists of 365 days and the sample size for 20 years is 7300.
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Remark 2. Northern cities generally have larger standard deviations. Chicago has the highest

sample standard deviation (20 degrees), indicating large temperature swings. Atlanta has the

lowest sample standard deviation (15 degrees).

Remark 3. Correlations among the ¯ve cities are very high and are above 0.84. New York and

Philadelphia, the two nearest cities, present the highest correlation, 0.9853.

Remark 4. Daily temperatures exhibit strong auto-correlations.

Remark 5. Standard deviations of monthly CDD's for the two Southern cities are higher than

those of their Northern counterparts. The reserve is true for HDD standard deviations (Exhibit 2).

To facilitate further discussions, let us index the years in the sample period by yr, thus yr = 1

for 1979, yr = 2 for 1980, ..., yr = 20 for 1998. Also, index January 1 as t = 1 , January 2 as t = 2,

and so on for 365 days in a year. Denote Yyr;t as the temperature on date t in year yr. Below, we

de¯ne the mean (Y t) and the standard deviation (Ãt) for date t as

Y t = 1
20

P20
yr=1 Yyr;t & Ãt =

q
1
20

P20
yr=1

¡
Yyr;t ¡ Y t

¢2
; 8 t = 1; 2; :::; 365:

We plot in Exhibit 4 the daily standard deviations for Atlanta and Chicago, which show a clear

seasonal pattern: the temperature variation in the HDD season is larger than that in the CDD

season. This is common for all cities in consideration.

3.1.2. Modelling Daily Temperature Behavior

In light of the properties identi¯ed in the previous section, a model for the daily temperature must

possess the following features. First, it must capture the seasonal cyclical patterns; second, the daily

variations in temperature must be around some average \normal" temperature, to be elaborated
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on later; third, it should allow forecasts to play a key role in projecting temperature paths in the

future; fourth, it should incorporate the autoregressive property in temperature changes (i.e., a

warmer day is most likely to be followed by another warmer day, and vice versa); ¯fth, the extent

of variation must be bigger in the winter and smaller in the summer; sixth, a projected temperature

path into the future should not wander outside of the normal range of the temperature for each

projected point in time (for instance, it is unlikely for a summer day in Chicago to see a temperature

of -10 Fahrenheit).; and seventh, the model must re°ect the global warming trend.

Although a di®usion process, especially a mean-reverting process, is capable of accommodating

most of the required features, we decide against it for one key reason: a one-factor di®usion process

can not incorporate autocorrelations in temperature innovations, especially for lags beyond one.

In addition, with a Markov di®usion, there is a non-zero probability that a particular path of

temperatures does not resemble a temperature evolution at all (violating the sixth requirement).

For these reasons, we resort to a discrete, autoregressive model. To this end, de¯ne the de-meaned

and de-trended residual of the daily temperature as Uyr;t,

Uyr;t = Yyr;t ¡ bY yr;t; 8 yr = 1; 2; :::; 20 & t = 1; 2; :::; 365: (3.1)

Assumption 1. The daily temperature residual, Uyr;t, follows a k-lag autocorrelation system: 4

Uyr;t =
Pk
i=1 ½iUyr;t¡i + ¾yr;t ¤ »yr;t

¾yr;t = ¾0 ¡ ¾1 j sin(¼t=365 + Á) j;

»yr;t » i:i:d: N(0; 1);

8 yr = 1; 2; :::; 20; & t = 1; 2; :::; 365:

(3.2)

where »yr;t models the randomness in the temperature changes.

4We confess a slight abuse of notation here. Notice that at the beginning of year yr; we must use the data from
the end of the previous year, (yr ¡ 1) to calculate the auto-regressive terms. It is understood that the index yr will
automatically take appropriate values when required.
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In the above, the volatility speci¯cation using the sine wave re°ects the ¯fth requirement and

the feature in Exhibit 4. The parameter Á captures the proper starting point of the sine wave. The

autocorrelation setup re°ects the fourth feature. The other features (including the global warming

trend) are captured by the speci¯cation of bY t;which we delineate next.

The variable bY t serves the purpose of de-meaning and de-trending. Ideally, it should reside in

the middle of the band that contains temperature °uctuations. It is therefore tempting to use the

historical daily average, Y t as a proxy for bY t: But this will be a poor choice, because for a particular

year, all the realized temperatures could be below or above the historical averages, representing a

very cold or very warm year. This point is illustrated in Panel A of Exhibit 5 for New York. It is

seen that although the historical average Y t was more or less in the center of realized temperatures

before the winter months of 1980, it was well above the realized temperatures for the last part of

1980 and the early part of 1981. This suggests that we could use Y t as a starting point and make

some season speci¯c adjustments so that the eventual anchor points would be roughly in the middle

of the variation band.

We propose to adjust the historical average Y t in the following steps. 1) For each month of

the year, we calculate the average of the daily averages Y t; and there will be twelve such monthly

averages; 2) for each particular year, we calculate the realized, average temperature of each month;

3) for each month, we ¯nd the di®erence between the actual monthly average from Step 2 and

the average from Step 1; and 4) for each day of the month, we adjust the historical average Y t

by the quantity calculated in Step 3, and this adjusted average is bY yr;t and will be referred to as

the adjusted mean temperature. 5 To illustrate the adjustment mechanism, suppose our concern

5The period of one month is chosen as a trade-o®. Too long a period will not solve the non-centering problem and
too short a period will unnecessarily exaggerate the short term °uctuations and diminish the meaning of \average"

10



is March 1986, and suppose the mean of the average daily temperature for the month of March,

calculated from Step 1, happens to be 50 F. We now calculate the average of the 31 realized daily

temperatures for March 1986 and suppose it is 45F, which indicates a colder than normal March.

This is the average from Step 2. We then follow Step 3 to ¯nd the di®erence between the two

averages: 45 F - 50 F = -5 F. Finally, following Step 4, we adjust each of the historical average

temperature Y t for March by -5 F. Suppose the historical daily average temperatures for March 1,

2, 3, 4, ....., 31 are 48 F, 53 F, 50 F, 55 F, ......,60 F, then the adjusted mean averages for March

1, 2, 3, 4, ....., 31 of 1986 will be 43 F, 48 F, 45 F, 50 F, ......, 55 F. The bY yr;t will assume these

values for March 1986 in actual estimations. We postpone estimation details to Section 5. 6

3.2. Agent's Preference and Aggregate Dividend Behavior

For analytical tractability, the agent is assumed to have a constant relative risk aversion:

Assumption 2. The representative agent's period utility is described by

U(ct; t) = e¡½t
c°+1t

° + 1
; (3.3)

with the rate of time preference, ½ > 0 and the risk parameter ° 2 (¡1; 0]. 7

For the aggregate dividend process, we appeal to Marsh and Merton (1987), whose estimation

results suggest mean-reversion in the rate of aggregate dividend changes. Speci¯cally,

or \mean". Needless to say, one could get more sophisticated in making the adjustments. For instance, rather than
following the calendar months, one could always center the day in question in a 30 day (e.g.) period and make the
above adjustments on a rolling basis. But as shown in Panel B of Exhibit 5, the simple adjsutment already works
well.

6In the valuation context which by necessity is forward looking, bY yr;t can naturally be considered as daily tem-
perature forecasts. If the forecasts were of 100% accuracy, then weather derivatives won't exist since perfect planning
is achievable. In reality, it is precisely the uncertainty in the forecasts that drives the value of weather derivatives.
The random term in the temperature dynamic captures this uncertainty. Indeed, this is one of the key advantages of
our model: it allows forecasts and their uncertainties to be built into the valuation of derivatives.

