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1. Itô’s Lemma

Itô’s lemma is an indispensible tool for working with continuous time random
processes. This note informally ‘derives’ it using Taylor series approxima-
tions. First, what does Itô’s lemma say?

Suppose that some variable y is a function f(s, t) of s and t, and that s
follows a continuous random process that can be described by

ds(t) = α dt + σ dz(t)

Here α is the instantaneous expected rate of change in s and σ is its instan-
taneous standard deviation. Then y will also follow a random process —
one induced by the randomness of s. Itô’s lemma relates the characteristics
of the y process to the s process. Specifically, y will follow

dy(t) = (αfs + 1
2σ2fss + ft) dt + σfs dz(t)

where subscripts denote partial derivatives. What stands out is that the
expected rate of change in y is not simply the sum of its rate of change due
to the passage of time, ft, and the expected rate of change in s times y’s
sensitivity to s, αfs, but also has a term involving the volatility of s and the
second derivative of f .

To see why this is so, suppose that we are initially at some s, t and that
a short interval of time ∆t passes. During this time there will be some
associated ∆z. Expanding f in a Taylor series around its starting value,

f(s + α∆t + σ∆z, t + ∆t) =
f(s, t) + [α∆t + σ∆z] fs + ∆t ft + 1

2 [α2∆t2 + 2ασ∆t∆z

+ σ2∆z2] fss + [α∆t2 + σ∆z∆t] fst + 1
2∆t2 ftt

+ third and higher order terms

Now subtract f(s, t) from both sides to get an expression for ∆f and take
its expected value. Since z is following a standard Brownian motion, ∆z is
normally distributed with expected value 0 and variance ∆t. I.e., E[∆z2] =
∆t.

E[∆f ] = [12σ2fss + αfs + ft]∆t

+ second and higher order terms in ∆t

For small ∆t we can ignore the higher order terms, giving us the expected
rate of change in f corresponding to Itô’s lemma above. Finally, subtract
this expected ∆f from ∆f itself to get the random part of the change in f :

∆f − E[∆f ] = σfs ∆z + second and higher order terms in ∆t and ∆z
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This gives us the last part of the Itô’s lemma expression.
The main point of all this is that the Jensen’s inequality effect, embodied

in the second derivative term, does not fade away as ∆t becomes small. This
is a consequence of z(t) almost everywhere following an extremely “jiggly”
path. The parameters α and σ can be functions of t and s. A formally
correct proof can be found in Malliaris and Brock (1982) and the works that
they cite.

An example

In a world with a constant nominal interest rate r, a bond portfolio with
value of $1 at time 0 and continuously reinvested coupon payments will be
worth B(t) = ert at time t. Suppose that the price level evolves randomly
according to the stochastic process

dP = πP dt + σP dz

where π is the expected inflation rate and σ is its proportional standard
deviation per unit time. The real value of the bond portfolio at time t will
be

b(t) =
B(t)
P (t)

=
ert

P (t)

What is the expected real return on the bonds?
Applying Itô’s lemma to b, with

bt = rert/P = rb
bP = −B/P 2 = −b/P
bPP = 2B/P 3 = 2b/P 2

we get db:
db(t) = (σ2 − π + r) b dt + σb dz

Thus the expected real rate of return to holding nominal bonds in this world
of uncertain inflation is r − π + σ2.

The n–dimensional case

Here we simply state the extension of Itô’s lemma to the case of several
variables. Suppose y = f(s1, s2, ..., sn, t) is a function of n random state
variables and time. Let the vector s follow a joint random process described
by

ds(t) = α dt + σ dz(t)
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where α is now a n-dimensional column vector, σ is a matrix with n rows
and m columns, and z(t) is a m-dimensional column vector of independent
Brownian motions. Then

dy(t) = ( ft + α′fs + 1
2

∑
i

∑
jfij [σσ′]ij) dt + f ′sσ dz(t)

in which fij denotes ∂2f/∂si∂sj and fs denotes the column vector of partial
derivatives ∂f/∂si.

