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1. Jump-diffusion stock price model

Let s(t) be the price at time t of a traded asset. Assume it follows a jump-diffusion process

ds(t) = (r + λx̄)s dt + ωs dz(t)− xs dπ(t) (1)

where z(t) is a standard Brownian motion, ω a constant diffusion volatility, π(t) the cumu-

lative number of jumps by time t, and x the jump size conditional on a jump occurring.

Jump arrival is a Poisson process with constant intensity λ. Jump size x is a random vari-

able with mean x̄. The instantaneous riskfree interest rate is r. Drift has been set to make

the expected rate of return equal to the risk free rate assuming no dividends. (1) is thus

an equilibrium process for s under the risk-neutral measure. Notice that jumps have been

specified as downward moves for convenience below. The starting values of z and π are 0.

Applying Ito’s Lemma, the transformed variable ln s(t) follows

d ln s(t) = (r + λx̄− ω2/2) dt + ω dz(t)− xdπ(t) (2)

Hence ln s(T ) equals

ln s(T ) = ln s(0) + (r + λx̄− ω2/2)T + ω z(T )−
∑π(T )

i=1 xi (3)

in which xi denotes the random size of jump i. The diffusion component z(T ) is normally

distributed with mean 0 and variance T ; π(T ) is Poisson distributed with parameter λT .

We leave unspecified the particular jump distribution, but will assume that the regularity

conditions of extreme value theory hold so that its upper tail, conditional on the jump size

exceeding some threshhold u, can be approximated by a generalized Pareto distribution. Pa-

rameters of that distribution are its location u, shape k and scale σ.1 Taking the exponential

of both sides, (3) implies

s(T ) = s0 exp((r + λx̄− ω2/2)T + ωz(T )−
∑π(T )

i=1 xi) (4)

in which π is the number of jumps occurring in [0, T ], xi are the corresponding jump sizes,

and s0 is the initial asset price.
1These correspond to the parameters of the notes on extreme value theory.
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2. Short maturity put option values

The theoretical value of a european put option with strike K maturing at T is

P (s0, T ) = E∗[e−rT max{0,K − s(T )}]

= E∗[e−rT s0 max{0,
K

s0
− exp(r + λx̄ωz(T )−

∑π
1 xi)}] (5)

This section approximates (5) for short maturities. For small T treat the riskless rate as 0

and the drift as negligible. For small λ the probability of two jumps occurring in [0, T ] is

negligible relative to the probability of one jump. The probability of no jumps occurring is

e−λT ∼ 1− λT . Value of the option per dollar of current s0 is thus approximately

P

s0
= E∗[max{0,

K

s0
− eωz(T )−x} ] (6)

= (1− λT ) E∗[max{0,
K

s0
− eωz(T )} ] + λT E∗[max{0,

K

s0
− eωz(T )−x} ] (7)

The first expectation of the right hand side is the standard Black-Scholes option value; the

second is the value conditional on one jump occurring with x being the random jump size.

For near the money options and small λT , value will be dominated by the first term.

For far from the money options, it will be dominated by the second. When estimating the

tail distribution from daily data of large market declines, we were actually fitting the tail

distribution to x− ωz(T ) together.

Now limit attention to far out of the money options. For these the first term of (7) will

be insignificant relative to the second. The option expires in the money only if

y = x− ωz(T ) > − ln(K/s0) >> 0 (8)

This is clearly in the upper tail of x−ωz realizations. Using the Generalized Pareto approx-

imation to the density of this random variable, the value of the option is thus

P

s0
= p(y > u)

∫ ∞

− ln K/s0

(
K

s0
− e−y)f(y|y > u) dy (9)

= λT

∫ ∞

− ln K/s0

(
K

s0
− e−y)

(1− k(y − u)/σ)−1+1/k

σ
dy

=
λT

σ

∫ 1

1−K/s0

(h− 1 +
K

s0
)(1 + k(u + ln(1− h))/σ)−1+1/k 1

1− h
dh (10)

in which f(y) is the generalized Pareto density function. The second line takes f(y) from

the previous notes on the application of extreme value theory. The third line changes the

variable of integration from y to h = 1 − e−y (one day proportional fall in the asset price).

Evaluation of this integral is done numerically using Simpson’s Rule.2

2The change of varable is done to give finite limits of integration to facilitate numerical solution.
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3. The FinCat payoff structure

In the FinCat deal, payout is based on the proportion beyond .25 by which the S&P 500

Index falls over one day (close to close). Let s(t) denote the level of the Index at time t. Let

a0 and a1 denote the attachment and cap levels of the proportional Index change (currently

values proposed are .25 and .50), and A the notional amount of the contract. Payout for day

t is thus

q(t) = max{ 0 , min{ a1 − a0 , 1− s(t)
s(t− δ)

− a0} } A (11)

where δ is one trading day. Expected value of q is the value of the one day long put short

call option that it represents. Expressed per dollar of notional A, it can be written similarly

to (10)

E∗[q]
A

=
λδ

σ

(∫ a1

a0

(h− a0)(1 + k(u + ln(1− h))/σ)−1+1/k 1
1− h

dh + (a1 − a0)p(h > a1)
)

=
λδ

σ

(∫ a1

a0

(h− a0)(1 + k(u + ln(1− h))/σ)−1+1/k 1
1− h

dh (12)

+ (a1 − a0)(1 + k(u + ln(1− a1)/σ)1/k
)

The expression for p(h > a1) is 1−G(y;σ, k), where G is the generalized Pareto cumulative

distribution function from earlier Notes.

A maximum likelihood estimate of λδ, the probability of jump exceeding u in a given

day, is simply n/N as in the earlier Notes. That is the fraction of days in the sample of size

N where (log) market declines exceeded a specified threshhold u (e.g., u = .07 for roughly

7 percent market decline). However note that this estimates the objective rather than risk

neutral process parameter.

The integral in (12) is computed numerically in the fortran program ESTIMATE.FOR.

Additionally, the price there is divided by a1−a0 so that it is a price per dollar of maximum

loss exposure and multiplied by 250 trading days/year to give the fair annualized rate of

premium payment that would just compensate for the estimated empirical loss rate. This of

course assumes each day is a new and independent draw of proportional market moves.

If premium is to be paid continuously over time, then no discounting of the daily options

or the premiums is needed to find the fair premium rate. If paid up front for the 10 years,

then discounting of the appropriate fair continuous stream at the current swap-curve rate

would have to be done.

I believe the deal also caps our total exposure during the 10 year life. However premium

would only be paid on remaining maximum exposure. If the effect is to reduce the notional

The last term in the integrand is the Jacobian dy/dh of the transformation required when changing

variables.
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underlying in proportion to our cumulative payout (i.e., a0, a1 are unchanged for the re-

maining notional), neither this nor any other scale changes should affect the premium rate

required.
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