7Hereinafter, for the consumption and dividend variables, we use the time subscript \t" in the usual way (i.e.
natural progression through time) without refering to a speci¯c year.
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Assumption 3. The aggregate dividend, ±t, evolves according to the following Markov process:

ln ±t = ® + ¹ ln ±t¡1 + ºt; 8 ¹ 6 1 (3.4)

where 1 ¡ ¹ measures mean reversion, and ºt is the error term and takes the following form

ºt = ¾²t + ¾[
'p

1 ¡ '2
»t + ´1»t¡1 + ´2»t¡2 + ´3»t¡3 + ::::: + ´m»t¡m]; 0 6 m 6 +1 (3.5)

In the above, ²t is an i.i.d. standard normal variable which captures the randomness due to

all factors other than the temperature; »t and its lagged terms are innovations of the temperature

variable as de¯ned in (3.2). By construction, the contemporaneous correlation between the dividend

process and the temperature process is ': The lagged terms capture the lagged e®ects of the

temperature on the aggregate dividend or output of the economy. By necessity and assumption,

Pm
j=1 ´2j (8 m) is bounded. When t represents a future time and when all the lags are beyond the

present time, the conditional variance of ºt is ¾2
h
1 + '2

1¡'2 +
Pm
j=1 ´2j

i
; which breaks down the

overall variation in the aggregate dividend into three parts: the part due to all factors other than

the temperature, ¾2; the part due to the contemporaneous impact of the temperature, ¾2 '2

1¡'2 ; and

the part due to lagged impact of the temperature, ¾2
Pm
j=1 ´2j : The correlation between the dividend

innovation at time t and the temperature innovation at time t¡j 8 j is ´j /
h
1 + '2

1¡'2 +
Pm
j=1 ´2j

i
:

When ' = 0 and ´j = 0;8 j; the dividend process is totally independent of the temperature

innovation.

The speci¯cations for the representative agent's preference in (3.3), the dividend process in (3.4)

and (3.5), and temperature dynamics in (3.1) and (3.2), together with the general pricing equation

in (2.3), will enable us to derive a value for any claim contingent upon the temperature variable.

In the next section, we will apply the framework to HDD / CDD derivatives. However, we will ¯rst
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state below a general result for the interest rates.

3.3. Term Structure of Interest Rates

Proposition 3.1. Under the CRRA utility in (3.3) and the dividend process in (3.4) and (3.5),

the price of a pure discount bond at time t with maturity T is

B(t; T ) = e¡½(T¡t) exp

µ
°¨(t; T ) +

1

2
°2§(t; T )

¶
(3.6)

where

for T ¡ t ¸ m + 1

¨(t; T) = ®
PT
i=t+1 ¹T¡i + (¹T¡t ¡ 1) ln ±t + ¹T¡t¡m¾

³Pm
i=1 ¹i¡1(

Pi
j=1 ´m¡j+1b»t¡i+j)

´

§(t; T ) = ¾2
³PT

i=t+1 ¹2(T¡i) + (
Pm
i=0 ´i¹

m¡i)2(
PT¡m
i=t+1 ¹2(T¡m¡i)) +

Pm¡1
i=0 (

Pi
j=0 ´j¹

i¡j)2
´

and

for T ¡ t · m

¨(t; T ) = ®
PT
i=t+1 ¹T¡i + (¹T¡t ¡ 1) ln ±t + ¾

³P¿
i=1 ¹¿¡i(

Pm
j=i ´j

b»t+i¡j)
´

§(t; T ) = ¾2
³PT

i=t+1 ¹2(T¡i) +
P¿¡1
i=0 (

Pi
j=0 ´j¹

i¡j)2
´

and b»t¡l (0 6 l 6 m) are the realized error terms for the temperature process.

The yield to maturity de¯ned via e¡R(t;T )(T¡t) = B(t; T) is

R(t; T ) = ¡ lnB(t; T )

T ¡ t
= ½ ¡ °¨(t; T ) + 1

2°
2§(t; T )

T ¡ t
: (3.7)

Proof: see Appendix A.

For the special case ¹ = 1 where changes in the dividend growth rate follow a random walk,

the terms ¨(t; T) and §(t; T ) reduce to

for T ¡ t ¸ m + 1

¨(t; T ) = ®(T ¡ t) + ¾
³Pm

i=1(
Pi
j=1 ´m¡j+1b»t¡i+j)

´

§(t; T ) = ¾2
³
T ¡ t + (

Pm
i=0 ´i)2(T ¡ t ¡ m) +

Pm¡1
i=0 (

Pi
j=0 ´j)2

´
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and
for T ¡ t · m

¨(t; T ) = ®(T ¡ t) + ¾
³P¿

i=1(
Pm
j=i ´j

b»t+i¡j)
´

§(t; T ) = ¾2
³
T ¡ t +

P¿¡1
i=0 (

Pi
j=0 ´j)

2
´

The parameters in the bond price formula must be collectively restricted so that the yield in (3.7)

is positive.

4. Valuing HDD / CDD Derivatives

4.1. Valuation of HDD / CDD Forward Contracts and Options

Consider an HDD forward contract with a tick size of $1 and delivery price, K. The accumulation

period starts at T1 and ends at T2 > T1. Denote HDD(T1; T2) =
PT2
¿=T1

max(65 ¡ Y¿ ; 0): 8 Then,

by (2.3) and (3.3), the value of the HDD forward contract at time t, fHDD(t; T1; T2;K), can be

expressed as

fHDD(t; T1; T2; K) = Et

³
Uc(±T2 ;T2)

Uc(±t;t)
[HDD(T1; T2) ¡ K]

´

= e¡½(T2¡t)Et

µ
±
°
T2

±°t
[HDD(T1; T2) ¡ K]

¶
:

(4.1)

By de¯nition, the forward price at time t, FHDD(t; T1; T2), is the value of K which makes f = 0:

That is,

FHDD(t; T1; T2) =
Et

³
±°T2HDD(T1; T2)

´

Et(±
°
T2

)
=

e¡½(T2¡t)±¡°t Et
³
±°T2HDD(T1; T2)

´

B(t; T2)
: (4.2)

Similar expressions can be derived for CDD contracts:

fCDD(t; T1; T2;K) = e¡½(T2¡t)Et

µ
±°T2
±°t

[CDD(T1; T2) ¡ K]

¶
;

FCDD(t; T1; T2) =
e¡½(T2¡t)±¡°t Et

³
±
°
T2
CDD(T1;T2)

´

B(t;T2)
:

(4.3)

8For brevity, we will drop the index \yr" for the temperature variable, Y . For example, Y¿ is understood as the
daily temperature of day ¿ for a particular year. For our simulations to be presented later, yr = 1999:
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Now consider a European option written on HDD(T1; T2) with maturity T2 and a strike price X.

Denote the call and put prices at time t as CHDD(t; T1; T2;X) and PHDD(t; T1; T2;X); respectively.

Again, by (2.3) and (3.3), the call and put values can be expressed as

CHDD(t; T1; T2; X) = e¡½(T2¡t)±¡°t Et
³
±
°
T2

max(HDD(T1; T2) ¡ X; 0)
´

; (4.4)

PHDD(t; T1; T2;X) = e¡½(T2¡t)±¡°t Et

³
±°T2 max(X ¡ HDD(T1; T2); 0)

´
: (4.5)

Similarly, call and put options written on CDD(T1; T2) can be priced as

CCDD(t; T1; T2;X) = e¡½(T2¡t)±¡°t Et
³
±°T2 max(CDD(T1; T2) ¡ X; 0)

´
; (4.6)

PCDD(t; T1; T2; X) = e¡½(T2¡t)±¡°t Et

³
±°T2 max(X ¡ CDD(T1; T2); 0)

´
: (4.7)

4.2. Market Price of Risk

Without further restrictions to the dividend and temperature processes, it is virtually impossible

to obtain closed-form solutions to the pricing formulas derived above. However, it is possible to

make some general statements about the relevance of market price of risk.

