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I. Understanding the Fundamentals of Modelling
Dependent Risks

e Exploring the basics of multivariate statistics
e A detailed assessment of multivariate normal distributions
e Evaluating elliptical models and normal mixture models

e Examining portfolio theory in an elliptical world
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1. Multivariate Statistics: Basics
Some Univariate Notation

Let X be a random variable (rv) representing a risk or risk factor.
Let F' be the distribution function (df) of X, i.e. F(z) = P(X < z).

The tail or survivor functlon is denoted F(z) = P(X > z).

Where it exists the dpnsity of X is written f(z) and satisfies

F(z) = % f(u)du.

For g € (0,1) the gth quantile of the distribution of X is denoted
_l(q) This should be taken to mean the generalised quantile
F~1(g) =inf{z e R: F(z) > q}.

Where appropriate we may interpret this quantile as a Value-at-Risk
of the risk X and write VaRy(X) = F~1(q).
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Multivariate Notation

Let X = (X4,...,Xy)' be a d-dimensional random vector representmg
risks of various klnds Possible interpretations:

e returns on d financial instruments (market risk)
e asset value returns for d companies (credit risk)

e results for d lines of business (risk integration)
An individual risk X; has marginal df Fy(z) = P(X; < z).
A random vector of risks has joint df
F(x) = F(z1,...,zq9) = P(X1 <z1,...,Xg < zq)
or joint survivor function
F(x) = F(zy,...,24) = P(X1 > 21,..., X4 > T4)-
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Multivariate Models

'If we fix F (or F) we specify a multivariate model and implicitly
describe both the marginal behaviour-and the dependence structure
of the risks.
Cailculating Marginal Distributions

Fi(z;) = P (X; < z;) = F(00,...,00,Z;,00,...,00),
i.e. limit as arguments tend to infinity.

In a similar way hig'her dimensional marginal distributions can be
calculated for other subsets of {Xq,...,X4}.

Independence
X1,...,X4 are said to be mutually independent if
d . .
F(x) = [] F(zs), VYxeR<
i=1
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Densities of Multivariate Distributions

Most, but not all, of the models we consider can also be described
by joint densities f(x) = f(z1,...,24), Which are related to the joint
df by

T Zd
F(:Dl,...,.’L'd)=/;oo---[—oof('u,l,...,ud)dul...d'u,d.

Existence of a joint density implies existence of marginal densities
fis---,fq (but not vice versa).

Equiv.alent Condition for Independence

d
Fx) =] fiz:), VvxeR?

=1
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2.  The Multivariate Normal (or Gaussian) Distribution

This distribution can be defined by its density

F(x) = (2m)~ 425~ 1/2 exp {_(x ~ M)'ZQ_l(x - #)} |

where p € R% and = € R9¥4 js 3 positive definite matrix.

e If X has density f then E(X) = u‘and cov(X) = X, so that u
and X are the mean vector and covariance matrix respectively.
A standard notation is X ~ Ny(u, ). '

e Clearly, the components of X are mutually independent if and
only if X is diagonal. For example, X ~ Ny(0,I) if and only if
Xl,.-..,Xd are iid N(O, 1).
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Bivariate Standard Normals (p = 0.9, p = —0.7)
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Properties of Multivariate Normal Distribution

e The marginal distributions are univariate normal.

e Linear combinations a’X = a1 X1 + - -a4Xy are univariate normal
with distribution a’X ~ N(a'u,a'sa).

e Conditional distributions are multivariate normal.

e The sum of squares (X )T (X —p) ~ Xg (chi-squared).
Limitations of Multivariate Normal Distribution

e Tails are very thin - few extreme events.

e Simultaneous extremes in several margins relatively infrequent.

e Very strong symmetry (known as elliptical symmetry).
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3. Multivariate Normal Mixture Distributions
Mutltivariate Normal Variance-Mixtures

Let Z ~ Ny(0,X) and let W be an independent, positive, scalar
random variable. Let pu be any deterministic vector of constants.
The vector X given by

X=p+WZ

is said to have a-multivariate normal variance-mixture distribution.

Easy calculations give E(X) = p and cov(X) = E(W2)xL.
Correlation matrices of X and Z are identical: corr(X) = corr(Z).

Multivariate normal variance mixtures provide the most useful exam-
ples of so-called elliptical distributions.
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Examples of Multivariate Normal Variance-Mixtures
Multivariate t with v degrees of freedom. Take W = /v/V, V ~ x2.
Symmetric generalised hyperbolic. Let W have a NIG distribution.

Multivariate Normal Mean-Variance-Mixtures
We can generalise the construction of the previous slide as follows:

X =g(W)+W2zZ, g:Rt R?
This gives us a larger class of distributions, but in general they are

no longer elliptical and corr(X) % corr(Z).

Example: full class of generalised hyperbolic distributions.
g(W) = u+ W32, where 3 is deterministic vector and W is NIG.
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T he Multivariate t Distribution

This distribution can also be defined by its density

(x—p) T (x - #))

v

—{vfd)

f(x) = kZ,u,d (1 +

where u € R%, 5 ¢ R?%d is 3 positive definite matrix,v is the degrees
of freedom and kx , 4 is @ normalizing constant.

e If X has density f then E(X) = p and cov(X) = %55, so that
p and X are the mean vector and dispersion matrix respectively.
For finite variances (and defined correlations) v > 2. Our nota-

tion is X ~ t4(v, p, ).
o If X is diagonal the cdmponents of X are uncorrelated. They are

not independent.

¢ The multivariate ¢ distribution has heavy tails.
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Elliptical distributions

A random vector (Yi,...,Yy) is spherical if its distribution is invariént
under rotations, i.e. for all U € R%*¢ with U'U = UU’ = I,

v & py.

A random vector (X1,...,Xy) is called elliptical if it is an affine
transform of a spherical random vector (Y7,...,Yy),

X = AY + b,
A€ RIxd peRY,

General Remark:
If X has covariance matrix >, then cov(AX) = AX A’
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Properties of Elliptical Distributions

e The density of an elliptical distribution is constant on ellipsoids.

e Many of the nice properties of the multivariate normal are pre-
served. In particular, all linear combinations a1.X7 + ... + agXy
are of the same type.

e All marginal distributions are.of the same type.

e Linear correlation matrices successfully summarise dependence,
since mean vector, covariance matrix and the distribution type
of the marginals determine the joint distribution uniquely.
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Elliptical Distributions and Risk Management

Consider set of linear portfolios of elliptical risks
P={Z=%¢  NX;| T =1}

1. VaR is a coherent risk measure in this world. It is monotonic,
positive homogeneous (P1), translation preserving (P2) and,
most importantly, sub-additive

VaRa(Z1 + Z5) < VaRa(Z1) 4+ VaRa(20), for Z1,Zo € P,a > 0.5.

