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Probability, Brownian motion, Ito process . . .

Why continuous time?

It allows assumption of infinitesimal price changes over infinitesimal time
intervals so that

I portfolios can be revised before next ‘minishock’ hits

I market prices can be treated as locally linear in the things that are
varying (permits perfect hedging of risks)



Stochastic processes . . .

Brownian motion (Weiner process): stochastic process z(t) such that

1. z(0, ) = 0
2. z(t2)− z(t1) is independent of z(t4)− z(t3) for t1 < t2 < t3 < t4

3. z(t2)− z(t1) ∼ N(0, t2 − t1)

i.e., 0 start, Markov, Normal

Remarks:

z(t) is continuous in t with probability 1
z(t) is nowhere differentiable in t (very jiggly)

Martingale: stochastic process such that E[X(t2)|X(t1)] = X(t1)
(0 expected change)

Markov: stochastic process such that
p{X(t2) ∈ A|X(t1)} = p{X(t2) ∈ A|X(t), t ≤ t1}

Ito process . . .

Ito process: stochastic process obtained by modifying a Brownian
motion to have non-zero ‘drift’ and non-unit ‘volatility’.

shorthand representation: ds(t) = α(s, t) dt+ σ(s, t) dz(t)
(stochastic d.e.) or just ds = αdt+ σ dz

short for

s(t) = s(0) +
∫ t

0

α(s, τ)dτ︸ ︷︷ ︸
regular integral

+
∫ t

0

σ(s, τ)dz(τ)︸ ︷︷ ︸
Ito integral

properties:

d

dτ
E[s(τ)]|τ=t

= α(s(t), t)

d

dτ
Var[s(τ)]|τ=t

= σ2(s(t), t)



Ito’s lemma: (used heavily in conts time econ and finance)

if ds = αdt+ σ dz
and y(t) ≡ f(s, t)
and f(s, t) is ‘nice’

then y(t) follows an Ito process

and dy = (ft + αfs +
1
2
σ2fss)︸ ︷︷ ︸

drift of y

dt+ σfs dz

E.g: With constant nominal interest rate r, the nominal value of a bond
at time t is B(t) = ert. Suppose the price level follows the stochastic
process

dP = πP dt+ σP dz

Real value of the bond at time t is b(t) ≡ B(t)/P (t) = ert/P (t).
Applying Ito’s lemma, this real value follows

db = (r − π + σ2)b dt− σb dz

Hence the expected real interest yield on the bond is r − π + σ2.

Arbitrage valuation . . .

Let uncertain aspect of the world relevant for payoffs be described by s(t)
following Itô process

ds = αdt+ σ dz (1)

Suppose there are two tradeable securities whose prices are functions of
(s, t). Let A(s, t) and B(s, t) be the s-contingent prices. Applying Itô’s
lemma

dA = ( 1
2σ

2Ass + αAs +At) dt+ σAs dz (2)

dB = ( 1
2σ

2Bss + αBs +Bt) dt+ σBs dz

Cash can be risklessly borrowed or lent at floating interest rate r. Note
that r, α and σ can also be functions of (s, t).



Riskless portfolio: Construct portfolio of 1 unit of A and −As/Bs units
of B. Fund by borrowing amount (A−AsB/Bs). Let P (t) denote value
of this portfolio at time t. This value evolves as

dP = dA− As

Bs
dB − (borrowings) r dt (3)

=

(
1
2
σ2(Ass −

As

Bs
Bss) + α(As −

As

Bs
Bs) + (At −

As

Bs
Bt)− r(A−

As

Bs
B)

)
dt

No arbitrage: Position is riskless and costs 0. Market equilibrium
precludes riskless arbitrage opportunities. Hence dP = 0 dt for all (s, t).
Rearranging gives

1
2
σ2Ass + αAs +At − rA

As
=

1
2
σ2Bss + αBs +Bt − rB

Bs
(4)

This value, common to all securities dependent on s, is the ‘market price
of s-risk’. Denote it λ(s, t). Equating to left side of (4) gives

1
2
σ2Ass + (α− λ)As +At − rA = 0 (5)

This is the fundamental valuation pde. Can solve it for A(s, t).