Proposition 4.1. The risk premium in the value of a derivative security is zero if the dividend

process and the temperature process are completely independent, i.e., ' = 0 and ´j = 0; 8 j: In

this case, any contingent claim can be valued by discounting its payo® at the risk-free rate.

Proof: combining (2.3), (2.4), and (3.3) by requiring ' = 0 and ´j = 0;8 j in (2.3) and (2.4)

leads to the result.

In certain special cases, it is possible to make some speci¯c statements about the market price

of risk for forward prices. Let's take the forward price for HDD in (4.2) as an example. The forward
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price can be re-written as

FHDD(t; T1; T2) =
Et

³
±°T2HDD(T1; T2)

´

Et(±
°
T2

)
= Et (HDD(T1; T2))+

Cov
³
±°T2; HDD(T1; T2)

´

Et(±
°
T2

)
; (4.8)

where cov(¢; ¢) stands for covariance. The ¯rst term represents the expected future spot value

of HDD, and the second term represents forward premium. Similar results can be obtained for

the CDD forward price. Clearly, (4.8) is consistent with Proposition 4.1. Realizing that HDD

(CDD) is negatively (positively) related to the temperature, we can easily summarize via (4.8) the

relationship between the forward prices and the future expected spot prices in the following table.

Table 2: Comparative Statics

' < 0; ´j 6 0;8 j ' > 0; ´j > 0;8 j

FHDD < Et (HDD(T1; T2)) FHDD > Et (HDD(T1; T2))

FCDD > Et (CDD(T1; T2)) FCDD < Et (CDD(T1; T2))

Further more, when the lagged correlations between the aggregate dividend and the tempera-

ture, and the autocorrelations in the tempertuare process are all zero (i.e., ´j = 0; 8 j and ½i = 0

8 i); it is possible to obtain closed form formulas for the forward prices.

Proposition 4.2. When ´j = 0;8 j and ½i = 0 8 i; the equilibrium forward prices at time t < T1

before the accumulation period are

FHDD(t; T1; T2) =
T2X

¿=T1

µ
[65 ¡ ¹0Y (¿)] ¢ N(

65 ¡ ¹0Y (¿)

¾yr;¿
) +

¾yr;¿p
2¼

exp

·
¡(65 ¡ ¹0Y (¿))2

2¾2yr;¿

¸¶
; (4.9)

FCDD(t; T1; T2) =
T2X

¿=T1

µ
[¹0Y (¿) ¡ 65] ¢ N(

¹0Y (¿) ¡ 65

¾yr;¿
) +

¾yr;¿p
2¼

exp

·
¡(65 ¡ ¹0Y (¿))2

2¾2yr;¿

¸¶
; (4.10)

with ¹0Y (¿) = bY ¿ + °'¹¿¡t¾=
p

1 ¡ '2¾yr;¿ :
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The equilibrium forward prices at time t 2 (T1; T2) during the accumulation period are

FHDD(t; T1; T2) = HDD(T1; t)+
T2X

¿=t+1

µ
[65 ¡ ¹0Y (¿)] ¢ N(

65 ¡ ¹0Y (¿)

¾yr;¿
) +

¾yr;¿p
2¼

exp

·
¡(65 ¡ ¹0Y (¿))2

2¾2yr;¿

¸¶
;

FCDD(t; T1; T2) = CDD(T1; t)+
T2X

¿=t+1

µ
[¹0Y (¿) ¡ 65] ¢ N(

¹0Y (¿) ¡ 65

¾yr;¿
) +

¾yr;¿p
2¼

exp

·
¡(65 ¡ ¹0Y (¿))2

2¾2yr;¿

¸¶
:

The equilibrium values of the forward contracts at time t are

fHDD(t; T1; T2;K) = B(t; T2)(FHDD(t; T1; T2) ¡ K) and

fCDD(t; T1; T2;K) = B(t; T2)(FCDD(t; T1; T2) ¡ K):

Proof: (see Appendix B).

Remark 6. The equilibrium value of an HDD/CDD forward contract in Proposition 4.2 is the

present value of the di®erence between the forward price and the delivery price discounted at the

riskfree rate, which is consistent with results for stock or currency forward contracts when interest

rates are non-stochastic.

It is seen from (4.9) and (4.10) that when ' = 0, the parameters pertaining to the dividend

process completely drops out, and it can be veri¯ed that the forward prices in this case are simply

the expected future spot prices:

FHDD(t; T1; T2) = Et(HDD(T1; T2)) and FCDD(t; T1T2) = Et(CDD(T1; T2)):

No risk premium is required. This corroborates the general prediction of Proposition 4.1.
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5. Empirical Estimation

The setup in Section 3 calls for joint estimation of the aggregate dividend and the daily temperature

processes. The aggregate dividend can be approximated by such macroeconomic variables as GNP

or aggregate consumption. Unfortunately, the frequency of such data is usually low (at most

monthly), making the joint estimation impossible since the temperature dynamic is daily. To get

around this di±culty, we will independently estimate the temperature process, and then perform

simulations for di®erent scenarios of risk aversion and dividend process parameters.

Let £ be the vector containing all the parameters (½1, ½2, ½3, ..., ½k; ¾0, ¾1, Á) pertaining to

the temperature process, then the log-likelihood function is

l(£;Y ) = ¡1

2

20X

yr=1

TX

t=1

Ã
[Yyr;t ¡ Eyr;t¡1(Yyr;t)]2

¾2yr;t
+ ln

¡
2¼¾2yr;t

¢
!

with

Eyr;t¡1(Yyr;t) = bY yr;t +
kX

i=1

½iUyr;t¡i; ¾yr;t = ¾0 ¡ ¾1 j sin(¼t=365 + Á) j;

8 yr = 1; 2; :::; 20; & t = 1; 2; :::; 365

Given the large sample size, the estimation variances can be computed based on the asymptotic

distribution of b£:

p
T (b£ ¡ £) ~ N [0; I(£)¡1] with I(£) ´ lim

T!1
¡E

µ
1

T

@2l(µ;Y )

@µ@µ0

¶
:

In order to determine k, the number of lags, we estimate the system sequentially for k =

1; 2; 3; :::, and perform maximum likelihood ratio tests (i.e. Â2 tests) along the way. We stop when

the maximum likelihood value ceases to improve. It turns out that three lags describe the data the

best. For brevity, we only report the estimation and testing results for k = 3, 4 in Exhibit 6.
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Several observations are in order. First, for k = 3; almost all parameters are estimated with

very low standard errors, implying the proper speci¯cation of the estimation system. This is by no

means a °uke since our speci¯cation is guided by the properties of the daily temperature. Second,

standard errors of the parameter ¾1 is very small, implying the appropriateness of using the sine

wave to ¯t the overall volatility structure. (When the system is estimated by specifying a constant

volatility throughout the year (i.e. ¾1 = 0), the likelihood value is much smaller.) Third, the ¯rst

order auto-regressive behavior tends to be stronger for Southern cities, and ½1 has the highest value

for Atlanta. Roughly, a stronger auto-correlation means less dramatic changes in temperature, and

vice versa. As shown in Exhibit 1, Atlanta does have the lowest overall standard deviation in the

sample period. Fourth, the parameter Á in the sine function is negative for all cities, indicating

that the coldest days in the winter tend to come after January 1. For example, Á = ¡0:2014 for

