
Econ 482 8

Figure 1: pde solution grid

t

x

xmin

xmax

xmin + ih

0 nk T

s
s
s

s
6

?
h

-� k

ui,n

ui−1,n

ui+1,n

ui,n+1

3. Numerically Solving PDE’s: Crank-Nicholson
Algorithm

This note provides a brief introduction to finite difference methods for solv-
ing partial differential equations. We focus on the case of a pde in one state
variable plus time. Suppose one wishes to find the function u(x, t) satisfying
the pde

auxx + bux + cu− ut = 0 (12)

subject to the initial condition u(x, 0) = f(x) and other possible boundary
conditions. This initial condition will correspond to a maturity or expiry
date value condition in our applications and t will denote time left to ma-
turity. Thus time will run backwards down to 0, explaining the negative ut

term in (1). The coefficients a, b, c may themselves be functions of x, t. Any
parameters are presumed given, so that one can calculate a numerical value
for these functions for any given x, t.

Obviously one cannot ‘calculate’ the entire function u. What we shall
consider a solution is the numerical values that u takes on a grid of x, t values
placed over some domain of interest. Once we have these u values, since u
is assumed to be smooth almost everywhere, we can interpolate within this
grid to get values for arbitrary x, t.

Econ 482 9

To this end, suppose the domain we will work on is rectangular with
x ranging from xmin to xmax and t ranging from 0 to T . Divide [0, T]
into N equally spaced intervals at t values indexed by n = 0, 1, . . . , N , and
[xmin, xmax] into I intervals at x values indexed by i = 0, 1, . . . , I. The length
of these intervals is k in the time direction and h in the x direction. We seek
an approximation to the true values of u at the (N +1)× (I +1) gridpoints.
Let ui,n denote our approximation at the gridpoint where x = xmin + ih,
t = nk.

The next step — and this is what makes this procedure a finite difference
method — is to approximate the partial derivatives of u at each gridpoint
by difference expressions in the as yet unknown ui,n’s. We can calculate
ui,0 for each i directly from the initial value condition f . Thus it is natural
to start from this boundary are work outward, calculating the ui,n+1’s from
ui,n. Focussing on an arbitrary internal gridpoint in, one could approximate
the partial derivatives at that point by the following:

u = ui,n

∂u/∂t =
ui,n+1 − ui,n

k

∂u/∂x =
ui+1,n − ui−1,n

2h
(13)

∂2u/∂x2 =
ui+1,n − 2ui,n + ui−1,n

h2

The differences in the x, or state, direction have been centered around the
point in to give ‘second order’ accuracy to the approximation. These ex-
pressions could then be substituted into the pde (1). Solving the resulting
equation for ui,n+1 gives the explicit solution

ui,n+1 = (
k

h2
a +

k

2h
b)ui+1,n + (1 + kc− 2k

h2
a)ui,n + (

k

h2
a− k

2h
b)ui−1,n (14)

One could then proceed to calculate all the ui,n+1’s from the ui,n’s and
recursively obtain u for the entire grid. Since equation (3) applies only to
the interior gridpoints, we at each time step would have to make use of some
other boundary conditions (e.g., at xmin and xmax) to identify all the u’s.
More will be said about this later.

The result of this is called an explicit finite difference solution for u. It is
second order accurate in the x direction, though only first order accurate in
the t direction, and easy to implement. Unfortunately the numerical solution
is unstable unless the ratio k/h2 is sufficiently small. By unstable is meant
that small errors due either to arithmetic inaccuracies or to the approximate

Econ 482 10

nature of the derivative expressions will tend to accumulate and grow as one
proceeds rather than dampen out. Loosely speaking, this will occur when the
difference equation system described by (3) has eigenvalues greater than one
in absolute value. See a numerical analysis book such as Vemuri and Karplus
(1981) or Lapidus and Pinder (1982) for discussion of stability issues.

The instability problem can be handled by instead using and implicit
finite difference scheme. The recommended method for most problems in the
Crank-Nicholson algorithm, which has the virtues of being unconditionally
stable (i.e., for all k/h2) and also is second order accurate in both the x and
t directions (i.e., one can get a given level of accuracy with a coarser grid in
the time direction, and hence less computation cost). This is the algorithm
implemented by the routines CNSET and CNSTEP handed out in class.