Exercise

Let P (t) be the price of a $1 maturity value pure discount bond at time t,
maturing at time T . Let r(t) denote the continuously compounded yield to
maturity at time t on discount bonds maturing at calendar date T . Suppose
that r is know to follow the stochastic process

dr(t) = α dt + σr1/2dz(t)

with σ a constant.

1. What is stochastic process is followed by the price P (t)?

2. What is the instantaneous expected yield at time t on holding the
bond?

3. Does the answer to 2) make sense in the case where σ and α are both
0?

4. If σ equals 0, what is the time path followed by the riskless instanta-
neous interest rate?
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2. Valuation by Arbitrage

Common to much of continuous time asset valuation theory is the result
that the price of a security is the solution to some sort of partial differential
equation (pde). This note derives the valuation pde from the notion that
in equilibrium there will be no riskless arbitrage opportunities. We consider
the case of just one ‘state’ variable, or dimension of relevant uncertainty for
the securities involved. This does not require that all else in the economy be
non-random. It only means that we assume that the prices of the securities
we are examining are not contingent on those other factors.

Let the aspect of the world that is uncertain be some state variable s,
with s(t) denoting its level at time t. Assume its evolution over time follows
an Itô process, i.e., can be meaningfully described by

ds = α dt + σ dz (1)

where dz is the increment in a standard Wiener process and α and σ may be
functions of s and t. Let there be two tradeable securities whose values at
time t are functions of t and s(t). We use A(s, t) and B(s, t) to denote their
contingent prices. Applying Itô’s Lemma, these prices evolve according to

dA = (1
2σ2Ass + αAs + At) dt + σAs dz (2)

dB = (1
2σ2Bss + αBs + Bt) dt + σBs dz

In addition, cash may be risklessly borrowed or lent at an instantaneous
floating interest rate r. This rate may also be a function of (s, t).

Now consider a portfolio consisting of 1 unit of A and −As/Bs units of
B. Suppose it is acquired completely by borrowing, with the proceeds of the
short sale of B available to reduce the amount owed. One’s net borrowing is
thus (A−AsB/Bs). The value of this position, call it P , evolves as follows:

dP = dA− As

Bs
dB − (net borrowings) r dt = (3)(

1
2σ2(Ass −

As

Bs
Bss) + α(As −

As

Bs
Bs) + (At −

As

Bs
Bt)− r(A− As

Bs
B)

)
dt

Note that the position is riskless — the dz terms cancelled out as a result
of the ratio of B to A chosen — and was costless to acquire. If dP was
anything other than 0 then the position (or its exact opposite) would offer
a sure profit, something for nothing. As long as there was at least one
individual trading for whom more was better, such as situation could not
persist. Thus dP = 0 is a requirement of market equilibrium.
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Imposing this and rearranging equation (3) gives us

1
2σ2Ass + αAs + At − rA

As
=

1
2σ2Bss + αBs + Bt − rB

Bs
(4)

The numerator of each side is the expected return from holding the asset
over and above the riskless return opportunity cost of holding it (the ‘excess
expected return’). The denominator is the sensitivity of the asset’s value to
fluctuations in the state, or number of units of ‘s–risk’ one bears by holding
it. Absence of arbitrage implies that this ratio is the same for each asset.
This common value will be denoted by λ(s, t) and called the market price
of s–risk.

Since A could have been paired with a different asset, the main point is
that there is single λ common to all assets whose prices are functions of s and
t. Equating the left side of (4) to λ and rearranging gives the fundamental
valuation pde

1
2σ2Ass + (α− λ)As + At − rA = 0 (5)

If one is willing to assume a specific functional form for the risk price λ(s, t),
this pde can in principle be solved for the equilibrium state contingent price
of the security. But the notion of no arbitrage by itself does not say what
this risk price should be. It only says that the same aversion (or attraction)
to s–risk will be embodied in all securities.