Chicago, which means that, on average, the coldest day is on January 23 (0.2014*365/¼ ' 23). 9

6. Numerical Analysis

6.1. Simulation Design

To begin with, we will require some general guidance on setting the parameter values for simulation

purposes. First, what value do we assume for ¹, the mean reversion parameter for the dividend

process? Shiller (1983) estimated ¹ to be 0.807. Marsh and Merton (1987), in a series of estimations,

estimated ¹ to be as high as 0.945. We will set ¹ = 0:9, roughly as a middle point. Sensitivity

analysis will be performed later for other values of ¹:

9It should be pointed out that, strictly speaking, using the so called mean adjusted average bY ¿ as inputs in the
estimation will lead to an over¯tting problem. However, since our primary objective is to estimate the volatility
and autoregressive behaviour of the residual, the potential over¯tting should not cause a fundamental problem. In

valuations which we will turn to next, bY ¿ are treated as forecasts.
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Second, how many lagged error terms to keep in (3.5)? We will simulate two cases, one with

only the contemporaneous correlation and the other with 90 lagged error terms. We will adopt a

simple geometric decay function for the coe±cients, ´j 8 j, to be discussed later.

Third, what value to assume for volatility, ¾? Given a structure of ´j and a contemporaneous

correlation ' which we will use as comparative static variable, we will set ¾ so that the overall

volatility of the dividend process, ¾
q

1 + '2

1¡'2 +
P90
j=1 ´2j ; is 20%, a magnitude similar to that of

a stock market index.

Fourth, what about the rate of time preference, ½? Since it is typically close to the real riskfree

interest rate, we will set it at 0.03.

Fifth, the risk aversion parameter, ° will also be used as a comparative static variable. Given

the choice of volatility parameters and a value for °, we will set the average dividend growth

rate ® and the initial dividend ±t according to (3.7) such that the riskfree interest rate or yield

is maintained at 6%. Keeping the same level of interest rate across di®erent scenarios will ensure

meaningful comparisons and analyses. Note that as long as the yield is ¯xed, the choices of the

combination of ® and ±t are not limited. We arbitrarily set ® at 7%, and solve for ±t: The results

are invariant to the combinations, due to the fact that only the ratio of the future dividend over

today's dividend matters in our valuations, and the fact that both ® and ±t only contribute to the

mean of the ratio. It is apparent from (3.6) and (3.7) that ¯xing the yield is equivalent to ¯xing

the mean of the ratio once other parameter values are given.

Finally, we must decide on the inputs for the weather forecasts bY yr;t. Since our primary objective

is to study the price behavior (as opposed to accurate valuation), we will simply use the historical
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daily average temperature Y t:
10

With the above in place, the simulation procedure can be summarized as: 1) generating bivariate

paths for the dividend process in (3.4) and (3.5), and the daily temperature process in (3.1) and

(3.2) (using the parameters in Exhibit 6 and k = 3); 2) tracking realized HDD/CDD values of each

path; 3) calculating the discounted payo® of the derivative security in question according to the

formulas in Section 4.1; and 4) repeating steps 1 through 3 a large number of times (i.e., 10,000)

and averaging the payo®s to obtain the desired derivative security value.

To reduce simulation errors, we employ the antithetic variable technique. In addition, we

also employ a procedure equivalent to the control variate technique. Notice that the fundamental

variable in our framework is the daily temperature, and the underlying variable for most weather

derivatives is HDD or CDD, which is a nonlinear function of daily temperatures. While our model

will produce almost \unbiased" temperature forecasts in that the average temperature for a future

point will be almost equal to the input forecast, it can not guarantee an unbiased forecast for

the HDD / CDD. To further illustrate this point, we compare some forward prices in Exhibit

7. The ¯rst column reports the average seasonal CDD and HDD for each city averaged across

the twenty years. The third column contains the CDD and HDD calculated from the average

daily temperatures. (The di®erence between the two columns is due to the di®erent sequence

of averaging.) The ¯fth column is the counterpart of Column 3 except that the inputs are the

adjusted daily average temperatures of the last season. Columns 2 and 4 report the simulated

forward CDD's and HDD's using the corresponding forecast inputs when the correlations, both

10We also tried the adjusted average temperature of 1998, bY 1998;t (t = 1; 2; :::) as forecasts. All conclusions remain
qualitatively the same.
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contemporaneous and lagged, between the dividend process and the temperature are set to zero. 11

Let us compare Column 2 with Column 3, and Column 4 with Column 5. Notice that the di®erence

in some cases is very small, almost entirely attributable to simulation errors; but in some other

cases, the di®erence is too big to be explained by simulation errors. The reason for the sizable

di®erences lies in the aforementioned fact that the simulated quantities are nonlinear functions of

the underlying variable. To ensure correct pricing, we perform a two-stage simulation for each value

estimate. In the ¯rst stage, we simulate forward prices by setting the correlation parameter and

the moving average coe±cients to zero (i.e., ' = 0; ´j = 0; 8 j); and record the di®erence between

the model price and the implied forward price from the forecasts (e.g., in Exhibit 7, when average

temperatures are used as forecasts, this is the di®erence between Column 2 and Column 3). Then,

in the second stage, we simulate the derivative security's price by setting the correlation parameter

back to its actual value. Here, before calculating the derivative's payo® for each path, we ¯rst

adjustment the realized CDD or HDD by the di®erence found in the ¯rst stage. In a nutshell, the

above procedure amounts to ensuring unbiased paths of the CDD and HDD which are underlying

variables for weather derivatives.

6.2. Temperature Derivative Prices and Market Price of Risk

For all subsequent simulations, we will examine four risk-aversion cases: ° = ¡0:5, ¡1:0, ¡2:0, and

¡4:0, in the order of increasing risk aversion. ° = ¡1:0 corresponds to log utility. Most empirical

studies indicate that ° ranges between zero and -2.0, although some recent studies suggest an even

higher risk aversion to accommodate the so-called equity premium puzzle.12 We include ° = ¡4:0 as

11To make the point clear, we set ¹ = 1:0 in the dividend process, which as a random walk produces a bigger
variation.
12See Mehra and Prescott (1985) for a brief survey of emirical studies on estimating the risk aversion parameter.
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a \high" risk aversion case. For each risk aversion scenario, we examine two correlation levels, each

of which can be positive or negative. Since qualitatively, HDD contracts are almost mirror image

of CDD contracts, for brevity, we will only report results for CDD contracts. In the next section,

we will ¯rst examine the simple case where the dividend process and the temperature process are

only contemporaneously correlated. We then introduce the lagged impact of the temperature on

the output. Throughout the discussions we will attempt to assess the importance of market price of

risk. (Recall that, ' = 0:0 and ´j = 0; 8 j amount to a zero market price of risk for the temperature

variable, irrespective of the risk-aversion level.)

6.2.1. Contemporaneous Correlations Only

Here, the two correlation levels are 0.15 and 0.25. Since the lagged the correlations are zero,

a contemporaneous correlation of 0.15 or 0.25 (positive or negative) means that about 2.3% or

6.3% of the total variance in output is due to the temperature variations. Exhibit 8 reports CDD

forward prices. Several observations are in order. First, since the forecast forward prices are simple

expectations corresponding to ' = 0 and ´j = 0;8 j, comparing the forecast forward prices with

those under di®erent values of ' con¯rms the predictions in Table 2. The percentage di®erences

are an indirect measure of the magnitude of the market price of risk, or risk premium of the

temperature variable. It is interesting to observe that the impact of the market price of risk is

insigni¯cant for all cases. The largest percentage price di®erence, -0.06%, is for Chicago when the

correlation is 0.25 and the risk aversion parameter is -4.0. Second, For a ¯xed correlation, a higher

risk aversion leads to a bigger risk premium, which makes intuitive sense. Third, other things being

equal, a stronger correlation leads to a bigger risk premium, which again makes intuitive sense.