The algorithm entails proceeding as before, but using difference expres-
sions for the partial derivatives which are centered around t + k/2 rather
than around t. Thus the expressions for u, ux and uxx are averages of what
we had in (3) for times n and n + 1:

u =
ui,n + ui,n+1

2

∂u/∂t =
ui,n+1 − ui,n

k

∂u/∂x =
ui+1,n − ui−1,n + ui+1,n+1 − ui−1,n+1

4h
(15)

∂2u/∂x2 =
ui+1,n − 2ui,n + ui−1,n + ui+1,n+1 − 2ui,n+1 + ui−1,n+1

2h2

Substituting the above into the pde, multiplying through by 4h2k to elimi-
nate the denominators, and collecting all the terms involving the unknown
u·,n+1’s on the left hand side results in

Ai︷ ︸︸ ︷
−(2ka + khb) ui+1,n+1 +

Bi︷ ︸︸ ︷
(4h2 + 4ka− 2h2kc) ui,n+1

Ci︷ ︸︸ ︷
−(2ka− khb) ui−1,n+1

= (16)
(2ka + khb)ui+1,n + (4h2 − 4ka + 2h2kc)ui,n + (2ka− khb)ui−1,n︸ ︷︷ ︸

Di

for each i = 1, . . . , I − 1. It is apparent that that the u·,n+1’s cannot in-
dividually be written as simple linear combinations of the u·,n+1’s, but are
simultaneously determined as the solution to this system of linear equa-
tions. However this system has a very convenient structure. Written in

Econ 482 11

matrix form, (5) provides the interior equations of
B0 C0 0 0 · · · 0
A1 B1 C1 0 · · · 0
0 A2 B2 C2 0
...

. 0
0 · · · 0 AI BI

u0,n+1

u1,n+1

u2,n+1
...

uI,n+1

 =

D0

D1

D2
...

DI

 (17)

This sort of system is most efficiently solved by Gaussian elimination. It
requires just 8I floating point operations to determine the unknown u·,n+1’s
(e.g., see Press et al., 1986, p.40 or the listing of routine TRIDAG at the end
of CNSTEP).

Boundary conditions

We almost have a procedure for recursively determining the entire grid of
ui,n’s starting from the given initial values. Substitution of the the difference
expressions into the differential equation only gave us a linear equation for
each interior point in the grid. That gives I − 1 equations at each time
step, which is not sufficient to determine the I + 1 unknowns. The missing
two equations must be provided by boundary conditions applied at each
time step. It would be desirable for these to be representable in a form
that preserves the tridiagonal form of the system and thus the efficiency of
solution. Three possibilities are considered.

The most convenient to apply would be knowledge of the value of u on
the boundaries xmax and xmin. In (6), this could be embodied by setting
the coefficients B0 = 1, C0 = 0, AI = 0 and BI = 1, then setting D0 and
DI on the right hand side of (6) equal to the known values u(xmin, t) and
u(xmax, t) respectively. This could be appropriate, for example, if u was the
value of a call option on a stock whose current price was x, and the assumed
stochastic process for x had 0 = xmin as an absorbing state (if x ever hit 0,
it never again moves away from it). The call option would then be worth
nothing — i.e., u(xmin, t) = 0.

Alternatively, from the nature of the security being valued we may
have knowledge of the derivative ux at one or the other boundary. This
could be expressed in the form of (6) by setting B0 = −1, C0 = 1 and
D0 = hux(xmin, t). The upper boundary slope is handled analogously. This
could be appropriate, for example, if a boundary was in the region where
an option would rationally be exercised immediately, and if the derivative of
the exercise value of the option with respect to x was known. The difference

Econ 482 12

approximation we are using the ux is actually centered around a point h/2
inside the boundary. If u was known to be linear in the neighbourhood of
the boundary this should be adequate. If not, then a more elaborate ap-
proximation to the slope at the boundary (e.g., that of a quadratic through
the boundary gridpoint and the two interior ones) should be used. This
would initially upset the tridiagonal form of (6) by introducing a non-zero
term just to the right of C0. However a manual elimination of this term
by subtracting a appropriate multiple of the second equation from the first
would restore the system to the desired form.

In each of the above cases, the boundary at which you know the value or
slope of u might be at x = ∞. In that case you might consider transforming
the domain for u to some finite interval. For example, if x ranges from 0
to ∞, then y = x/(1 + x) ranges from 0 to 1. Transforming the pde into
one in v(y, t) ≡ u(x(y), t) and solving for v would let you use the known
boundary information at y = 1. See Brennan and Schwartz (1979) for an
example. One disadvantage of this approach is that a fairly large grid may
be needed to get a desired level of fineness in the levls of x of interest. In
many situations you will do better with the next approach.