Rearranging (5) aids in interpreting it. Writing it as

1
2σ2Ass + αAs + At

A
= r + λ

As

A
(6)

puts it in a form reminiscent of the Capital Asset Pricing Model. The
left side is the expected rate of return to holding A. It equals the riskless
rate plus an amount proportional to A’s proportional sensitivity to s. This
proportional sensitivity will have the same value as the local covariance of
A with s divided by the local variance of s. If s was the value of the ‘market
portfolio’ then λ would be its excess expected return. This is not the CAPM,
however, since A and s are perfectly correlated locally.

Another interpretation of (5) comes from recognizing that we would have
the same pde if the expected rate of change in s was α̂ ≡ α − λ but there
were no λ term, i.e., the expected rate of return on holding A was equal to
the riskless interest rate r. This means securities sell for the same price as
they would in a risk neutral world in which s followed the ‘risk adjusted’
stochastic process of equation (1) with α̂ replacing α . This α̂ is termed the
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risk adjusted growth rate in s. One consequence of this property is that one
may, for example, perform a Monte Carlo simulation of the risk adjusted
process for a state variable, then estimate A by simply calculating average
present values of the cash flows arising from the security.

Equation (5), as it stands, does not uniquely determine a function A(s, t).
Many different functions can satisfy the relation, corresponding to the fact
that there are many types of securities whose value could be a determin-
istic function of s and t. To obtain a unique solution one must impose
additional restrictions on A. These are lumped together under the name
boundary conditions, and are what distinguishes one s-dependent security
from another. The term arises from the fact that A is presumed to satisfy
a differential equation only in an open (though possibly unbounded) region
in the (s, t) plane. Characteristics at the boundary of the region ‘pin down’
what function it is.

One type of boundary condition occurs if the security is one that matures
or expires, and its maturity value is a known function of s. This is termed
an initial value condition since it is convenient in such contexts to let t = 0
represent that time and suppose that time runs backwards from a positive
value down to 0. For example, a default free bonds satisfies A(s, 0) = 1.0
for all s if its maturity value is one dollar. A claim to one ounce of gold
satisfies A(s, 0) = s if s is the spot price of gold. Addition types of boundary
conditions will be introduced as we proceed.

The Black-Scholes case

An important simplification occurs when the state variable is itself the price
of a traded asset. This is the case when, for example, s is the price of the
shares in some company and A is price of an option to purchase or sell a
share at a particular exercise price, investigated by Fischer Black and Myron
Scholes (1973). Let the asset B be the underlying stock, i.e., B(s, t) = s.
Then Bs = 1, Bss = 0, and Bt = 0. Making these substitutions into the
valuation pde reduces it to

α− λ = rs (7)

Black and Scholes also assume that s follows a constant proportional volatil-
ity process, i.e., ds(t) = α(s, t) dt + σs dz(t) where σ is a constant. Substi-
tuting rs for α− λ into the pde for the derivative asset A reduces (5) to

1
2σ2s2Ass + rsAs −At − rA = 0 (8)

We adopt the convention here of letting t denote the time remaining to
expiry of the option. Since t is now declining as time moves forward this
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reverses the sign on the At term in the pde.
Since neither α nor λ enter the pde, the value of the option in terms

of the stock price s is independent of both risk attitudes and the expected
rate of change in the stock price! Put another way, the current value of s
embodies all that is needed about these things to determine the value of A.

For some types of derivative securities (equivalently some types of bound-
ary conditions), an explicit solution to (8) can be obtained. If the security
is a European call option with exercise price X, maturing in T years, on the
asset whose price is s, then the boundary condition is

A(s, 0) = max{0, s(0)−X} (9)

The function A satisfying (8) subject to (9) is

A(s, T ) = sN(d)−Xe−rT N(d− σT 1/2) (10)

in which N() denotes the cumulative normal distribution function and

d ≡
ln( s

X ) + (r + σ2

2 )T
σT 1/2

(11)

Exercises

1. The cumulative normal distribution function is defined as N(y) =
(2π)−1/2

∫ y
−∞ e−y2/2dy. Use the chain rule to get the partial derivatives

of A given in (10) and show that A satisfies the pde (8).