(This and the previous observation will become more manifest in later cases.) Fourth, depending
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on the sign of the correlation, a higher risk-aversion may lead to a higher or lower forward price.

Speci¯cally, with a negative correlation '; a higher risk-aversion leads to a higher forward price,

and vice versa.13 The intuitive reason lies in the valuation equations in Section 4.1. Notice that

the future payo® is \discounted" back at a rate which is a function of certain ¯xed parameters and

the stochastic dividend ratio raised to the power of °: Since ° < 0 and since the average dividend

growth rate is positive (i.e. ® > 0), a higher dividend ratio leads to a smaller discount factor (i.e.

a lower present value), and vice versa. Now, with a negative correlation, a higher CDD ending

value is most likely accompanied by a lower dividend ratio, and a lower dividend ratio will lead

to a higher present value. The more negative is °, the more manifest the above e®ect, and hence

the pattern. Of course, this also explains why, under a particular risk-aversion parameter, the

relationship between the forward price and the correlation is negative.

Exhibit 9 contains CDD call and put option prices. We ¯rst explain the so-called historical

simulation prices. Some authors (e.g. Hunter, 1999) have discussed the use of historical simulation

in pricing weather derivatives. The idea is similar to the historical simulation used in some of the

VaR calculations. Speci¯cally, a derivative contract's payo® is calculated using realized, historical

underlying variable values, and the average payo® over a sample period (say 10 years) is taken as

the estimate of the derivative's value. In our case, it boils down to evaluating the payo® for each

of the twenty years and then averaging the payo®s to arrive at a value. (The discounting is done

using the 6% constant rate.) The strike price is set equal to the historical average CDD for each

city. It is seen that the call and put option values are equal for each city. This is expected since

the exercise price is set at the (realized) forward price level.

13In some cases the percentage di®erence is too small to retain the negative sign with two percetange decimal
places. But the absolute prices clearly show that the zero percentages have the right sign.
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For all other option values, the strike prices are in Column 3, which are the forecast forward

prices from the ¯rst column of Exhibit 8. The option prices in Column 4 are \risk neutral" option

values, calculated by setting the correlation to zero. As such they do not contain risk premiums.

The rest of the setup is the same as Exhibit 8.

The ¯rst observation is the signi¯cant di®erence between the historical simulation prices and

other simulated prices. To understand the reason, realize that in regular simulations, the overall

level of the temperature one year into the future is more or less contained by the forecasts, and

variations are around this overall level. But with historical simulations, we are implicitly assuming

that next year's temperatures can have extremely large variations, even in terms of the general

level; the very cool and the very hot summers in the past 20 years command the same probability

in realization. In reality however, meteorologists are at least able to forecast the general level

of temperatures (i.e. cool, normal or hot) for the next summer with some accuracy. Historical

simulations tend to exaggerate the impact of extreme realizations when the sample size is not

large, and in our case, we have only 20 observations for each season. This points out a serious

drawback of historical simulations used in pricing weather derivatives.

Another observation is that all the patterns associated with the forward prices when varying

parameter values apply to call options. 14 The opposite patterns apply to put options, which is

intuitive since the value of a put option is inversely related to the level of CDD. In fact, all the

explanations for the patterns in forward prices also apply to options. However, the percentage

di®erences are very di®erent in the two exhibits. While they are small in magnitude in both

exhibits, those for the options are many-fold larger than the forward percentage di®erences. The

14Notice that the percentages are calculated before the prices are rounded o®. This is why we sometimes observe
non-zero percentages, although the prices apear to be the same.
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marked di®erence in risk premium impacts between the two types of instruments is mainly due to

the nature of the payo®s: linear for forward contracts and non-linear for options.

The largest percentage di®erence in price, 1.28%, is observed for the combination of ° = ¡4:0

and ' = ¡0:25 for the city of Dallas. It means roughly that the CDD call option contains a risk

premium of 1.28% purely due to the market price of risk associated with the temperature variable.

By and large, it appears that the market price of risk is not a signi¯cant factor if the dividend and

temperature processes are only contemporaneously correlated.

6.2.2. Contemporaneous and Lagged Correlations

To fully assess the signi¯cance of risk premium, we now introduce lagged correlations. As stated

earlier, we examine 90 lags. We now need to specify the moving average coe±cients, ´j. For

simplicity, we assume a simple geometric decay. Speci¯cally, once the contemporaneous correlation,

' is set, we will calculate ´1 as q'; ´2 as q2'; ´3 as q3'; and so on with 0 < q < 1: The decay

factor q is chosen such that j´90j = jq90'j = 0:0001; a level arbitrarily chosen to signify the eventual

diminution of the lagged e®ect. With such a structure and recalling that the total variance of the

dividend growth is ¾2
h
1 + '2

1¡'2 +
P90
j=1 ´2j

i
; we could easily calculate the portion of the variance

attributable to the temperature variations:
'2

1¡'2+
P90
j=1 ´

2
j

1+ '2

1¡'2+
P90

j=1 ´
2
j

: Since 1/7th of the GNP is believed

to be weather sensitive, a rough guidance for the variance proportion is that it be smaller than

1/7 (i.e., 0.143). With this restriction, setting the number of lags is equivalent to setting the

contemporaneous correlation. Given m = 90, j'j = 0:25 would lead to a proportion of 0.284,

which is too high. In light of this, for subsequent simulations with lagged correlations, we will

examine two levels of j'j: 0.075 and 0.15, which correspond to a variance proportion of 0.04 and

0.13 respectively. It becomes apparent that there is no need to examine longer or shorter lags as
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long as the variance proportion attributable to the temperature is kept constant (e.g. at 0.13).

Lastly, without loss of generality, we set to zero the realized, lagged innovations of the temperature

process, b»t¡m = 0 (1 6 m 6 90).

Exhibits 10 and 11 are counterparts of Exhibits 8 and 9, with the lagged correlations. To

begin with, it is seen that the qualitative relations between forward / option prices and the model

parameters remain the same when lagged correlations are introduced. But there is a marked increase

in the impact of the temperature variable's risk premium. For forward prices, comparing Panel

A of Exhibit 8 with Panel B of Exhibit 10, we see that the percentage di®erences (between the

\risk-neutral" prices and the prices containing risk premiums) increase by many folds. Comparing

Panel A's in both exhibits, it is seen that, with lagged correlations, even a lower general level of

correlation (0.075) would lead to a bigger risk premium. Nonetheless, the risk premium in forward

prices is still negligible in that all percentage di®erences are within one per cent.

Very similar results are obtained for option prices, except that most of the percentage di®erences

are no longer negligible. For both correlation levels, as long as ° 6 ¡1, the percentage di®erences

are generally bigger than one per cent in absolute terms. With j'j = 0:15 and ° 6 ¡2; all option

values contain a risk premium of more than 3%. In those cases, the market price of risk for the

temperature variable can not be ignored. The common industry practice of discounting temperature

derivative payo®s at the riskfree rate is valid in an approximate sense only when the correlations,

both contemporaneous and lagged, are very low and / or the risk aversion of investors is low.