2. Among all portfolios with the same expected return, the portfolio
minimizing VaR, or any other risk measure o satisfying
Pl o(AZ) = Xo(Z), X >0,
P2 o(Z+a) =0(2)4a, a €R,
is the Markowitz variance minimizing portfolio.
Risk of portfolio takes the form o(Z) = E(Z) + const - sd(Z).
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4. Other Multivariate Distributions and Concepts

Other Continuous Multivariate Distributions

There are infinitely many non-elliptical distributions and in such mod-
els covariance and correlation are less natural concepts.

Example: multivariate Pareto distribution

X has a multivariate Pareto if its survivor function is given by

d .. ) o

F(z1,...,zq) = sz-l_ﬂz—d—l—l , x>0,0a>0,8>0,
i=1 ﬂz

where « is the tail index and B1,--.,B4 are scaling parameters.

This kind of skewed, heavy-tailed distribution may be appropriate

for positive-valued loss data.
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Multivariate Discrete Distributions
There are many of these including multivariate binomials, Bernoullis
and Poissons.

Example: Bivariate Poisson (common shock model)

et N7y and N, be numbers of credit losses in two portfolios over 1
year horizon.

Suppose there are caused by three kinds of event:

Event 1 causes losses of type 1

Event 2 causes losses of type 2

Event 3 causes losses of both types 1 and 2

Assume: events occur as independent Poisson processes with yearly
rates A1, Ao and As.

Ny ~Po(A1 +2A3) Na~ Po(Ao+ A3)

(N1, N>) has a bivariate Poisson distribution.

N + N» is not Poisson (but distribution can be calculated by con-
volution or Panjer recursion).

Distribution described by probability function P(Ny = n1, Ny = np).
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Factor Models

In a factor model we attempt to reduce the effective dimensionality
of X. X is said to follow a p-factor model with p < d if

P
X; = Z a; j©;+¢€, 1=1,...,d,

j=1
or, in vector form, X = A® + €.

Notation: .

© = (O4,...,9p) is a random vector of factors;

€ = (e1,...,€4) is a random vector of uncorrelated terms;
a; g and A represent deterministic factor loadings;
(©1,...,0yp) is uncorrelated with (e1,...,€g).

Typical Applications:
X are stock returns; ® are index returns.
X are firm asset values; ®© are country and industry effects.

©2001 (Alexander McNeil and Riidiger Frey) " 18

Factor Models I1

Note that assumption of factor model is equivalent to saying co-
variance matrix X of X has the form ¥ = AA'+ W, for some d X p
dimensional matrix A and some diagonal matrix W,

Statistical Techniques for Estimating Factor Models
Multivariate Regression Models

If ® are known measurable factors then we could also consider our
factor model to be a multivariate regression model. By collecting
repeated observations of X and ® we could estimate A.

Factor Analysis

If © represent abstract factors, in whose existence we believe but
whose identities are unclear to us, we can use the technique of factor
analysis. We collect repeated observations of X and try to estimate
A and W in decomposition above.

©2001 (Alexander McNeil and Rudiger Frey) ) 19




References
On general multivariate statistics:

e Mardia, Kent & Bibby (1979). Multivariate Analysis. Academic
Press, London.

e Seber (1984). Multivariate Observations. Wiley, New York.

On multivariate distributions:

e Kotz, Balakrishnan, Johnson (2000). Continuous Multivariate
Distributions. Wiley, New York.

e Johnson, Kotz, Balakrishnan (1997). Discrete Multivariate Dis-
tributions. Wiley, New York.

©2001 (Alexander McNeil and Riidiger Frey) ' 20

II. Advanced Dependence Concepts: Copulas and
Extremal Dependence

Describing dependence with copulas

Understanding the limitations of correlation

An assessment of alternative dependence measures

Tail dependence and dependent extreme values

Survey of useful copula families

©2001 (Alexander McNeil and Riidiger Frey) ~ 21




1. Describing Dependence with Copulas
On Uniform Distributions

Lemma 1 (probability transform)
Let X be a random variable with continuous distribution function F.

Then F(X) ~U(0,1) (standard uniform).
P(F(X) <uw) =PX.<Flw)=FF(u) =4, WVuc/(0, 1)‘.

Lemma 2 (quantile transform)
Let U be uniform and F the distribution function of any rv X.

Then F~1(U) 2 X so that P(F~1(U) < z) = F(z).

These facts are the key to all statistical simulation and essential in
dealing with copulas.
©2001 (Alexander McNeil and Ridiger Frey) ' 22

A Definition

A copula is a multivariate uniform distribution, or the df thereof.
Notation: C :[0,1]¢ — [0,1]

Properties

e Uniform Margins
C(l,...,l,ui,_l,...,l) =u; for all 1 € {1,...,d}, u; € [0,1]

° Fréchet Bounds

d .
max{Zui—i—l—d,O} < C(u) <min{uy,...,uq}.

i=1
: d times
Remark: right hand side is df of (U,...,U), where U ~ U(0, 1).
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Sklar’s Theorem (general statement)
Let F be a joint distribution function with margins Fy,...,F;. There

exists a copula such that for all zq,...,z4 in [—o0,00]

F(.’II]_,. . ,iL'd) = C(F]_((L']_),. . ,Fd(md))'
If the margins are continuous then C is unique; otherwise C is
uniquely determined on RanFjy X RanFy... x RankFy.

Proof (case of continuous margins)

P(X1 <z1,..., X3 < zg)
P(F1(X1) < Fi(z1),..., F3(Xg) < Fy(zg))
C(F1(z1),..., Fg(zq)).

F(ZBl,...,.’IId)

Henceforth, unless explicitly stated, vectors X will be assumed to
have continuous marginal distributions.
©2001 (Alexander McNeil and Riidiger Frey) 24

Copulas and Dependence Structures

Sklar's theorem shows how a unique copula C fully describes the
dependence of X. This motivates a further definition.

Definition: Copula of X
The copula of (X7q,...,Xy) (or F)is the df C of (F1(X1),..., Fa(Xy)).