2. Extend the arbitrage argument of this section to the case where the
underlying asset whose price is s pays a dividend continuously at a rate
c(s, t), and the derivative security whose price is A pays dividends at
a continuous rate q(s, t). Show that the valuation pde (8) in this more
general case is

1
2σ2s2Ass + (rs− c)As + q −At − rA = 0

Multi-factor arbitrage valuation

Let there be n state variables denoted by the vector s = (s1(t), . . . sn(t)).
Suppressing the time argument, let each follow a diffusion process

dsi = αi dt + σidzi
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where the instantaneous drift and volatility may be (well-behaved) functions
of (s, t), and dzi is the increment in a standard Weiner process. These incre-
ments can be correlated: ρij denotes the instantaneous correlation between
dzi and dzj .

Suppose there are n locally linearly independent assets (to be clarified
below) whose prices are deterministic functions Ak(s, t) of t and s(t). Ap-
plying Ito’s lemma tells us asset k follows the process

dAk = (1
2

∑
i

∑
j ρijσiσjA

k
ij +

∑
i αiA

k
i + At) dt +

∑
i σiA

k
i dzi

Subscripts on A indicate appropriate partial derivatives.
Construct n portfolios Xi combining riskless bonds yielding r and these

assets such that: (1) each portfolio has 0 current value, and (2) the derivative
of the value of portfolio i with respect to dzk equals σi for k = i, 0 for k 6= i.
Letting β be the matrix of amounts βij of asset j held in portfolio i, and As

be the Jacobian [∂Ai/∂sj ], this means

βAs = S ≡ diag(σi)

S is a matrix with diagonal elements σi, 0 elsewhere. This construction
is possible if As is not singular, with β = SA−1

s . Portfolio Xi thus has
unit risk exposure to si-risk. The expected return, or instantaneous drift,
of these portfolios can be found from the drifts of Ak — very messy. Let
us denote the expected return per unit time on portfolio Xi by λi. Hence
dXi = λi dt + σi dzi.

Now consider any other asset with price P (s, t). Construct a portfolio V
consisting of one unit of this asset, −P dollars of riskless bonds to pay for
it, and −∂P/∂si units of each portfolio Xi constructed above. The latter
have zero current value so require no further financing. But they precisely
offset the effect of the dzi’s on P in the portfolio, rendering it riskless. For
there not to be an arbitrage opportunity, the return on V over an interval
dt must thus be zero:

dV =
(

1
2

∑
i

∑
j ρijσiσjP

k
ij +

∑
i αiP

k
i + Pt − rP −

∑
i λiPi

)
dt = 0

Dividing by dt and rearranging, equilibrium P must thus satisfy

1
2

∑
i

∑
j ρijσiσjP

k
ij +

∑
i(αi − λi)P k

i + Pt − rP = 0
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Figure 1: pde solution grid
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3. Numerically Solving PDE’s: Crank-Nicholson
Algorithm

This note provides a brief introduction to finite difference methods for solv-
ing partial differential equations. We focus on the case of a pde in one state
variable plus time. Suppose one wishes to find the function u(x, t) satisfying
the pde

auxx + bux + cu− ut = 0 (1)

subject to the initial condition u(x, 0) = f(x) and other possible boundary
conditions. This initial condition will correspond to a maturity or expiry
date value condition in our applications and t will denote time left to ma-
turity. Thus time will run backwards down to 0, explaining the negative ut

term in (1). The coefficients a, b, c may themselves be functions of x, t. Any
parameters are presumed given, so that one can calculate a numerical value
for these functions for any given x, t.

Obviously one cannot ‘calculate’ the entire function u. What we shall
consider a solution is the numerical values that u takes on a grid of x, t values
placed over some domain of interest. Once we have these u values, since u
is assumed to be smooth almost everywhere, we can interpolate within this
grid to get values for arbitrary x, t.
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To this end, suppose the domain we will work on is rectangular with
x ranging from xmin to xmax and t ranging from 0 to T . Divide [0, T ]
into N equally spaced intervals at t values indexed by n = 0, 1, . . . , N , and
[xmin, xmax] into I intervals at x values indexed by i = 0, 1, . . . , I. The length
of these intervals is k in the time direction and h in the x direction. We seek
an approximation to the true values of u at the (N +1)× (I +1) gridpoints.
Let ui,n denote our approximation at the gridpoint where x = xmin + ih,
t = nk.