1
2
σ2Vss + (α− λ)Vs + c+ Vt − rV = 0

Remarks:

I if securities pay dividends at continous rate c(s, t) then valuation
pde modified as above [exercise: prove it]

I arbitrage doesn’t determine λ (as in Fisher example); non-zero value
indicates market risk aversion

I many functions satisfy the pde: added boundary conditions
characterize the security and identify a particular solution

I multi-dimensional analogue when price depends on multiple factors
(see Notes)

I obtain same pde if α̂ ≡ α− λ is the objective drift and λ̂ ≡ 0. I.e.,
price is same as in a ‘risk-neutral world’ with different s process. α̂
termed the risk-adjusted drift.



1
2
σ2Vss + (α− λ)Vs + c+ Vt − rV = 0

I if s(t) denotes price of a traded security (assume no dividends on it),
then it too satisfies the pde. Since then V (s, t) = s for all s, t, it
follows that Vs = 1, Vss = Vt = 0. Substituting into the pde gives

(α− λ)− rs = 0

This pins down λ and implies that for all other derivatives of s

1
2σ

2Vss + rsVs + c+ Vt − rV = 0 (6)

This is the basis of the Black-Scholes formula, in which neither
expectations α about the rate of change in s nor the level of risk
aversion embodied in λ affect the value of the option (given s, r, σ).

Example boundary conditions

1. s = stock price, V = call option to purchase at price X at time T

V (s, T ) = max{ 0 , s(T )−X } ∀s

BS model: ds = (rs− d) dt+ σs dz

2. s ≡ r = short term interest rate, V = bond with maturity value 1 at
time T

V (r, T ) = 1 ∀r

CIR model: dr = κ(r̄ − r) dt+ σr1/2 dz

3. s = $/£ exchange rate, V = exchange rate swap based on rate s̄
(i.e., pay s̄ $/yr, receive 1 £/yr)

V (s, T ) = 0

c(s, t) = s− s̄

ds = (r − rf )s dt+ σs dz



Example boundary conditions

4. s = commodity price, V = perpetual call option to purchase 1 unit
at price K, combined with policy of exercising option when s ≥ s̄

V (s̄, t) = s−K ∀t

Note: s̄ optimal (max option value) ⇐⇒ Vs(s̄, t) = ∂
∂s (s−K) = 1

This is Merton ‘high-contact’ condition. Finding joint solution for V
and s̄∗(t) is a ‘free boundary value’ problem. Arises with American
options.

e.g., harvesting trees, opening a mine, buying equipment . . .

Black-Scholes formula . . .
Black and Scholes, JPE 1973; Merton, Bell J. 1973

Let V (s, t) be value of European call option to purchase stock at exercise
price x on date T . Current stock price is s(t), pays no dividend, and
follows risk-adjusted process ds = rs dt+ σs dz. Riskfree rate r and
proportional volatility σ are constant.

Adopt the convention of letting t denote time left to maturity. This
reverses sign on Vt in valuation pde. Maturity boundary value is
V (s, 0) = max{ 0 , s(0)− x }. Solution to the pde is

V (s, T ) = sN(d)− xe−rTN(d− σT 1/2)

in which N() denotes the cumulative normal distribution function and

d ≡
ln( sx ) + (r + σ2

2 )T
σT 1/2



Black-Scholes formula . . .

Remarks:

I Value of put option can be obtained using put-call parity: Buying a
call (price C) and shorting a put (price P ), both with exercise price
x, is identical to committing to buy the stock for price x at time T
with certainty. That, in turn, is equivalent buying the stock now and
borrowing an amount that grows to x at time T . Thus

C(s, T )− P (s, T ) = s− xe−rT

I If stock pays dividends at constant proportional rate q, replace s in
V expression by se−qT and r in d expression by r − q. (Hull ch. 14)

I American calls on non-dividend paying stocks are never rationally
exercised early. American puts, calls on dividend paying stocks can
be rationally exercised early. Hence values are greater than
European.

Feynman-Kac formula . . .
Duffie (1992, 2001) chap 5.H

Relates the solution to the valuation pde to an expected value.