We sometimes refer to C as the dependence structure of F.
Invariance

C is invariant under strictly increasing transformations of the marginals.
If Ty,...,Ty are strictly increasing, then (7T1(X1),...,T4(Xg)) has the

same copula as (Xq,...,Xg)-
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Examples of copulas

e Independence.
X1,...,Xq are mutually independent <= their copula C satisfies

Cug,...,ug) = Hgl___.l u;.

e Comonotonicity - perfect dependence.
X; =3 T:(X1), T; strictly increasing, i = 2,...,d, <= C satisfies
C’(ul, NN ,ud) = min{ul, “es ,ud}.

e Countermonotonicity - perfect negative dependence. (d=2)
Xo &2 T(X4), Tstrictly decreasing, <= C satisfies

C(u1,up) = max{uj + up — 1,0}.
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Copulas Implicit in Well-Known Distributions

In every multivariate df with continuous marginals there is a unique
implicit copula given by

Clut,...,ug) = F (F{ Y (u1), ..., Fy H(ug)) .

Gaussian Copula: X standard multivariate normal with correlation
matrix R.

Cga(ul, ... ,ud) = P (CD(Xl) <UL,y CD(Xd) < ug)
= P(X1 <M (ug),.. ., Xg < D7 (uy))
where & is df of standard normal. R = I gives independence; as
R — J we get comonotonicity.

In the same way we can extract copulas from multivariate normal
mixture distributions, to get for example t copulas (C,E,R) or gener-
alised hyperbolic copulas.

©2001 (Alexander McNeil and Riidiger Frey) 27
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Archimedean Copulas (d = 2)

e Gumbel Copula

C’gu(ul, un) = exp (— ((— logui)? + (—log ug)ﬁ)l/ﬂ) .

B > 1. B =1 gives independence; 8 — co gives comonotonicity.
e Clayton Copula

- - -1/B
, : C’gl(ul,'@) = (ulﬂ + 'u,2ﬂ — 1) .
B > 0: B — 0 gives independence ; 8 — co gives comonotonicity.

e Frank Copula

1 —Bui _ 1) (e—Pu2 _ 1
CIBFT(U’la 'UQ) = _E log (1 + (e —ﬁ)gg 1 ))

B # 0: B — —oo gives countermonotomcnty, B — 0 gives inde-
pendence; 8 — oo gives comonotomuty
©2001 (Alexander McNeil and Riidiger Frey) . 28

Archimedean Copulas - Construction and Extensions

All our Archimedean copulas have the form

Clu,uz) = ¥ ((ur) + $(u2)),
where 1 : [0, 1] — [0, o0] is strictly decreasing and convex with
$(1) = 0 and limy_,g¥(t) = oco.

The simplest higher dimensional extension is
C(u, o ug) =¥ (Wun) + - B(ug)).
Example: Gumbel copula: () = —(log(t))?
C§Uu1, ..., ug) = exp <— ((— logug)P + - 4 (—log Ud)ﬁ)l/ﬁ> :

These copulas are exchangeable (invariant under permutations).
Other extensions with more parameters possible, but complex.
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Useful Copula Families

e Elliptical Copulas: rich in parameters - parameter for every pair
of variables; easy to simulate.

e Archimedean Copulas: closed forms - appealing for calculations;
but not rich in parameters.

o Extreme Value Copulas: arise naturally in multivariate extreme
value theory; satisfy Ct(uy,...,uq) = C(ul,...,uf), V¢t > 0,
Example: Gumblel.v

e Extremal Copulas: are copulas of .vectors whose components
are all either pairwise comonotonic or countermontonic; rank
correlation matrix consists of 1's and -1's.

Let J be subset of {1,...,d}. General form of extremal copula:
C(ui,...,ug) = max{minw; + minu; — 1,0 .
(1) 3 d) {iEJ ) jege g 3 _
Example: comonotonicity copula.
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2. Understanding Limitations of Correlation
Drawbacks of Linear Correlation

Denote the linear correlation of two random variables Xy and X» by
p(X1,X5). We should be aware of the following.

e Linear correlation only gives a scalar summary of (linear) depen-
dence and var(Xy),var(X>5) must exist.

e X1,X, independent = p(X,Y) = 0.
But p(X1,X5) = 0 % X1,Xo independent.
Example: spherical bivariate t-distribution with v d.f.

e Linear correlation is not invariant with respect to strictly increas-
ing transformations T' of X1, X5, i.e. generally

p(T(X1),T(X2)) # p(X1,X2).

©2001 (Alexander McNeil and Rudiger Frey) ’ 31
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Fallacies in the Use of Correlation
We consider random vectors (X1, X5)".
Fallacy 1

“Marginal distributions and correlation determine the joint distribu-
tion".

e True for the class of bivariate normal distributions or, more gen-
erally, for elliptical distributions.

e Wrong in general, as the next example shows.
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Gaussian Gumbel
< 1 . .
o
o~
& e N o
N A o
< A <t -* °
-2 0 2 4 -4 -2 (o} 2 4
X1 X1

Margins are standard normal; correlation is 70%.
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Normal Dependence t Dependence

Normal margins; correlation 70%; quantiles lines 0.5% and 99.5%.
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Fallacy 1 continued

Sometimes Fallacy 1 is hidden in statements like:
“If two random variables X7 and X, are uncorrelated, they may be
considered as approximately independent”.

This view can be very dangerous in the management of risks.
Consider two portfolios of risks. Set

X1 = Z (Profit&Loss Country A),
Xo = V-Z (Profit&Loss Country B),

V,Z independent, Z ~ Ny4(0,I),

P(V=+41)=P(V =-1)=1/2.
V switches between perfect positive and negative dependence.

X2 ~ Ng(0,I) and p(X3,X2) = 0.
But (X1,X5) is not bivariate normal.
©2001 (Alexander McNeil and Riidiger Frey) 35
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VaR (Quantile) for two different dependence models

[en)]
<] — Dependent
-------- Ind%pendent
w2 |
(2]
fued
g
< |
o
w0 |
N
0.93 0.94 0.95 0.96 0.97 0.98 0.99

VaRa (X1 + X5) for Xq, X independent and X3, X, dependent.
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Fallacy 2

“Given marginal distributions F; and F5 for Xl' and Xo,, all linear
correlations between -1 and 41 can be attained through specification
of the joint distribution”.

e This is again true for elliptical distributions but not true in gen-
eral. If F; and F5 are not of the same type, then p(X3,X2) < 1.

e Theorem (Ho6ffding 1940)
1. The set of possible correlations is a closed interval [pmin, pmax]-

2. pmax IS attained iff Xy, X, comonotonic. pmin is attained iff
X1, Xo countermonotonic.
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Example of Extremal Correlations

Take X1 ~ Lognormal(0,1), and X5 ~ Lognormal(0, o2).
Let o vary and plot pmin @and pmax against o.