6.2.3. Other Scenarios

Increasing Lagged Correlations. So far, we have been assuming diminishing lagged correlations, i.e.,

the impact of contemporaneous temperature movements on the aggregate output is the strongest,
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and it diminishes over time. It may be intuitively argued (but need to be empirically veri¯ed) that

the impact takes a reverse order in the form of increasing lagged correlations. For example, if it

is extremely hot for the time being, then the impact of this abnormal temperature may only show

up later on. (The impact of temperature on crops is a clear example.) To assess the importance of

risk premium in this scenario, we repeat the calculations for Exhibits 10 and 11 by reversing the

order of the moving average coe±cients, ´j 8 j: For brevity, we only report the results for option

prices in Exhibit 12. Comparing Exhibit 12 with Exhibit 11, we observe that the percentage price

di®erences decrease slightly for Atlanta and Dallas, and increase slightly for Chicago, New York

and Philadelphia. Very similar results hold for forward prices. The reason is complex and lies in

the standard deviation pattern in Exhibit 4 and the mean reversion feature of the dividend process.

To facilitate understanding, we explain the logic in steps. 1) The size of the risk premium depends

on the covariance between the error terms of the dividend and temperature proccesses, as shown in

(4.8). 2) The terminal dividend level, ±T2 is a®ected by all error terms between t and T2; but only

those between T1 and T2 a®ect the covariance. 3) With mean reversion in the dividend process,

looking back from T2; more distant error terms exhibit less impacts (e.g., the factor in front of

the error term ºT1 in the ¯nal expression of ln±T2 is ¹(T2¡T1)). 4) It is apparent from Exhibit 4

that, for the last m = 90 day period up to T2 (which is the end of September), reversing the order

of ´j 8 j will lower the covariance, since the higher ´j 's are now associated with lower variances

for the temperature variable. 5) For all other days within the contract period T2 ¡ T1; the order

reversion of ´j 8 j will increase the covariance. To see this, let's look at ¹(T2¡m)ºT2¡m and ºT2, in

which form they enter the experssion of ln±T2 as error terms. Before reversing the order of ´j 8 j;

the temperature error term »T2¡m receives almost a zero weight in ºT2 (by design), but receive a
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non-zero weight of ´1¹
(T2¡m) in ºT2¡m. When we reverse the order, the weight in ºT2¡m is almost

zero, but the weight in ºT2 is ´1: Since j´1j > j´1¹(T2¡m)j; the net e®ect is to increase the covariance.

6) Extending the logic in 5) to other lagged terms within each º¿ (T1 6 ¿ 6 T2 ¡ m); we see that

the order reversion will increase the covriance for all days other than those between T2 ¡ m and

T2. 7) The overall result is a trade-o® between the negative e®ect in 4) and positive e®ect in 6).

The di®erence between the \colder" and \warmer" cities is mainly due to the standard deviation

pro¯les. As shown in Exhibit 6, the sine wave has a bigger amplitude for Chicago, New York and

Philadelphia than for Atlanta and Dallas. It becomes clear that when ¹ = 1; only the negative

e®ect in 4) prevails. In sum, unless the dividend process follows a random walk, the relationship

between the size of risk premium and the structure of the lagged correlations depends on the speci¯c

pro¯le of the termperature volatilities.

Sign of the Lagged Correlations. One may also question the appropriateness of assuming the

same sign for all coe±cients. In the absence of empirical observations, we can only hypothesize.

Insofar as \normal" is desirable as far as temperature is concerned, abnormal variations can only

have negative impacts on the economy. Nonetheless, some cases may conceivably exist where

abnormal variations have di®erent directional impacts, depending on how far the lag is. What

is certain is that as long as the signs of ´j are not uniform, the impact of market price of risk

will decline, simply due to a lower covariance between the dividend process and the temperature

process. We did repeat the calculations in Exhibits 10 and 11 by assuming alternating signs in ´j 8

j, and found that the percentages went down substantial in magnitude. For example, for options,

all percentage numbers are smaller than 1% in absolute terms. For brevity, we omit the exhibits.

Mean Reversion of the Aggregate Dividend. So far, we have assumed ¹ = 0:9, which corresponds
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to a mean reversion rate of 0.1. It is useful to know how sensitive our results are to the level of

mean reversion in the dividend process. To this end, we repeat the calculations in Exhibits 10 and

11 by assuming four other levels of ¹: 0.80, 0.85, 0.95, 1.00. Note that ¹ = 1:0 corresponds to

a random walk. Since results are very similar for all ¯ve cities, we only report those for Chicago

(which has the smallest percentage di®erences for option values in Exhibit 11) in Exhibit 13. It is

seen that a higher value of ¹ leads to a bigger risk premium in forward and option values. This

makes intuitive sense since a higher ¹ means bigger variations in the aggregate dividends. What is

striking is the nonlinearity of the impact. To illustrate, for options, when ¹ increases by 0.1 from

0.8 to 0.9, the percentages roughly double for all cases; when ¹ increases by another 0.1 from 0.9 to

1.0, the percentages increase in magnitude by as much as 20 folds. With a random walk, the risk

premium is more than 10% for all option values. An obvious conclusion is that, in determining the

signi¯cance of the market price of risk for the non-traded temperature variable, we must carefully

determine the degree of mean reversion in the aggregate dividend process.

Risk Aversion. We have arbitrarily de¯ned the case of ° = ¡4:0 as \high risk aversion".

Indeed, Mehra and Prescott (1985) decide to set ° to -10 as an arbitrary maximum in their study

of the equity premium. They ¯nd that even this extreme value of risk aversion could not explain the

relative magnitude of the equity return and the riskfree rate. Their observation does not necessarily

suggest a higher empirical value of °: In fact, to reproduce the seemingly low riskfree rate, they

need a risk aversion level much lower than what ° = ¡2:0 would suggest. On the other hand, such

a low risk aversion will be completely inconsistent with the higher level of observed equity returns.

Hence the \puzzle". They conjecture that market friction may be the answer. In this sense, we

may still take comfort in the empirical range of 0 and -2.0 for the pamameter °: Nonethelsss, we
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do not claim in anyway that we put a closure to this issue. What we can say though is that risk

aversion is indeed one of the important factors a®acting the risk premium in our study.

7. Summary and Conclusion

In this paper, we propose and implement an equilibrium valuation framework for weather deriv-

atives. We specialize the framework to temperature contracts. The framework is the generalized

Lucas's model of 1978. The underlying economic variable is the aggregate dividend and the un-

derlying variable for weather derivatives is the daily temperature, and the two are correlated both

contemporaneously and in a lagged fashion. We study the temperature behavior for the period

of 1979 to 1998 for ¯ve major cities in the U.S., and derive key properties of the temperature

dynamics. Our model not only allows easy estimation, but also incorporates key features of the

daily temperature dynamics such as seasonal cycles and uneven variations throughout the year.

The temperature system is estimated using the maximum likelihood method, and temperature

contracts are priced accordingly.

Our framework has many advantages. It allows the use of weather forecasts in modelling the

future temperature behavior. In addition, since our starting point is the daily temperature, the

framework is capable of handling temperature contracts of any maturity, for any season, and it

requires only a one-time estimation. In contrast, if one starts by modelling the cooling degree days

(CDD's) or heating degree days (HDD's) directly, then by nature of the temperature behavior, the

CDD's or HDD's will necessarily be season and maturity speci¯c, which implies that each contract

will require a separate estimation procedure. This will not only create potential inconsistency in
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pricing, but also render the whole idea impractical if many di®erent contracts are dealt with or if

the valuation is to be done on an on-going basis. Last but not least, our equilibrium framework

allows us to answer a very important question: Can one use the riskfree rate to discount payo®s to

obtain weather derivative values without incurring too big an error? In other words, is the market

price of risk for the non-tradable temperature variable a signi¯cant factor in valuation?

