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1. Itô’s Lemma

Itô’s lemma is an indispensible tool for working with continuous time random
processes. This note informally ‘derives’ it using Taylor series approxima-
tions. First, what does Itô’s lemma say?

Suppose that some variable y is a function f(s, t) of s and t, and that s
follows a continuous random process that can be described by

ds(t) = α dt + σ dz(t)

Here α is the instantaneous expected rate of change in s and σ is its instan-
taneous standard deviation. Then y will also follow a random process —
one induced by the randomness of s. Itô’s lemma relates the characteristics
of the y process to the s process. Specifically, y will follow

dy(t) = (αfs + 1
2σ2fss + ft) dt + σfs dz(t)

where subscripts denote partial derivatives. What stands out is that the
expected rate of change in y is not simply the sum of its rate of change due
to the passage of time, ft, and the expected rate of change in s times y’s
sensitivity to s, αfs, but also has a term involving the volatility of s and the
second derivative of f .

To see why this is so, suppose that we are initially at some s, t and that
a short interval of time ∆t passes. During this time there will be some
associated ∆z. Expanding f in a Taylor series around its starting value,

f(s + α∆t + σ∆z, t + ∆t) =
f(s, t) + [α∆t + σ∆z] fs + ∆t ft + 1

2 [α2∆t2 + 2ασ∆t∆z

+ σ2∆z2] fss + [α∆t2 + σ∆z∆t] fst + 1
2∆t2 ftt

+ third and higher order terms

Now subtract f(s, t) from both sides to get an expression for ∆f and take
its expected value. Since z is following a standard Brownian motion, ∆z is
normally distributed with expected value 0 and variance ∆t. I.e., E[∆z2] =
∆t.

E[∆f ] = [12σ2fss + αfs + ft]∆t

+ second and higher order terms in ∆t

For small ∆t we can ignore the higher order terms, giving us the expected
rate of change in f corresponding to Itô’s lemma above. Finally, subtract
this expected ∆f from ∆f itself to get the random part of the change in f :

∆f − E[∆f ] = σfs ∆z + second and higher order terms in ∆t and ∆z
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This gives us the last part of the Itô’s lemma expression.
The main point of all this is that the Jensen’s inequality effect, embodied

in the second derivative term, does not fade away as ∆t becomes small. This
is a consequence of z(t) almost everywhere following an extremely “jiggly”
path. The parameters α and σ can be functions of t and s. A formally
correct proof can be found in Malliaris and Brock (1982) and the works that
they cite.

An example

In a world with a constant nominal interest rate r, a bond portfolio with
value of $1 at time 0 and continuously reinvested coupon payments will be
worth B(t) = ert at time t. Suppose that the price level evolves randomly
according to the stochastic process

dP = πP dt + σP dz

where π is the expected inflation rate and σ is its proportional standard
deviation per unit time. The real value of the bond portfolio at time t will
be

b(t) =
B(t)
P (t)

=
ert

P (t)

What is the expected real return on the bonds?
Applying Itô’s lemma to b, with

bt = rert/P = rb
bP = −B/P 2 = −b/P
bPP = 2B/P 3 = 2b/P 2

we get db:
db(t) = (σ2 − π + r) b dt− σb dz

Thus the expected real rate of return to holding nominal bonds in this world
of uncertain inflation is r − π + σ2.

The n–dimensional case

Here we simply state the extension of Itô’s lemma to the case of several
variables. Suppose y = f(s1, s2, ..., sn, t) is a function of n random state
variables and time. Let the vector s follow a joint random process described
by

ds(t) = α dt + σ dz(t)
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where α is now a n-dimensional column vector, σ is a matrix with n rows
and m columns, and z(t) is a m-dimensional column vector of independent
Brownian motions. Then

dy(t) = ( ft + α′fs + 1
2

∑
i

∑
jfij [σσ′]ij) dt + f ′sσ dz(t)

in which fij denotes ∂2f/∂si∂sj and fs denotes the column vector of partial
derivatives ∂f/∂si.

Exercise

Let P (t) be the price of a $1 maturity value pure discount bond at time t,
maturing at time T . Let r(t) denote the continuously compounded yield to
maturity at time t on discount bonds maturing at calendar date T . Suppose
that r is know to follow the stochastic process

dr(t) = α dt + σr1/2dz(t)

with σ a constant.

1. What is stochastic process is followed by the price P (t)?

2. What is the instantaneous expected yield at time t on holding the
bond?

3. Does the answer to 2) make sense in the case where σ and α are both
0?

4. If σ equals 0, what is the time path followed by the riskless instanta-
neous interest rate?
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2. Valuation by Arbitrage

Common to much of continuous time asset valuation theory is the result
that the price of a security is the solution to some sort of partial differential
equation (pde). This note derives the valuation pde from the notion that
in equilibrium there will be no riskless arbitrage opportunities. We consider
the case of just one ‘state’ variable, or dimension of relevant uncertainty for
the securities involved. This does not require that all else in the economy be
non-random. It only means that we assume that the prices of the securities
we are examining are not contingent on those other factors.