1.0

"""""""""""""""""" — min. correlation
- e e max. correlation

0.5

correlation
0.0

0.5

1.0

sigma
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3. Alternative Dependence Concepts
A Very Different Kind of Correlation: Rank Correlation
Spearman'’s rank correlation (Spearman’s rho)

ps(X1, X2) = p(F1(X1), Fo(X2)) = p(copula).

Kendall's rank correlation (Kendall's tau) L
Take an independent copy of (X1, X2) denoted (X1, X>).

pr(X1,X2) = P ((X1 — X1)(X2 — X2) > 0)—P ((X1 — X1)(X2 — X2) < 0).
Suppdse X1 and X5 have copula C. Then

pr(X1,X2) = 4 /01 /01 C(ug,u2)dC(u1, up) — 1

ps(X1,X2) = 12/01 /Ol{C(ULUQ) — ujugtduidu.

©2001 (Alexander McNeil and Ridigér Frey) 39
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Properties of Rank Correlation (not shared by linear correlation)

True for Spearman’s rho (pg) or Kendall's tau (pr).

ps depends only on copula of (X1, X>5)’.

e pg is invariant under strictly increasing transformations of the
random variables.

ps(X,Y)=1 <= X,Y comonotonic.

ps(X,Y) = -1 <= X,Y countermonotonic.

©2001 (Alexander McNeil and Riidiger Frey) ) ) 40

Tail Dependence or Extremal Dependence

Objective: measure dependence in joint tail of bivariate distribution.
When limit exists, coefficient of upper tail dependence is

(X1, X0) = li_r:fl1 P(X5 > VaRy(X>5) | X1 > VaRg¢(X1)),
q
Analogously the coefficient of lower tail dependence is

A(X7, Xo) = lim P (X2 < VaRe(X2) | X1 < VaRg(X1)).
q—r

These are functions of the copula given by

C 1— 29+ C(q,
A, = lim C(q,q)znm g+ C(q q),
g—1 1—¢q g—1 l1-g¢g
N = lim £@9
=0 q

Thus they are invariant under strictly increasing transformations._
©2001 (Alexander McNeil and Riidiger Frey) ' 41




Tail Dependence

Clearly Ay € {0,1] and ), € [0, 1].

For elliptical copulas Ay = Ap =: A.

True of all copulas with (Uy, Us) g (1-Uq1,1-0U>)
(known as radial symmetry) e.g. Frank copula.
Terminology:

Ay € (0,1]: upper tail dependence,

Ay = 0: asymptotic independence in upper tail,

¢ € (0,1]: lower tail dependence,

Ay = 0: asymptotic independence in lower tail.

©2001 (Alexander McNeil and Riidiger Frey)._
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Examples of tail dependence

The Gaussian copula is asymptotically independent for |p| < 1.
The Frank copula is also asymptotically independent.

The t copula is tail dependent when p > —1.

A=2¢,41 (\/V-I-l\/l—p/\/m)-

The Gumbel copula is upper tail dependent for 8 > 1.
Ay =2 —21/8,

The Clayton copula is lower tail dependent for g8 > O.
)xg = 2_1/ﬁ.

Recall dependence model in Fallacy 1b: Ay = Ay = 0.5.

©2001 (Alexander McNeil and Riidiger Frey)
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4. Bounds on VaR of Portfolios

Comonotonicity Revisited
Recall that the risks X1,..., X, are said to be comonotonic (perfectly
positive dependent) if they have the copula

C(uy,...,ug) = min{uy,...,ug}.

Essentially there is only one risk and all other risks are deterministic,
increasing functions of this underlying risk.

In continuous case X; = T;(Xj)a.s., i = 2,...,d, with T} strictly
increasing. :

It may be shown that quantiles are additive for comonotonic risks:

d d

VaRu (Z Xz) = Z VaRa(Xz-).
1=1 =1

However, it would be wrong to think this gives an upper bound for

the risk of the sum in all cases. (If it did, VaR would be subadditive,

and this is not true.)
©2001 (Alexander McNeil and Riidiger Frey) _ 44

Another Correlation Fallacy (or is this a VaR fallacy?)

“For fixed marginal distributions the worst case VaRq (X1 + X5) oc-
curs when p(X1, X») is maximal.”

This seems intuitively plausible, but is only true for elliptical distri-
butions. Let Z = A1 X1 4+ A2 X5 with (X1, X») elliptical

VaRy(Z) = E(Z) + const(a) -sd(Z2),
and sd(Z) is maximal when p(X7, X5) is maximal.

In other cases one can calculate best-possible (pointwise) bounds for
VaRq (X1 + X5) (Frank et al. 1987).
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Example

Take Xq1,Xo ~ Gamma(3,1), and leave copula unspecified. Compute
worst VaRq (X1 + X2) against a.

— comonotonicity
ax. VaR
--- independence

VaR

0.90 0.92 0.§4 O.l96 0.98
alpha
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III. Calibration and Simulilation of Multivariate
Models

e Estimating correlation using standafd methods

e Testing for non-multivariate-normal data

Improved correlation estimation for heavy-tailed data

/

Fitting copulas to data

Simulating meta-Gaussian distributions - the RISK method

e Simulating copulas

Generating dependent risk factors using Monte Carlo simulation

©2001 (Alexander McNeil and Riidiger Frey) 48
g .
o L ] .
o | .
7] i . -
] .
U) LK ]
8 | .
< .
S -
Z
-O.I1O —0.'05 OiO 0.65
BMW
Scatterplot of Siemens and BMW returns on same days.
49

©2001 (Alexander McNeil and Ridiger Frey)




.
=t
O .
=
N
< 1 .
(=]
[aa]
(2]
S o]
o
o . M
<
C.) .
<t
S | .
S 1— : : :
-0.04 -0.02 0.0 0.02
DEM

Scatterplot of Pound/DM and Pound/Dollar exchange rate returns.

