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This note describes how to apply certain results from extreme value statistical theory

(EVT) to problems arising at CFSI. The basic idea is the following: If one is concerned with

the tail of a random variable’s distribution, then more robust predictions can be obtained

by fitting an appropriate tail distribution function to just the tail of the data available. By

more robust we mean that predictions are unaffected by mis-specifying the true distribution

from which the observations are drawn.

1. Statistical theory

The result we use is a theorem of Pickands (1975) and Balkema and de Haan (1974) that

under moderately general conditions the distribution of the excess y ≡ X − u of a random

variable X over a high threshold u, conditional on the threshold being exceeded, converges

to the generalized Pareto distribution (GPD).1 The GPD has two parameters, k and σ. Its

cumulative distribution function is

G(y;σ, k) =

 1− (1− ky/σ)1/k k 6= 0

1− e−y/σ k = 0
(1)

For k > 0, the above applies for 0 ≤ y < σ/k, with G = 1 for y ≥ σ/k and G = 0 for y < 0

(i.e., the range of y is bounded, as when sampling from a uniform distribution). The case k =

0 will occurs if sampling is from normal, lognormal and several other common distributions.

The case k < 0 occurs if sampling from fatter tailed distributions.2 Differentiating G with

respect to y gives the probability density function3

g(y;σ, k) =
1
σ

(1− ky/σ)−1+1/k (2)

in the relevant domain. This forms the basis for estimation of k, σ in the next section.

A result useful in applications is that the mean excess of X over any specified higher

threshold L > u is4

E[ X − L | X > L ] =
σ − kL

1 + k
(3)

1This convergence takes place as the threshold u increases toward the right endpoint of the support

of X (which may be infinite).
2There does not seem to be uniform conventions in how the parameters of the GPD are expressed.

I have here followed Neftci (2000). Embrechts et al (1997) use β in place of σ and ξ in place of −k.
3The pdf is for y ≥ 0 when k ≤ 0, zero otherwise; and for 0 ≤ y < σ/k when k > 0, zero otherwise.
4See Embrechts et al (1997, p.165) Theorem 3.4.13(e).
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2. Estimation of tail distribution parameters

Suppose we have a large set of N independent observations of X. Choose a tail estimation

threshold u large enough so that the observations exceeding u are credibly in the upper tail,

but not so large that the number of observations is insufficient to confidently identify k, σ.

Let n be the number of observations exceeding u. There is a tradeoff here between bias,

from not being sufficiently far in the tail for the asymptotic distribution result to hold, and

variance, from having too few observations to fit k, σ. A good starting point would be to

choose u such that n/N lay between 1% and 5%. A careful illustration of how one might

analyze the data is provided by McNeil (1996).

Let Xi, i = 1 . . . n denote the observations above the u selected, and yi = Xi − u the

corresponding exceedances. Using the iid assumption, the log of the likelihood function for

this data is the sum of the log density functions from (2):5

L = −n lnσ − (1− 1
k
)

n∑
i=1

ln(1− kyi/σ) (4)

Maximum likelihood estimates are the values of k, σ maximizing this expression.6 First order

conditions for a maximum of L with respect to k, σ are

Lσ = 0 = −n/σ − (1− 1
k
)
∑

i

kyi/σ2

1− kyi/σ
(5)

Lk = 0 = − 1
k2

∑
i

ln(1− kyi/σ) + (1− 1
k
)
∑

i

yi/σ

1− kyi/σ
(6)

Define the new variable c ≡ k/σ. Substitute into the first order conditions. The pair of

equations can be partially solved to

k = − 1
n

∑
i

ln(1− cyi) (7)

0 = n +
(

1 +
n∑

i ln(1− cyi)

) ∑
i

cyi

1− cyi
(8)

Note that the last equation contains only the single unknown c. Although not analytically

solvable, it is readily numerically solvable for ĉ (e.g., by Newton’s method or the secant

method). Then k̂ can be computed from (7), and σ̂ = k̂/ĉ.

3. Mean option payoffs

Suppose our object of interest is the expected value of a call option-like payout, with X as

underlying and strike price L > u in the upper tail of the distribution of possibilities. I.e.,
5L is −∞ for max yi ≥ σ/k when k > 0.
6Embrechts et al (1997 p.356) state this is valid only for k < 1/2.
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we wish an estimate of

V ≡ E[ max{ 0 , X − L } ] (9)

for a single X draw. Proceed as follows. From our total data set and the iid assumption, an

unbiased estimate of the probability that X exceeds u is given by

p(X > u) =
n

N
(10)

Next, the probability that X exceeds L conditional on it exceeding u is one minus the

estimated GPD cumulative distribution function G(L− u, σ̂, k̂).

p(X > L |X > u) = (1− k(L− u)/σ)1/k (11)

Finally, the expected value of X −L conditional on X exceeding L is given by equation (3).

The expectation V is the product of these three terms. Hence

V̂ =
n

N

σ + ku

1− k
(1− k(L− u)/σ)1/k (12)

Note that the probability that the option makes a non-zero payoff at all is the product of

the first two expressions (10) and (11) alone.
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