Homework Set 3

Futures prices and American options

1. Foreign exchange derivatives: Let $s(t)$ denote the price of British $£$ in terms of Canadian \$. Assume it follows an Ito process with constant proportional volatility $\sigma=$.20. The current spot exchange rate is $s(0)=2.00$. Assume the Canadian riskfree interest rate constant at $r=.04$ and the British is constant at $r_{f}=.07$. Recognizing a $£$ is a dividend paying traded security, with proportional dividend rate r_{f}, one can use the Black-Scholes trick to show that the risk-neutral process for the exchange rate is

$$
d s=\left(r-r_{f}\right) s d t+\sigma s d z
$$

Use the Crank-Nicolson algorithm to calculate the following:
(a) The current futures price for $£$ to be delivered in 2 years. ${ }^{1}$
(b) The value of a 2 year European call option to buy $£ 100$ at a price of $\$ 2.00$.
(c) The value of the same option if it is American.
2. Nonstorable commodity derivatives: Suppose that the objective (empirical) stochastic process followed by the spot market price $s(t)$ of electricity at the California-Washington border is mean-reverting:

$$
d s=\kappa(\bar{s}-s) d t+\sigma s d z
$$

in which κ, \bar{s}, σ are constant. Suppose the risk-neutral process is:

$$
d s=\kappa(\bar{s}-s-\lambda) d t+\sigma s d z
$$

in which λ is also constant. ${ }^{2}$ Electricity prices are measured in $\$ /$ megawatt-hours (mwh). Time is measured in years. Values of the parameters are $\bar{s}=600, \kappa=0.5, \sigma=0.4$, $r=0.10, \lambda=-200$ (note the negative value). The current spot price $s(0)$ is $\$ 900 / \mathrm{mwh}$. Use the Crank-Nicolson algorithm to determine the following:
(a) What is the objective forecast $E(0)$ (expected value) of the spot price 1 year from now?
(b) What is the equilibrium futures price $F(0)$ for 1 mwh of electricity to be delivered 1 year from now?
(c) What is the market price of a European call option $C(0)$ on 1 mwh of electricity with exercise price of $\$ 600$ deliverable in 1 year?

[^0]3. Interest rate derivatives: Suppose that the instantaneous riskless interest rate follows the stochastic process of Cox, Ingersoll, Ross (Econometrica 1985)):
$$
d r=\gamma(\bar{r}-r) d t+\sigma r^{0.5} d z
$$
in which γ, \bar{r}, σ are constants. The 'price of r-risk' is assumed to be λr (i.e., the riskadjusted drift of r is $\gamma(\bar{r}-r)+\lambda r)$. Let the initial state be $r=0.07$. The values of the fixed parameters $\gamma, \bar{r}, \lambda, \sigma$ are respectively $0.4,0.1,0.1$ and 0.2 .
(a) Use CNSET and CNSTEP in a spreadsheet to determine the current price and yield to maturity (continuously compounded) of a $\$ 100$ face value Treasury Bill with 1 year to mature.
(b) Find the value of a 6 month European Call option on such a T-bill with exercise price of $\$ 95 .^{3}$
(c) Find the value of the above option if it is an American option.
(d) Determine the current futures price of a 1 year T-bill deliverable 3 years from now. Express that price as a yield on 1 year bills.
(e) Optional bonus question: Determine the objective expected value of interest rates on 1 year T-bills 3 years from now.

[^1]
[^0]: ${ }^{1}$ Hint: To compute a futures price, set IFUT $=1$ before calling CNSET. Remember to reset it to 0 and call CNSET again before going on to calculate market value of a security as in the next question.
 ${ }^{2}$ Since electricity is not storable, we cannot claim that the risk-adjusted proportional drift equals the riskless interest rate r, as in the Black-Scholes case.

[^1]: ${ }^{3}$ Specifically, at option exercise, the delivered T-bill will have 1 year to mature as of that time.