©2001 (Alexander McNeil and Riidiger Frey) 50

1. Estimating Correlation

Standard Approach to Estimating Correlations/Covariances

Suppose we have n observations of our d-dimensional risks: Xq,...,Xn.

Denote mean vector, covariance matrix and correlation matrix by pu,
3>~ and R respectively. Further notation:

X

Iym X Q=31 (X;-X)(X;-X) (componentwise).

The standard estimators used in practice are:

X
5 ( Q/n or T@ =Q/(n-1)

Rjj = X/ XaXjj
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Properties of Estimators in Multivariate Normal Case

These standard estimators are designed precisely for the case when
data are iid multivariate normal: X; ~ Ng(p, X).

In this case g and () are the maximum likelihood estimates.
() is an alternative unbiased estimator.

Desirable estimator properties (such as consistency and efficiency)
are well known.

However, we will seldom encounter multivariate normal data samples
in finance. :
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Empirical Features of Risk Factor Time Series
(We think here particularly of market risk factors.)

Real multivariate risk factor time series

e may not be stationary (possible regime shifts)
e may show serial dependence (stochastic volatility effects)
e may not be multivariate normal (heavy tails - leptokurtosis)

e may not even be elliptical (lack of symmetry)

We want to assume at least stationarity - otherwise any kind of
statistical inference is problematic. If regime really shifts we should
look at data within regimes. _
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What Assumptions can be Relaxed?

Independence. ji and (2 remain unbiased estimates in case where
data are from stationary time series with multivariate normal station-
ary distribution. Properties depend on nature of serial dependence.
If dependence is profound we should consider explicit time series
modelling.

Normality. If data are really iid from some other elliptical distribution
then & and R are no longer efficient. Other estimators should be

preferred.

Ellipticality. If data are not elliptical then the wisdom of estimating
correlations and covariances at all is called into question. '
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Testing for Multivariate Normality

If data are to be multivariate normal then margins must be univariate
normal, but this is not sufficient - we require joint normality.

There are various numerical tests of normality, but we will concen-
trate here on appealing visual tests such as the QQplot.

(QQplots compare empirical quantiles with theoretical quantiles of
reference distribution.)

To test joint normality calculate {(Xi—ﬁ)’f—l(Xi—ﬁ), i=1,...,n}

these should form a sample from a Xg-distribution, which can be
assessed with a QQplot.
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Testing Multivariate Normality: Normal Data
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Testing Multivariate Normality: BMW-Siemens Data
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Testing Multivariate Normality: Normal Margins - t4 copula
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Testing for Ellipticality
If X has an elliptical distribution with mean vector u, finite covar'iance
matrix > and correlation matrix R, then
corr (X | (X - )= X -p)>1l)=R, Vi>o0.
This suggests a graphical method:

[

. Estimate p and X.
2. For fixed d, select points lying outside the ellipsoid defined by

(X -p)=rX-p) =L

3. Estimate R using points outside ellipse.
4. Repeat for various d and assess stability of correlations.
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Efficient Covariance/Correlation Estimation for Elliptical Data

Assume we have iid data from an elliptical distribution. In seeking
alternative estimates there are two considerations.

Efficiency

We seek estimators whose expected distance from the true covari-
ance/correlation matrix is as small as possible. One estimator is said
to be more efficient than an other if its expected distance from the
true matrix is always smaller.

Robustness

A covariance/correlation estimator is robust if it is insensitive to con-
tamination of the elliptical population by small numbers of outliers
from another population.

(Obviously we seek estimators with a certain amount of robustness.
But if a large contamination of the elliptical population is apparent
we should really be trying to model this rather than mitigate its
effect on correlation estimation.)
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A. M-Estimators of Covariance/Correlation (Maronna 1976)

Intuition: downweight observations which are large compared to av-
erage. :

1. Take i and = to be i and =,
2. Set M? = (X; - )~ YX; — @), i=1,...,n.
3. Set
=2 N g L )X - K - )

Y w1 (M) n,/ =
where wi and wo are weight functions.

4. Calculate RM. If BRM is sufficiently stable stop, otherwise go to 2.

The following popular choice of wy and wo essentially gives maximum-
likelihood estimators for the multivariate ¢, distribution:

wi(z) = (d+v) /(22 + v) = wya(z?).
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B. An Estimator Based on Rank Correlation

Estimating Rank Correlations

An estimator of p; is given by

—_—— 1
pr(X1,X2) = 7ov D0 sgnl(X1,; — X1,5)(Xo4i — X2,5)].
, (2) 1<i<j<n

Spearman’s rank correlation ps is estimated by

: 12 n n+1 - n+1
55(X1, X)) = ——— rank(Xy ;) — )(rankX-— )
p5(X1,X2) 2 D) 7,;1( (X1,4) (X2,) >
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Estimating Elliptical Correlations: Kendall’s tau transform

Another efficient and robust estimator of correlation may be based
on the foliowing result. With this estimator covariance need not be
estimated.

Proposition. For (essentially) all elliptical distributions we have
pr(X;, X;) = Zarcsin(p(X;, X;))

1. Estimate pairwise Kendall's rank correlations ;’);Z-j.

2. Calculate pairwise linear correlation estimates according to
- . 7‘[‘/\
:BZ'j = sin (’jprij) .

3. Check that resulting estimate of correlation matrix R7 is positive
definite. If not, adjust elements slightly with eigenvalue method
(Lindskog 2000).

Our experience in a simulation with d = 4 suggests that R™ will be
positive definite over 90% of the time.
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Efficient Correlation Estimation with Kendall’s Tau Transform

Standard Estimator

1.0 05 00 05 10

o] 500 1000 1500 2000 2500 3000

Kendali’'s tau Transform

1.0 05 00 05 1.0

] 500 1000 1500 2000 - 2500 3000

Simulated t3 data; 3000 times 90 pairs; true value 0.5

©?2001 (Alexander McNeil and Ridiger Frey) 64

2. Fitting Copulas to Data: An Example

We fit bivariate copulas to rea! data. The method extends to higher
dimensions, but seems mot suitable for low dimensions - say < 4,

The data comprise n = 466 Danish fire insurance losses decomposed
into two components: X7 = Loss of Contents, Xo = Loss of Profits.

Obviously data in this format could be collected on various kinds of
financial loss: losses in two (or more) lines of business; credit and
market risk losses.