The next step — and this is what makes this procedure a finite difference
method — is to approximate the partial derivatives of u at each gridpoint
by difference expressions in the as yet unknown ui,n’s. We can calculate
ui,0 for each i directly from the initial value condition f . Thus it is natural
to start from this boundary are work outward, calculating the ui,n+1’s from
ui,n. Focussing on an arbitrary internal gridpoint in, one could approximate
the partial derivatives at that point by the following:

u = ui,n

∂u/∂t =
ui,n+1 − ui,n

k

∂u/∂x =
ui+1,n − ui−1,n

2h
(2)

∂2u/∂x2 =
ui+1,n − 2ui,n + ui−1,n

h2

The differences in the x, or state, direction have been centered around the
point in to give ‘second order’ accuracy to the approximation. These ex-
pressions could then be substituted into the pde (1). Solving the resulting
equation for ui,n+1 gives the explicit solution

ui,n+1 = (
k

h2
a +

k

2h
b)ui+1,n + (1 + kc− 2k

h2
a)ui,n + (

k

h2
a− k

2h
b)ui−1,n (3)

One could then proceed to calculate all the ui,n+1’s from the ui,n’s and
recursively obtain u for the entire grid. Since equation (3) applies only to
the interior gridpoints, we at each time step would have to make use of some
other boundary conditions (e.g., at xmin and xmax) to identify all the u’s.
More will be said about this later.

The result of this is called an explicit finite difference solution for u. It is
second order accurate in the x direction, though only first order accurate in
the t direction, and easy to implement. Unfortunately the numerical solution
is unstable unless the ratio k/h2 is sufficiently small. By unstable is meant
that small errors due either to arithmetic inaccuracies or to the approximate
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nature of the derivative expressions will tend to accumulate and grow as one
proceeds rather than dampen out. Loosely speaking, this will occur when the
difference equation system described by (3) has eigenvalues greater than one
in absolute value. See a numerical analysis book such as Vemuri and Karplus
(1981) or Lapidus and Pinder (1982) for discussion of stability issues.

The instability problem can be handled by instead using and implicit
finite difference scheme. The recommended method for most problems in the
Crank-Nicholson algorithm, which has the virtues of being unconditionally
stable (i.e., for all k/h2) and also is second order accurate in both the x and
t directions (i.e., one can get a given level of accuracy with a coarser grid in
the time direction, and hence less computation cost). This is the algorithm
implemented by the routines CNSET and CNSTEP handed out in class.

The algorithm entails proceeding as before, but using difference expres-
sions for the partial derivatives which are centered around t + k/2 rather
than around t. Thus the expressions for u, ux and uxx are averages of what
we had in (3) for times n and n + 1:

u =
ui,n + ui,n+1

2

∂u/∂t =
ui,n+1 − ui,n

k

∂u/∂x =
ui+1,n − ui−1,n + ui+1,n+1 − ui−1,n+1

4h
(4)

∂2u/∂x2 =
ui+1,n − 2ui,n + ui−1,n + ui+1,n+1 − 2ui,n+1 + ui−1,n+1

2h2

Substituting the above into the pde, multiplying through by 4h2k to elimi-
nate the denominators, and collecting all the terms involving the unknown
u·,n+1’s on the left hand side results in

Ai︷ ︸︸ ︷
−(2ka + khb) ui+1,n+1 +

Bi︷ ︸︸ ︷
(4h2 + 4ka− 2h2kc) ui,n+1

Ci︷ ︸︸ ︷
−(2ka− khb) ui−1,n+1

= (5)
(2ka + khb)ui+1,n + (4h2 − 4ka + 2h2kc)ui,n + (2ka− khb)ui−1,n︸ ︷︷ ︸

Di

for each i = 1, . . . , I − 1. It is apparent that that the u·,n+1’s cannot in-
dividually be written as simple linear combinations of the u·,n+1’s, but are
simultaneously determined as the solution to this system of linear equa-
tions. However this system has a very convenient structure. Written in
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matrix form, (5) provides the interior equations of
B0 C0 0 0 · · · 0
A1 B1 C1 0 · · · 0
0 A2 B2 C2 0
...