Several conclusions can be drawn from the study. First and foremost, the market price of risk

associated with the temperature variable appears to be negligible in most cases. Its impact is

stronger only if the risk aversion is high or when the mean reversion in the aggregate dividend

process is weak. Risk neutral valuation, or using the riskfree rate to discount derivatives payo®s,

is strictly valid only when the correlations, both contemporaneous and lagged, are zero. However,

with modest correlations and risk aversion, and a mean reversion greater than 0.1 for the aggregate

dividend process, the risk premium is not signi¯cant. In other words, the industry practice of

assuming a zero market price of risk seems to be warranted.

Second, the market price of risk a®ects option values much more than forward prices, mainly

due to the payo® speci¯cation. Thanks to forward contracts' linearity in payo®s, much of the

impact is \integrated" out. For options, the truncation in payo®s leaves room for the market price

of risk to exert its impact.

The third conclusion has to do with a common practice in the industry, which is to use the

historical simulation approach to estimate weather derivative values. We show that in most cases,

this is not valid. Weather contracts typically cover a period to come and do not extend very far into

the future. However, historical simulations implicitly assume that the next season's temperature

can resemble any of the past seasons in the sample, including extreme seasons (very cold or very
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warm). As a result, in most cases, the historical simulation method tends to over estimate option

prices.

As for future research directions, one obvious avenue is to adapt the framework to other weather

variables such as snowfall and rainfall. This is going to be more challenging in that the weather

variable such as rainfall is no longer a continuous variable. Moreover, the cumulation of such a

variable in a season is far more important than the realized level within, say, a day. Nonetheless,

derivative contracts on such variables will have direct appeal to users such as farmers and ski resort

operators. We hope that our work represents the ¯rst step toward developing a more comprehensive

strand of literature.
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Appendices

A. Proof of Proposition 3.1

A.1. Equilibrium Discount Bond Price

Based on the assumption on aggregate dividend, we have

ln
±T
±t

= ®
TX

i=t+1

¹T¡i + (¹T¡t ¡ 1) ln ±t +
TX

i=t+1

¹T¡iºi:

Without loss of generality, suppose there are m lagged error terms in ºi: De¯ne ´0 = 'p
1¡'2

,

¨(t; T ) = Et(ln
±T
±t

); and §(t; T ) = V art(ln
±T
±t

): Then, the marginal distribution of ln ±T
±t

conditional

on ln ±t is

f(ln
±T
±t

j ln ±t) =
1p
2¼§

exp

µ
¡(ln ±T =±t ¡ ¨)2

§

¶

with

for T ¡ t ¸ m + 1
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³Pm
i=1 ¹i¡1(
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³PT

i=t+1 ¹2(T¡i) + (
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m¡i)2(
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The price of a pure discount bond at time t with maturity T is

B(t; T ) = Et

³
Uc(cT ;T )
Uc(ct;t)

¢ 1
´

= e¡½(T¡t)Et
³
(±T±t )°

´

= e¡½(T¡t) exp
³
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±T
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) + 1
2°
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¡
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2°
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¢
:

The yield-to-maturity, R(t; T ), is

R(t; T ) = ¡ lnB(t; T )

T ¡ t
= ½ ¡ °¨ + 1

2°
2§

T ¡ t
:
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B. Proof of Proposition 4.2: Equilibrium forward Prices

When there is no autocorrelation in daily temperatures, i.e., ½i = 0 (for i = 1; 2; :::; k), and no

lagged impact of the temperature on the aggregate output, i.e., ´j = 0;8 j, the joint distribution of

(ln ±T , YT ) conditional on (ln ±t, Yt) is a bi-variate normal distribution with correlation coe±cient

' :

f(ln ±T ; Yyr;T j ln ±t; Yyr;t) = N [ln ±T ; Yyr;T ;¹±(t; T ); §±(t; T); ¹Y (t; T );§Y (t; T); '];

where

¹Y (T ) = Et(Yyr;T ) = bY yr;T and §Y (T ) = vart(Yyr;T ) = ¾2yr;T :

B.1. Forward Prices before the Accumulation Period

De¯ne ³ ´ ² + 'p
1¡'2

»: For an HDD forward contract with the accumulation period from T1 to

maturity T2, its forward price at time t < T1 (before the accumulation period) is

FHDD(t; T1; T2) = 1
B(t;T2)

Et

³
Uc(cT2 ;T2)
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´

=
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³
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´
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Tedious calculations show that
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Similarly, the corresponding forward prices on CDD is

FCDD(t; T1; T2) = 1
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³
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B.2. Forward Prices during the Accumulation Period

For HDD forward price at time t 2 (T1; T2) during the accumulation period, we have
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Also, the CDD forward price at time t 2 (T1; T2) is
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Exhibit 1: Summary Statistics

Atlanta Chicago Dallas New York Philadelphia

Mean 63 50 66 56 56

Median 64 50 67 56 56

Mode 79 70 86 72 75

Standard Deviation 15 20 16 17 18

Minimum 5 -17 9 3 1

Maximum 92 93 97 93 92

Sample Size 7,300 7,300 7,300 7,300 7,300

Correlation

Atlanta 1.0000

Chicago 0.8847 1.0000

Dallas 0.8777 0.9038 1.0000

New York 0.8966 0.8964 0.8443 1.0000

Philadelphia 0.9125 0.8970 0.8455 0.9853 1.0000

Auto Correlation

k-lags

 1 0.9402 0.9421 0.9354 0.9448 0.9462

 2 0.8690 0.8809 0.8680 0.8896 0.8926

 3 0.8281 0.8494 0.8318 0.8654 0.8678

 4 0.8069 0.8304 0.8132 0.8533 0.8550

 5 0.7952 0.8181 0.8005 0.8470 0.8486

 6 0.7867 0.8091 0.7918 0.8431 0.8437

 7 0.7804 0.8022 0.7855 0.8394 0.8380

 8 0.7764 0.7973 0.7813 0.8346 0.8330

 9 0.7728 0.7925 0.7773 0.8297 0.8283

10 0.7687 0.7894 0.7731 0.8246 0.8228

11 0.7665 0.7870 0.7718 0.8197 0.8175

12 0.7652 0.7857 0.7720 0.8164 0.8142

13 0.7614 0.7835 0.7683 0.8124 0.8098

14 0.7562 0.7793 0.7608 0.8099 0.8054

15 0.7534 0.7759 0.7558 0.8070 0.8017



Exhibit 2: Summary Statistics of Monthly HDD and CDD (1979 - 1998)

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Atlanta

H D D Average 679 493 328 143 21 1 0 1 11 117 336 586
Std. Dev. 125 90 85 63 18 4 0 2 10 43 97 126
Maximum 882 657 465 261 63 18 0 11 32 188 514 797
Minimum 462 297 156 36 2 0 0 0 0 22 131 346

CDD Average 0 2 14 59 198 385 502 452 275 67 8 2
Std. Dev. 1 3 10 39 66 68 72 63 59 38 13 3
Maximum 3 8 36 141 322 494 639 589 440 178 49 13
Minimum 0 0 2 4 62 221 372 349 192 12 0 0

Chicago

H D D Average 1308 1065 857 516 230 51 6 10 112 407 766 1132
Std. Dev. 189 165 101 80 81 31 6 12 46 79 106 184
Maximum 1627 1359 1095 643 364 118 19 37 189 583 958 1562
Minimum 956 733 733 393 87 6 0 0 34 288 598 891