We adopt a two-stage procedure:
1. Fit distributions to the marginals;
2. Estimate the “dependence’, i.e. the copula.
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The Data

Scatterpiot of Danish fire data Frequency
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Estimating Copulas via MLE

We consider four parametric c'opulas, each with a single parameter:
Gumbel, Clayton, Frank and Gaussian.

Denote data {(X14,X2;),i =1,...,n}.
The copula data {(F1(X1,),F2(X2,)),¢ = 1,...,n} are not them-
selves directly observable since F; and Fo are unknown.

Stage 1. Estimate margins using version of empirical distribution
function:

1 n
112 loace P20 = —-+ - Z {X2,<a)

1=1
and apply the MLE method to transformed data
{(F1(X1,4), Fo(X2,4)),i = 1,...,n}.
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Transformed Data

Tail Dependence

Copula data on enlarged scale

Copula data
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N(X1,X2) = 4/10 = 0.4 (crude).
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Stage 2: Estimated Parameters

Copula neg.

Jé] std.error | log-likelihood
Gumbel | 1.85 0.07 —-142.27
Clayton 0.85 0.09 —66.71
Frank 5.09 0.34 —123.50
Gaussian | 0.65 0.02 —126.67

Goodness-of-fit

Akaike's information criterion (AIC) suggests choosing model which

minimizes

AIC = 2. (neg. log-likelihood) + 2p,

where p = number of model parameters. This would be the Gumbel

model.

Comment: Graphical methods for assessing fit also available.
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Copulas at Work: Using the Fitted Model

We now have a model in the form of the distribution function

F(zy,10) = C(Fi(z1), Fa(z2)),

where C is the fitted copula,and Fy and F, are fitted marginal dis-
tributions (either the empirical dfs or univariate parametric models).

We can now evaluate the distribution of loss functions L(X1,X5)
depending on X and X, (often via simulation).

We consider two payout functions:
L1(X1,X5) = (X1+Xo—-10)4,
Lo(X1,X2) = Xo-1lix,>10)

and estimate the expected loss Py = E(L1), Po = E(L»>).
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Estimated Expected Losses for 2 Payout Functions

We estimate P; and P, using a Monte Carlo procedure, i.e. we sim-
ulate from the distribution of Ly and Lo (1 mio. runs).

Copula P 5’(P1)
Gumbel 1.28 | 0.01
Clayton 1.11| 0.01
Frank 1.18 { 0.01
Normal 1.24  0.01
Independence | 1.05 | 0.01

Copula P> a(P>)

Gumbel 0.094 | < 0.001
Clayton 0.072 | < 0.001
Frank 0.098 | < 0.001
Normal 0.094 | < 0.001
Independence | 0.049 | < 0.001
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3. Multivariate Simulation
Simulating Normal-Mixture Distributions

It is straightforward to simulate normal mixture models. We only
have to simulate a Gaussian random vector and an independent radial
random variable. Simulation of Gaussian vector in all standard texts.

Example: t distribution ,

To simulate a vector X with distribution t4(v, ., >) we would simulate
Z ~ Ng(p, <) and V ~ x2;

we would then set W = \/u/_V and X = u + WZ.

To simulate generalized hyperbolic distributions we are required to
simulate a radial variate with the NIG distribution. See Atkinson
(1982) for an algorithm; see also work of Eberlein and Prause.
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Simulating Copulas of Normal Mixtures
(particularly eiliptical coputas)

It is thus also straightforward to simulate from the copulas of normal-
mixture models.

To simulate from the Gaussian copula Cﬁa we would:
1. Simulate X ~ Ny4(0, R)
2. Probability transform margins: U = (®(X1),...,P(Xp)) .

For example, to simulate from the ¢t copula CIE,R we would:
1. Simulate X ~ t4(v,0, R)

2. Probability transform margins: U = (t,(X1),...,tu(Xg))’,
where t, is df of univariate t distribution.

Remark. To simulate X ~ Ny(0, R) use Cholesky's decomposition to
get R = AA" and simulate Z ~ N4(0,I). Then X = AZ has required

distribution.
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Meta-Gaussian and Meta-t Distributions

If (Uy,...,Uy) ~ Cg® and G; are univariate dfs other than univariate
normal then

(Gfl(Ul), cee G;l(Ud))

has a meta-Gaussian distribution. Thus it is easy to simulate vector§
with the Gaussian copuia and arbitrary margins. |

In a similar way we can construct and simulate from meta t, distri-
butions. These are distributions with copula C,ER and margins other
than univariate t,.
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A Simulation Problem from Practice

Let Fy,...,F; be univariate distributions and let R be a positive
definite correlation matrix with ¢, jth element p;;.

Simulate random vector of risks (X1, ..., Xg) from multivariate model
such that

1. X;~F;, i=1,...,d,

2a. p<X1,)Xj)=pz_71 i,j=1,...,d.

But is this a well-posed problem?
What if we replace 2 by

2b. ps(Xi, X5) = pi5, 4,7 =1,...,d7

The computer program @RISK purports to solve this second prob-

lem.
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Simulation of random vectors with given marginals and corre-
lation matrix

(1,2a) An ill-posed problem. We must be aware of consistency and
uniqueness problems. There may be no solutions or there may
be infinitely many solutions. (Fallacies 1 and 2.) There are
however ad—hoc methods to construct joint distributions with
given marginals and correlation matrix when a solution exists.

(1,2b) If a matrix of rank correlations is given the situation is better,
' since Fallacy 2 is avoided. However Fallacy 1 remains and the
problem is still ill-posed. An approach by Iman and Conover
based on simulating from a Gaussian copula is implemented in

the @RISK computer programme.
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The @GRISK Method

Variant 1.
Simulate X ~ Ny(0, R) and set

(X1, Xg) = (FTHOED), -, By 1 (@(Xy)) .-
This is an approximate solution since
ps(Xi, Xj) = ps( X3, X;) = —arcsin # R pij.

Variant 2. N _ 3
Simulate X ~ Ny(0, R) where elements of R satisfy 5;; = 2sin "6,
Set '

(X1, Xg) = (FH(@(X1)), ..., By (@ (X))

If Ris positive definite then this is an exact solution.

Drawback: we only use the Gaussian copula. |
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Simulating Other Copulas: A few Comments

For parametric copulas a variety of simulation techniques exist, which
are suitable for various families such as the Archimedean. See Lind-
skog (2000) for details.