. . . . . . . . . 0
0 · · · 0 AI BI




u0,n+1

u1,n+1

u2,n+1
...

uI,n+1

 =


D0

D1

D2
...

DI

 (6)

This sort of system is most efficiently solved by Gaussian elimination. It
requires just 8I floating point operations to determine the unknown u·,n+1’s
(e.g., see Press et al., 1986, p.40 or the listing of routine TRIDAG at the end
of CNSTEP).

Boundary conditions

We almost have a procedure for recursively determining the entire grid of
ui,n’s starting from the given initial values. Substitution of the the difference
expressions into the differential equation only gave us a linear equation for
each interior point in the grid. That gives I − 1 equations at each time
step, which is not sufficient to determine the I + 1 unknowns. The missing
two equations must be provided by boundary conditions applied at each
time step. It would be desirable for these to be representable in a form
that preserves the tridiagonal form of the system and thus the efficiency of
solution. Three possibilities are considered.

The most convenient to apply would be knowledge of the value of u on
the boundaries xmax and xmin. In (6), this could be embodied by setting
the coefficients B0 = 1, C0 = 0, AI = 0 and BI = 1, then setting D0 and
DI on the right hand side of (6) equal to the known values u(xmin, t) and
u(xmax, t) respectively. This could be appropriate, for example, if u was the
value of a call option on a stock whose current price was x, and the assumed
stochastic process for x had 0 = xmin as an absorbing state (if x ever hit 0,
it never again moves away from it). The call option would then be worth
nothing — i.e., u(xmin, t) = 0.

Alternatively, from the nature of the security being valued we may
have knowledge of the derivative ux at one or the other boundary. This
could be expressed in the form of (6) by setting B0 = −1, C0 = 1 and
D0 = hux(xmin, t). The upper boundary slope is handled analogously. This
could be appropriate, for example, if a boundary was in the region where
an option would rationally be exercised immediately, and if the derivative of
the exercise value of the option with respect to x was known. The difference
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approximation we are using the ux is actually centered around a point h/2
inside the boundary. If u was known to be linear in the neighbourhood of
the boundary this should be adequate. If not, then a more elaborate ap-
proximation to the slope at the boundary (e.g., that of a quadratic through
the boundary gridpoint and the two interior ones) should be used. This
would initially upset the tridiagonal form of (6) by introducing a non-zero
term just to the right of C0. However a manual elimination of this term
by subtracting a appropriate multiple of the second equation from the first
would restore the system to the desired form.

In each of the above cases, the boundary at which you know the value or
slope of u might be at x = ∞. In that case you might consider transforming
the domain for u to some finite interval. For example, if x ranges from 0
to ∞, then y = x/(1 + x) ranges from 0 to 1. Transforming the pde into
one in v(y, t) ≡ u(x(y), t) and solving for v would let you use the known
boundary information at y = 1. See Brennan and Schwartz (1979) for an
example. One disadvantage of this approach is that a fairly large grid may
be needed to get a desired level of fineness in the levls of x of interest. In
many situations you will do better with the next approach.

The third possibility is that we have no simple information about u
at the boundaries we have chosen, yet we feel that the behaviour at these
boundaries should have little impact on the behaviour of u in that part of the
grid in which we are interested. This could be the case if the probability of
reaching the boundary from relevant starting levels of the state in time tmax−
tmin is small. This could occur if, for example, the state variable followed a
mean-reverting process. A procedure that I have found often works in this
case is to determine the boundary values of u by simple extrapolation of the
immediately interior values. Focussing on the lower boundary, quadratic
extrapolation of u3, u2, u1 to u0 implies

(x3 − x2)− (x2 − x1) = (x2 − x1)− (x1 − x0)

or, equivalently,
x0 − 3x1 + 3x2 − x3 = 0

Using this relation as the first equation in system (6) gives us
1 −3 3 −1 · · · 0

A1 B1 C1 0 · · · 0
0 A2 B2 C2 0
...