Let the aspect of the world that is uncertain be some state variable s,
with s(t) denoting its level at time t. Assume its evolution over time follows
an Itô process, i.e., can be meaningfully described by

ds = α dt + σ dz (1)

where dz is the increment in a standard Wiener process and α and σ may be
functions of s and t. Let there be two tradeable securities whose values at
time t are functions of t and s(t). We use A(s, t) and B(s, t) to denote their
contingent prices. Applying Itô’s Lemma, these prices evolve according to

dA = (1
2σ2Ass + αAs + At) dt + σAs dz (2)

dB = (1
2σ2Bss + αBs + Bt) dt + σBs dz

In addition, cash may be risklessly borrowed or lent at an instantaneous
floating interest rate r. This rate may also be a function of (s, t).

Now consider a portfolio consisting of 1 unit of A and −As/Bs units of
B. Suppose it is acquired completely by borrowing, with the proceeds of the
short sale of B available to reduce the amount owed. One’s net borrowing is
thus (A−AsB/Bs). The value of this position, call it P , evolves as follows:

dP = dA− As

Bs
dB − (net borrowings) r dt = (3)(

1
2σ2(Ass −

As

Bs
Bss) + α(As −

As

Bs
Bs) + (At −

As

Bs
Bt)− r(A− As

Bs
B)

)
dt

Note that the position is riskless — the dz terms cancelled out as a result
of the ratio of B to A chosen — and was costless to acquire. If dP was
anything other than 0 then the position (or its exact opposite) would offer
a sure profit, something for nothing. As long as there was at least one
individual trading for whom more was better, such as situation could not
persist. Thus dP = 0 is a requirement of market equilibrium.
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Imposing this and rearranging equation (3) gives us

1
2σ2Ass + αAs + At − rA

As
=

1
2σ2Bss + αBs + Bt − rB

Bs
(4)

The numerator of each side is the expected return from holding the asset
over and above the riskless return opportunity cost of holding it (the ‘excess
expected return’). The denominator is the sensitivity of the asset’s value to
fluctuations in the state, or number of units of ‘s–risk’ one bears by holding
it. Absence of arbitrage implies that this ratio is the same for each asset.
This common value will be denoted by λ(s, t) and called the market price
of s–risk.

Since A could have been paired with a different asset, the main point is
that there is single λ common to all assets whose prices are functions of s and
t. Equating the left side of (4) to λ and rearranging gives the fundamental
valuation pde

1
2σ2Ass + (α− λ)As + At − rA = 0 (5)

If one is willing to assume a specific functional form for the risk price λ(s, t),
this pde can in principle be solved for the equilibrium state contingent price
of the security. But the notion of no arbitrage by itself does not say what
this risk price should be. It only says that the same aversion (or attraction)
to s–risk will be embodied in all securities.

Rearranging (5) aids in interpreting it. Writing it as

1
2σ2Ass + αAs + At

A
= r + λ

As

A
(6)

puts it in a form reminiscent of the Capital Asset Pricing Model. The
left side is the expected rate of return to holding A. It equals the riskless
rate plus an amount proportional to A’s proportional sensitivity to s. This
proportional sensitivity will have the same value as the local covariance of
A with s divided by the local variance of s. If s was the value of the ‘market
portfolio’ then λ would be its excess expected return. This is not the CAPM,
however, since A and s are perfectly correlated locally.

Another interpretation of (5) comes from recognizing that we would have
the same pde if the expected rate of change in s was α̂ ≡ α − λ but there
were no λ term, i.e., the expected rate of return on holding A was equal to
the riskless interest rate r. This means securities sell for the same price as
they would in a risk neutral world in which s followed the ‘risk adjusted’
stochastic process of equation (1) with α̂ replacing α . This α̂ is termed the
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risk adjusted growth rate in s. One consequence of this property is that one
may, for example, perform a Monte Carlo simulation of the risk adjusted
process for a state variable, then estimate A by simply calculating average
present values of the cash flows arising from the security.

Equation (5), as it stands, does not uniquely determine a function A(s, t).
Many different functions can satisfy the relation, corresponding to the fact
that there are many types of securities whose value could be a determin-
istic function of s and t. To obtain a unique solution one must impose
additional restrictions on A. These are lumped together under the name
boundary conditions, and are what distinguishes one s-dependent security
from another. The term arises from the fact that A is presumed to satisfy
a differential equation only in an open (though possibly unbounded) region
in the (s, t) plane. Characteristics at the boundary of the region ‘pin down’
what function it is.

One type of boundary condition occurs if the security is one that matures
or expires, and its maturity value is a known function of s. This is termed
an initial value condition since it is convenient in such contexts to let t = 0
represent that time and suppose that time runs backwards from a positive
value down to 0. For example, a default free bonds satisfies A(s, 0) = 1.0
for all s if its maturity value is one dollar. A claim to one ounce of gold
satisfies A(s, 0) = s if s is the spot price of gold. Addition types of boundary
conditions will be introduced as we proceed.