Useful algorithm for simulating (Uy, Uy) from bivariate copula C(ug,us).

Let Co(ug |ug) = d—%C(ul,ug). This is conditional distribution of Uy
given U1 = uy.

1. Simulate Uy ~ U(0,1)

2. Simulate Us from distribution with df Co(us | uq).

This idea may be extended to higher dimensions - see Embrechts,

McNeil, Straumann (2001).
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IV. Multivariate Models and Copulas for Credit Risk

e Multivariate discrete models for credit risk

e | atent Variébles models and mixture models

e Examining standard solutions: CreditMetrics, KMV, CreditRis-k—l—
° Mapping between latent variabie and mixture models

e What is extreme credit risk?

) Copdlas and extreme credit risk

e Improving and extending standard solutions

e Generating risky scenarios - a simulations study

o Alternative risk transfer - basket credit derivatives

e Calibrating credit models to available information
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Motivation

e Focus in credit risk research has mainly been on modelling of
default of individual firm (e.g. firm-value models versus reduced-
form models, rating class versus asset value of firm as state
variable for default probability). '

e Modelling of joint defaults in standard models (KMV, CreditMet-
rics) is relatively simplistic (based on multivariate normality).

e In large balanced loan portfolios main risk is occurrence of many
joint defaults - this might be termed extreme credit risk.
Aim

Reconsider modelling of dependent defaults from viewpoint of recent
research on “Correlation and Dependence in Risk Management."
©2001 (Alexander McNeil and Riidiger Frey) 81




Dependent defaults and credit losses

number of defaults: m=1000, varying pi and rho

e pi=0.02, rhoasset=0.0
"""" pi=0.02, rhoasset=0.1
— pi=0.04, rhoasset =0.05

probability
0.06
|

o} 50 100 150 200

number of defaults

- Distribution of number of defaults in portfolio of 1000 firms.
Dependence between defaults has a large influence on distribution.
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Modelling of Default — Overview

Consider portfolio of m firms and a time-horizon T (typically 1 year).
For i € {1,...,m} define Y; to be default indicator of company i,
i.e. Y; =1 if company defaults by time T, Y; = 0 otherwise.
(Reduction to two states (default/no default) for simplicity.)

Model Types

e Latent variable models
Default occurs, if a latent variable X; (often interpreted as asset
value at horizon T) lies below some threshold D; (liabilities).
Examples: Merton model (1974), CreditMetrics, KMV.

e Mixture Models
Bernoulli default probabilities are made stochastic.
Y; | Q; ~ Be(Q;) where Q; is a random variable taking values in
[0,1] and Q1,...,Qm are dependent.
Example: CreditRiskt.
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1. Latent Variable Models

Given random vector X = (Xq,...,Xm)" with continuous marginal
distributions F; and thresholds Dq,...,Dnm, define Y; = 1{X¢<D7;}'
Default probability of counterparty ¢ given by

p; = P(Y; = 1) = P(X; < D;) = F;(D;).

Notation: (X;, D;)1<i<m denotes a latent variable model.
Examples

e Classical Merton-model.
X; is interpreted as asset value of company ¢ at T'. D; is value
of liabilities. Assume X ~ N(u,X).
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Industry Examples of Latent Variable Models

e KMV-model.

- As Merton but D; is now chosen so that default probability p;
equals éverage default probability of companies with same “dis-
tance to default” as company i.

e CreditMetrics.
We assume X ~ N(0,%). Threshold D; is chosen so that p;
equals average default probability of companies with same rating
class as company «.

e Model of Li (CreditMetrics Monitor 1999)
X; interpreted as survival time of company .
Assume X; exponentially distributed with parameter A chosen so
that P(X; < T) = p;, with p; determined as in CreditMetrics.
Muitivariate distribution of X specified using Gaussian copula.
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Model Calibration (KMV and CreditMetrics)

In both KMV and CreditMetrics, u;, >4 and D; are chosen so that p;
equals average historical default frequency for companies with a sim-
ilar credit quality. (They use different methods to group companies
by credit quality.)

To determine further structure of X (i.e. correlations) both models
assume a classical linear factor model for p < m.

Xi=pi+ Z azj@ + oig;
=1

for a p-dimensional random vector ® ~ Ny(0,€2), independent stan-
dard normally distributed rv's €1,...,em, Which are also independent
of ®.

® global, country and industry effects impacting all companies.

a; j loadings or weights for company ¢ and factor g

€ idiosyncratic effects.
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Equivalent Latent Variable Models and Copulas

Definition: Two latent variable models (X;, D;)1<i<m and (X;, D) 1<i<m
generating multivariate Bernoulli vectors Y and Y are said to be

—~—

equivalent if Y -g Y.

Proposition
(Xi, Dy)1<i<m and (X;, D;)1<i<m are equivalent if:

1. P(X; < D;) = P(X; < Dy), Vi.
2. X and X have the same copula.

CreditMetrics and KMV are equivalent, as are all latent variable mod-
els that use the Gaussian dependence structure for latent variables,
such as the model of Li, regardless of how marginals are modelled. .
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Special Case: Homogeneous Groups - Exchangeability

It is common to group obligors together to form homogeneous groups.
This corresponds to the mathematical concept of exchangeability.
A random vector X is exchangeable if

(Xl7' . 7Xm) g (Xp(]_)a . 'aXp(m))a
for any permutation (p(1),...,p(m)) of (1,...,m).

We talk of an exchangeable default model if the default indicator
vector Y is exchangeable.

If a latent variable vector X is exchangeable (or has an exchangeable
copula) and all individual default probabilities P(X; < D;) are equal,
then Y is exchangeable.

Exchangeability allows a simplified notation for default probabilities:

m = PV, =1,...,Y,=1), {i,...,i} C{1,...,m}, 1 <k <m,
m = m;=P(;=1), t€{1,...,m}. ‘
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The Copula is Critical
To see this consider special case of exchangeable default model.

Consider any subgroup of k companies {i1,...,4} C {1,...,m}.

mpo=P(Y;, =1,...,Y, =1) = P(X; <Dy,...,X;, < Dy)
— Cl k(ﬂ,...,ﬂ),

yeeey

where Cy _, is the k-dimensional margin of C.

The copula C crucially determines higher order joint default proba-
bilities and thus extreme risk that many companies default. For =
small, copulas with lower tail dependence will lead to higher m;'s and
more joint defaults.
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Comparison of Exchangeable Gaussian and ¢t Copulas

If X is given an asset value interpretation large (downward) move-
ments of the X; might be expected to occur together; therefore tail
dependence may be realistic.