. . . . . . . . . 0
0 · · · 0 AI BI




u0,n+1

u1,n+1

u2,n+1
...

uI,n+1

 =


0

D1

D2
...

DI

 (7)
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which is no longer tridiagonal. However the offending elements of the first
row of our matrix can be eliminated as follows: Define

G ≡ C1

B2 + 3C2

Multiply the first row by GC2. Add G times the third row to the first, then
subtract the second row from the first. A little algebra verifies that the third
and fourth elements of the first row are now 0. The first two elements and
corresponding right hand side element are now

B0 = GC2 −A1

C0 = G(A2 − 3C2)−B1 (8)
D0 = GD2 −D1

Extrapolation at the xmax boundary could be similarly handled. Treating
the boundaries in this fashion may not be stricly correct for a given problem.
We are in effect imposing a boundary condition uxxx = 0. This is consistent
with u being truly linear or constant in the neighbourhood of the boundary.
If used, one should check to see how much damage it may be causing by
trying out a few differing levels of xmin and xmax to make sure the solution
in the domain of interest is not sensitive to it.

In the routine CNSET this last procedure is the default, implemented if
the flags ISMN or ISMX are set to 0. If either is set to 1 then it is presumed
that a known boundary value is being provided via functions FMIN(T) or
FMAX(T) respectively.

Interpretation

Viewed as a numerical procedure, what we have done is convert a partial
differential equation that holds everywhere in some domain into a system
of simultaneous linear equations to get an approximate solution. However
what is going on can be given economic interpretation. This is most readily
apparent in the explicit approximation.

Separating out the term involving c in equation (3) lets us write ui,n+1

as

ui,n+1 = (9)

((
k

h2
a +

k

2h
b)ui+1,n + (1− 2k

h2
a)ui,n + (

k

h2
a− k

2h
b)ui−1,n) + kcui,n

The coefficient c will usually equal −r in valuing securities. The final term
is thus −rkui,n, the interest lost by holding u for an amount of time k. The
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remaining coefficients on the right hand side add up to one. They can be
viewed as the probabilites of the state x moving up by h, staying unchanged,
and moving down by h respectively. Indeed, if these were the only moves
possible over the interval n+1 to n, one may verify that the expected change
in x is kb and its variance is 2ka. The distribution of x one period ahead
thus agrees with that of the risk adjusted process for x in terms of mean
and variance.

Equation (9) calculates ui,n+1 as the probability weighted average of the
possible values u may take on next period, with allowance for the opportu-
nity cost of holding the security. This is just the expected discounted value
of the security at the next time point. The values at the time n had been cal-
culated in turn as the discounted expectation of their possible values at time
n−1, and so on down to the asset’s maturity. This permits a more intuitive
interpretation of the valuation pde that we started out to solve: It states
that the equilibrium of an asset equals the expectation of the discounted
present value of its cash flows to maturity, where the expectation is with
respect to the risk adjusted process for the state variables. Cox, Ingersoll
and Ross (1985) provide a formal demonstration of this interpretation.

One can also see the limits of the explicit difference. If k is too large
relative to h, some of the alleged probabilities will be negative. This reflects
the maximum volatility of the state variable that can be represented by
simply moving up or down by h over an interval k. Negative probabilities
in this interpretation correspond to instability of the difference scheme.

We can also interpret the implicit Crank-Nicholson scheme as a jump
process approximation to the risk adjusted x process. The important differ-
ence is that that approximation permits jumps to any point in the x grid
over the interval k, and the implicit probabilities are all positive. Thus an
arbitrarily large volatility can always be represented and large k may be
used. We leave it as an exercise to work out the details. Or you may consult
Brennan and Schwartz (1978).