The Black-Scholes case

An important simplification occurs when the state variable is itself the price
of a traded asset. This is the case when, for example, s is the price of the
shares in some company and A is price of an option to purchase or sell a
share at a particular exercise price, investigated by Fischer Black and Myron
Scholes (1973). Let the asset B be the underlying stock, i.e., B(s, t) = s.
Then Bs = 1, Bss = 0, and Bt = 0. Making these substitutions into the
valuation pde reduces it to

α− λ = rs (7)

Black and Scholes also assume that s follows a constant proportional volatil-
ity process, i.e., ds(t) = α(s, t) dt + σs dz(t) where σ is a constant. Substi-
tuting rs for α− λ into the pde for the derivative asset A reduces (5) to

1
2σ2s2Ass + rsAs −At − rA = 0 (8)

We adopt the convention here of letting t denote the time remaining to
expiry of the option. Since t is now declining as time moves forward this
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reverses the sign on the At term in the pde.
Since neither α nor λ enter the pde, the value of the option in terms

of the stock price s is independent of both risk attitudes and the expected
rate of change in the stock price! Put another way, the current value of s
embodies all that is needed about these things to determine the value of A.

For some types of derivative securities (equivalently some types of bound-
ary conditions), an explicit solution to (8) can be obtained. If the security
is a European call option with exercise price X, maturing in T years, on the
asset whose price is s, then the boundary condition is

A(s, 0) = max{0, s(0)−X} (9)

The function A satisfying (8) subject to (9) is

A(s, T ) = sN(d)−Xe−rT N(d− σT 1/2) (10)

in which N() denotes the cumulative normal distribution function and

d ≡
ln( s

X ) + (r + σ2

2 )T
σT 1/2

(11)

Exercises

1. The cumulative normal distribution function is defined as N(y) =
(2π)−1/2

∫ y
−∞ e−y2/2dy. Use the chain rule to get the partial derivatives

of A given in (10) and show that A satisfies the pde (8).

2. Extend the arbitrage argument of this section to the case where the
underlying asset whose price is s pays a dividend continuously at a rate
c(s, t), and the derivative security whose price is A pays dividends at
a continuous rate q(s, t). Show that the valuation pde (8) in this more
general case is

1
2σ2s2Ass + (rs− c)As + q −At − rA = 0

Multi-factor arbitrage valuation

Let there be n state variables denoted by the vector s = (s1(t), . . . sn(t)).
Suppressing the time argument, let each follow a diffusion process

dsi = αi dt + σidzi
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where the instantaneous drift and volatility may be (well-behaved) functions
of (s, t), and dzi is the increment in a standard Weiner process. These incre-
ments can be correlated: ρij denotes the instantaneous correlation between
dzi and dzj .

Suppose there are n locally linearly independent assets (to be clarified
below) whose prices are deterministic functions Ak(s, t) of t and s(t). Ap-
plying Ito’s lemma tells us asset k follows the process

dAk = (1
2

∑
i

∑
j ρijσiσjA

k
ij +

∑
i αiA

k
i + At) dt +

∑
i σiA

k
i dzi

Subscripts on A indicate appropriate partial derivatives.
Construct n portfolios Xi combining riskless bonds yielding r and these

assets such that: (1) each portfolio has 0 current value, and (2) the derivative
of the value of portfolio i with respect to dzk equals σi for k = i, 0 for k 6= i.
Letting β be the matrix of amounts βij of asset j held in portfolio i, and As

be the Jacobian [∂Ai/∂sj ], this means

βAs = S ≡ diag(σi)

S is a matrix with diagonal elements σi, 0 elsewhere. This construction
is possible if As is not singular, with β = SA−1

s . Portfolio Xi thus has
unit risk exposure to si-risk. The expected return, or instantaneous drift,
of these portfolios can be found from the drifts of Ak — very messy. Let
us denote the expected return per unit time on portfolio Xi by λi. Hence
dXi = λi dt + σi dzi.

Now consider any other asset with price P (s, t). Construct a portfolio V
consisting of one unit of this asset, −P dollars of riskless bonds to pay for
it, and −∂P/∂si units of each portfolio Xi constructed above. The latter
have zero current value so require no further financing. But they precisely
offset the effect of the dzi’s on P in the portfolio, rendering it riskless. For
there not to be an arbitrage opportunity, the return on V over an interval
dt must thus be zero:

dV =
(

1
2

∑
i

∑
j ρijσiσjP

k
ij +

∑
i αiP

k
i + Pt − rP −

∑
i λiPi

)
dt = 0

Dividing by dt and rearranging, equilibrium P must thus satisfy

1
2

∑
i

∑
j ρijσiσjP

k
ij +

∑
i(αi − λi)P k

i + Pt − rP = 0