The third possibility is that we have no simple information about u
at the boundaries we have chosen, yet we feel that the behaviour at these
boundaries should have little impact on the behaviour of u in that part of the
grid in which we are interested. This could be the case if the probability of
reaching the boundary from relevant starting levels of the state in time tmax−
tmin is small. This could occur if, for example, the state variable followed a
mean-reverting process. A procedure that I have found often works in this
case is to determine the boundary values of u by simple extrapolation of the
immediately interior values. Focussing on the lower boundary, quadratic
extrapolation of u3, u2, u1 to u0 implies

(x3 − x2)− (x2 − x1) = (x2 − x1)− (x1 − x0)

or, equivalently,
x0 − 3x1 + 3x2 − x3 = 0

Using this relation as the first equation in system (6) gives us
1 −3 3 −1 · · · 0

A1 B1 C1 0 · · · 0
0 A2 B2 C2 0
...

. 0
0 · · · 0 AI BI

u0,n+1

u1,n+1

u2,n+1
...

uI,n+1

 =

0

D1

D2
...

DI

 (18)

Econ 482 13

which is no longer tridiagonal. However the offending elements of the first
row of our matrix can be eliminated as follows: Define

G ≡ C1

B2 + 3C2

Multiply the first row by GC2. Add G times the third row to the first, then
subtract the second row from the first. A little algebra verifies that the third
and fourth elements of the first row are now 0. The first two elements and
corresponding right hand side element are now

B0 = GC2 −A1

C0 = G(A2 − 3C2)−B1 (19)
D0 = GD2 −D1

Extrapolation at the xmax boundary could be similarly handled. Treating
the boundaries in this fashion may not be stricly correct for a given problem.
We are in effect imposing a boundary condition uxxx = 0. This is consistent
with u being truly linear or constant in the neighbourhood of the boundary.
If used, one should check to see how much damage it may be causing by
trying out a few differing levels of xmin and xmax to make sure the solution
in the domain of interest is not sensitive to it.

In the routine CNSET this last procedure is the default, implemented if
the flags ISMN or ISMX are set to 0. If either is set to 1 then it is presumed
that a known boundary value is being provided via functions FMIN(T) or
FMAX(T) respectively.

Interpretation

Viewed as a numerical procedure, what we have done is convert a partial
differential equation that holds everywhere in some domain into a system
of simultaneous linear equations to get an approximate solution. However
what is going on can be given economic interpretation. This is most readily
apparent in the explicit approximation.

Separating out the term involving c in equation (3) lets us write ui,n+1

as

ui,n+1 = (20)

((
k

h2
a +

k

2h
b)ui+1,n + (1− 2k

h2
a)ui,n + (

k

h2
a− k

2h
b)ui−1,n) + kcui,n

The coefficient c will usually equal −r in valuing securities. The final term
is thus −rkui,n, the interest lost by holding u for an amount of time k. The

Econ 482 14

remaining coefficients on the right hand side add up to one. They can be
viewed as the probabilites of the state x moving up by h, staying unchanged,
and moving down by h respectively. Indeed, if these were the only moves
possible over the interval n+1 to n, one may verify that the expected change
in x is kb and its variance is 2ka. The distribution of x one period ahead
thus agrees with that of the risk adjusted process for x in terms of mean
and variance.

Equation (9) calculates ui,n+1 as the probability weighted average of the
possible values u may take on next period, with allowance for the opportu-
nity cost of holding the security. This is just the expected discounted value
of the security at the next time point. The values at the time n had been cal-
culated in turn as the discounted expectation of their possible values at time
n−1, and so on down to the asset’s maturity. This permits a more intuitive
interpretation of the valuation pde that we started out to solve: It states
that the equilibrium of an asset equals the expectation of the discounted
present value of its cash flows to maturity, where the expectation is with
respect to the risk adjusted process for the state variables. Cox, Ingersoll
and Ross (1985) provide a formal demonstration of this interpretation.

One can also see the limits of the explicit difference. If k is too large
relative to h, some of the alleged probabilities will be negative. This reflects
the maximum volatility of the state variable that can be represented by
simply moving up or down by h over an interval k. Negative probabilities
in this interpretation correspond to instability of the difference scheme.

We can also interpret the implicit Crank-Nicholson scheme as a jump
process approximation to the risk adjusted x process. The important differ-
ence is that that approximation permits jumps to any point in the x grid
over the interval k, and the implicit probabilities are all positive. Thus an
arbitrarily large volatility can always be represented and large k may be
used. We leave it as an exercise to work out the details. Or you may consult
Brennan and Schwartz (1978).