Suppose ds = αdt+ σ dz and let f be the value of something that
depends on s at a fixed future date. Define

F (s, t) ≡ E[f(s(T ))|s(t)]

Applying Ito’s lemma, the expected drift in F is

E[dF ]
dt

= 1
2σ

2Fss + αFs + Ft

But if expectations are rational — i.e., follow the laws of conditional
probability — then E[dF ] = 0. Hence

1
2σ

2Fss + αFs + Ft = 0

This is identical to the valuation pde without the −rF term.



Feynman-Kac formula . . .

Now consider
G(s, t) ≡ e−r(T−t)F (s, t)

Applying Ito’s lemma, the drift in G is

1
2σ

2Gss+αGs+Gt = e−r(T−t) [ 1
2σ

2Fss + αFs + Ft]︸ ︷︷ ︸
0

+r e−r(T−t)F︸ ︷︷ ︸
G

= rG

This reduces to the same as the valuation pde:

1
2σ

2Gss + αGs +Gt − rG = 0

with boundary condition G(s, T ) = f(s). Hence the solution to the
valuation pde can be interpreted as the expected discounted value of the
terminal f(s) conditional on the current level of s.

Feynman-Kac formula . . .

More generally, the solution to the valuation pde, even with both r(t)
stochastic and with dividend flows c(s, t), is the following expectation:

V (s, t) = E∗
[
f(s(T ))e−

∫ T
t
r dτ +

∫ T

t

c(s(τ), τ)e−
∫ τ
t
r dv dτ

]

By E∗ here we mean the expectation over s paths where it follows the
risk-adjusted process ds = (α− λ) dt+ σ dz. I.e., the arbitrage-free asset
price is the expected present value of its cash flows, discounted at the
risk-free short term interest rate, until it hits a stopping boundary.

Application: Monte Carlo valuation method



Futures prices: Cox, Ingersoll, Ross, JFE 1981

Let F (s, t) be the futures price at time t for delivery at date T . Let P (s)
denote the spot price of the commodity at time T as function of s.
Assume ds = αdt+ σ dz. Note F is not an asset price.

CIR trick: Invent an asset with price V (s, t) which pays continuous
dividend at rate rV (s, t) and lump sum of P (s) at time T .

Claim: F (s, t) = V (s, t) ∀s, t.
Verify by showing no arbitrage opportunity:

Borrow V (s, 0) now, buy 1 unit of V , short 1 futures contract at price
F = V .

dF = dV ∀s, t (assumed). If dV > 0, cash settlement on futures is −dF .
Add to loan. Interest on loan is paid by dividend on V .

Final loan amount V (s, 0) +
∫ T

0
dV = V (s, T ) = F (s, T ) is paid off by

maturity value of asset (spot-futures convergence).

Futures contract expires with no further settlements.

Hence there is net 0 final outcome, regardless of s path, verifying
F (s, t) = V (s, t) ∀s, t is a solution.

1
2
σ2Vss + (α− λ)Vs + c+ Vt − rV = 0

Remarks:

I Valuation pde for asset V , and hence for futures price F , is

1
2σVss + (α− λ)Vs + Vt = 0

with boundary condition V (s, T ) = P (s), since dividend flow of
c(s, t) ≡ rV just offsets −rV term.

I The Feynman-Kac formula then implies F (s, t) equals the
(undiscounted) expected future spot price under the risk-adjusted
process.

I Further applications: computation of expected values of other
functions of s(T ). E.g., mean, variance, probability s < K, . . .



1
2
σ2Vss + (α− λ)Vs + c+ Vt − rV = 0

Interpretations of V (s, t):

1. V is the price for which the security must trade in equilibrium for
there to be no riskless arbitrage opportunities.

2. V is the expected present value, under the risk-neutral probability
measure, of the cash flows from owning the security.

3. The instantaneous expected rate of return on holding V , under the
risk-adjusted process, equals the riskfree interest rate.

4. V is the lump-sum amount that, if put into a portfolio, and used to
trade in other securities whose values fluctuate with s and riskless
bonds, can exactly replicate the cash flows of V . (self-financing
replicating portfolio).

e.g., Wells Fargo gold-linked term deposits . . .
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