CDD Average 0 0 2 9 48 161 283 240 93 9 0 0
Std. Dev. 0 0 3 15 40 62 73 92 36 10 0 0
Maximum 0 0 13 53 167 254 398 445 158 44 1 0
Minimum 0 0 0 0 4 38 152 106 19 0 0 0

Dallas

H D D Average 627 442 269 91 10 0 0 0 8 69 305 557
Std. Dev. 124 101 63 40 9 0 0 0 10 32 66 128
Maximum 911 635 384 186 29 2 0 0 38 145 414 933
Minimum 401 299 164 26 0 0 0 0 0 14 190 389

CDD Average 1 4 28 87 270 491 642 622 399 145 22 4
Std. Dev. 2 9 20 35 78 74 77 73 64 35 16 5
Maximum 6 37 77 158 464 668 844 737 563 220 52 13
Minimum 0 0 4 24 171 382 551 480 302 78 3 0

New York

H D D Average 988 838 702 374 120 13 0 1 35 234 513 824
Std. Dev. 145 125 80 46 40 12 1 3 16 73 69 139
Maximum 1241 1173 913 446 187 49 3 9 74 376 651 1198
Minimum 735 671 613 286 51 1 0 0 11 101 389 644

CDD Average 0 0 1 4 63 224 392 350 153 22 1 0
Std. Dev. 0 0 4 8 42 55 56 56 37 23 2 0
Maximum 0 0 18 34 184 325 490 444 222 95 7 2
Minimum 0 0 0 0 4 112 271 239 100 0 0 0

Philadelphia

H D D Average 1002 835 676 349 106 10 0 2 39 261 538 852
Std. Dev. 154 124 95 60 46 11 1 5 19 75 86 136
Maximum 1243 1170 911 440 191 42 4 21 92 408 704 1219
Minimum 738 644 542 193 38 0 0 0 14 138 392 701

CDD Average 0 0 2 9 79 245 409 352 155 22 1 0
Std. Dev. 0 0 5 11 47 66 71 65 42 21 2 0
Maximum 0 0 20 34 230 401 540 470 244 83 6 0
Minimum 0 0 0 0 9 133 283 268 90 0 0 0



Exhibit 3: Global Warming Trend

Global Warming Trend in Atlanta
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Exhibit 4: Standard Deviation of Date t's Temperature (Ãt)
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Exhibit 5: Realized Temperatures in New York
For a Colder-Than-Normal Winter (November 1980 - March 1981)

Panel A: Date t's Mean Temperature (Y t) vs Realized Temperatures
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Panel B: Date t's Adjusted Mean Temperature (bY t) vs Realized Temperatures
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Exhibit 6: Maximum Likelihood Estimation Results

LR =

ρ1 ρ2 ρ3 ρ4 σ0 σ1 φ   Log - Likelihood 2ln(L 1/L2)

Atlanta

0.8833 -0.3035 0.0322 7.5980 5.0912 -0.1881   ln(L 1) = -20,626 250 *

(0.01170) (0.01520) (0.01169) (0.12086) (0.14603) (0.01067)

0.9482 -0.3158 0.0760 0.0083 7.6565 5.0781 -0.1940   ln(L 2) = -20,751
(0.01166) (0.01567) (0.01166) (0.01288) (0.12208) (0.14776) (0.01088)

Chicago

0.7989 -0.2570 0.0428 7.8289 3.1294 -0.2014   ln(L 1) = -23,130 268 *

(0.01170) (0.01467) (0.01170) (0.13922) (0.18181) (0.02316)

0.8619 -0.2697 0.1029 -0.0188 7.9315 3.1211 -0.1998   ln(L 2) = -23,264
(0.01166) (0.01509) (0.01165) (0.01905) (0.14057) (0.18135) (0.02369)

Dallas

0.8158 -0.2436 0.0201 8.9378 6.3349 -0.1418   ln(L 1) = -21,381 258 *

(0.01170) (0.01483) (0.01170) (0.14060) (0.16800) (0.00953)

0.8711 -0.2482 0.0567 0.0162 9.0257 6.3488 -0.1497   ln(L 2) = -21,510
(0.01168) (0.01522) (0.01167) (0.01267) (0.14175) (0.16936) (0.00970)

New York

0.7558 -0.2631 0.0463 6.5372 2.7035 -0.2432   ln(L 1) = -21,719 298  *

(0.01169) (0.01433) (0.01169) (0.11241) (0.14520) (0.02238)

0.8117 -0.2612 0.1007 -0.0071 6.7129 2.8152 -0.2420   ln(L 2) = -21,868
(0.01166) (0.01472) (0.01166) (0.01374) (0.11510) (0.14831) (0.02201)

Philadelphia

0.7726 -0.2595 0.0473 6.9034 3.1654 -0.2015   ln(L 1) = -21,792 306 *

(0.01169) (0.01446) (0.01169) (0.11957) (0.15360) (0.01932)

0.8290 -0.2559 0.0973 0.0015 7.0545 3.2360 -0.2024   ln(L 2) = -21,945
(0.01166) (0.01486) (0.01166) (0.01459) (0.12207) (0.15675) (0.01932)

Note: 1. The Estimated Systems:
Uyr;t = ½1Uyr;t¡1 + ½2Uyr;t¡2 + ½3Uyr;t¡3 + ¾yr;t ¤ »yr;t (1)
Uyr;t = ½1Uyr;t¡1 + ½2Uyr;t¡2 + ½3Uyr;t¡3 + ½4Uyr;t¡4 + ¾yr;t ¤ »yr;t (2)

with Uyr;t = Yyr;t ¡ bY yr;t; ¾yr;t = ¾0 ¡ ¾1 j sin(¼t=365 + Á) j;
»yr;t » i:i:d: N(0; 1); 8 yr = 1; 2; :::; 20 & t = 1; 2; :::; 365:

2. The numbers in the parentheses are standard errors.
3. The null hypothesis (H0) is ½4 = 0. The likelihood ratio (LR) test is computed

as LR = 2 lnL 1 ¡ 2 lnL2 which is asymptotically distributed as Â2(1) under H0.
4. The 1 percent critical level for Â2 with 1 degree of freedom is 6.6 and
¤ indicates that the test statistic is signi¯cant.



Exhibit 7: Comparison of Forward Prices

Price Based on

Theoretical Price Based Theoretical Adjusted Avg. 

Sample Model on Average Model Temperature

Average       Price      Temperature       Price            of 1998      

(1) (2) (3) (4) (5)

CDD Season (May - September)

Atlanta 1812.00 1797.22 1777.95 1902.17 1893.41

Chicago 823.60 799.26 674.80 1002.25 858.24

Dallas 2424.55 2414.13 2405.65 3154.69 3153.45

New York 1181.80 1169.98 1101.80 1296.11 1226.85

Philadelphia 1239.75 1220.75 1149.35 1351.34 1286.41

HDD Season (November - March)

Atlanta 2419.47 2423.70 2396.95 2729.68 2715.65

Chicago 5114.37 5127.72 5126.15 4508.18 4506.00

Dallas 2179.21 2202.51 2141.05 2246.26 2192.98

New York 3859.63 3864.00 3862.35 3419.25 3417.25

Philadelphia 3901.00 3901.62 3899.75 3406.81 3404.08

Note: 1. Theoretical model prices are calculated based on ° = ¡0:5, Á = 0:0.
2. When forecasts are the adjusted average temperatures, we use November,

and December of 1997 and the ¯rst three months of 1998 for HDD calculation.
3. The parameter ¹ in the dividend process is set to 1.0.