We concentrate on two cases (extensions such as generalized hyper-
bolic distributions can be considered analogously).

1. X. s Nm(O, R)

2. X ~J tm,y(o, R)
R is an equicorrelation matrix with off-diagonal element p > 0, so
that X is exchangeable with correlation matrix R in both cases.

We also fix thresholds so that Y is exchangeable in both cases and
P(Y; = 1) =, Vi, in both models. We choose a value for v.

How do the two models compare?
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Simulation Study

We consider m = 10000 companies. All losses given default are one

unit; total loss is number of defaulting companies.

Set m = 0.005 and p = 0.038, these being values corresponding to a
homogeneous group of “medium’ credit quality in the KMV/CreditMetrics
Gaussian approach.

We set v = 10 in t-model and perform 100000 simulations to deter-
mine loss distribution.

The risk is compared by comparing high quantiles of the loss distri-
butions (the so-called Value-at-Risk approach to measuring risk).

Results Min 25% Med Mean 75% 90% 95% Max

Gauss 1 28 43 49.8 64 90 109 331
t 0 1 9 49.9 42 132 235 3238 -
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Ratio of Quantiles of Loss Distributions

Student t : Gauss
4

0.80 0.85 0.90 0.95 1.00
Quantile

Ratio of quantiles of loss distributidns (t:Gaussian).
m = 10000, w = 0.005, p = 0.038 and v = 10.
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2. Exchangeable Bernoulli Mixture Models
(We start with exchangeable case before generalising.)

The default indicator vector (Yi,...,Ym) follows an exchangeable
Bernoulli mixture model if there exists a rv Q taking values in (0,1)
such that, given Q, Yi,...,Y:, are iid Be(Q) rvs.

In such a model )
m = P(Y;=1)=E;) =E(E(Y;|Q)) =1E(Q)
M= Py =1,..%,=1)=BQ" = [ i),

where G(q) is the mixture distribution function of Q. Unconditional
default probabilities and higher order joint default probabilities are
moments of the mixing distribution.

It follows that, for i # j, cov(Y;,Y;) = mp — w2 = varQ > 0.
. 2
Default correlation is given by py = corr(Y;, Y;) = EW_L:;
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Examples of Mixing Distributions
e Beta Q ~ Beta(a,b), g(q) =pF(a,b)"1¢* (1 - )1 ab>0
o Probit-Normal &~ 1(Q) ~ N(u,c2) (CreditMetrics/KMV)
e Logit-Normal log (TQLQ) ~ N(u,2) (CreditPortfolioView)

Parameterizing Mixing Distributions
These examples all have two parameters. If we fix the default prob-
ability = and default correlation py (or equivalently the first two
moments of the mixing distribution = and n5) then we fix these two
parameters and fully specify the model.

Example: Exchangeable Beta-Bernoulli Mixture Model
m=uaf(a4+b), mo=n(a+1)/(a+b+1).
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Beta Mixing Distribution

150

100

gla)

50

0:0 0.02 0.04 0.06 0.08 0.10

Beta Density g(g) of mixing variable Q in exchangeable Bernoulli
mixture model with = = 0.005 and py = 0.0018.
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Extreme Credit Risk in Exchangeable Mixture Models

Recall that in exchangeable latent variable models

Tk = Cl,...,k(wa
k times
and in exchangeable Bernoulli mixture models

T
s =/O q°dG(q).

The role of the mixing distribution in a mixture model is analogous
to that of the copula in a latent variable model.

It can be shown that in exchangeable models for large homogeneous
groups with similar exposures the tail of the loss distribution is pro-

portional to the tail of the mixing distribution (Frey & McNeii 2001).
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Tail of the mixing distribution — similar default correlation

o™~
8
e
a =
e
§ B
b
§. — Probit-nommal|
3 ' - Logi-nomal
21
; 1
gL , : .
~ 00 0.2 04 0.6 0.8

Tail of the mixing distribution G in three exchangeable Bernoulli
mixture models: probit-normal; logit-normal; beta.
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More General Bernoulli Mixture Models

Definition: (Mixture Model with Factor Structure)

(Yi,...,Ym) follow a Bernoulli mixture model with p-factor structure
if there is a random vector ¥ = (Wq,...,W¥,) with p < m and contin-
uous functions f; : RP — (0,1), such that

1. ;| ¥ ~ Be(Q;), t=1,...,m, where

Qi = fi(Wyq,...,¥p) for ail 1 <i<m.
2.(Y1,...,Yn) are conditionally independent given ¥

Remark: Poisson mixture models with factor structure can be de-
fined analogously, by making the Poisson rate parameters dependent
on .

Example: CreditRiskt has this kind of structure.

Moreover, this structure underlies the latent variable models used in
practice, as will be seen.
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3. Mapping Latent Variable to Mixture Models

It is often possible to transform a latent variable model to obtain
an equivalent Bernoulli mixture model with factor structure. This is
useful in Monte Carlo simulation, since Bernoulli mixture models are
generally easier to simulate than latent variable models.

Example: KMV /Creditmetrics
X is Gaussian and follows a classical linear p-factor model.

P
X.L' = Z ai,j@j + gi€;

Jj=1
for an I[-dimensional random vector © ~ N,(0,2), independent stan-

dard normally distributed rv's e1,...,em, Which are also independent
of .
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CreditMetrics/KMV as a Bernoulli Mixture Model
For the mixing factors take ¥ = ©.
l
PYi=1|¥)=P(X;<D;|¥) = P <€i < (Di -y ai,jwj) /Uz')
Jj=1

= @ ((Dz’ - a!i‘I’)/Ui) :
Clearly Y; | ¥ ~ Be(Q;) where Q; = ® ((Di — al®) /o',;).

Thus @; has a probit-normal distribution.

Moreover, conditional on ¥, the Y; are independent.
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Mapping Other L.V. Models to Bernoulli Mixture Models

A very similar mapping is often possible when the latent variables
follow a multivariate normal mixture model, as in the case of ¢ dis-
tributed latent variables or generalised hyperbolic latent variables.

X has a normal mixture distribution if X; = ¢;(W) + WZ; where
W > 0 is independent of Z,

9i - (0,00) —- R,

and Z is Gaussian vector with E(Z) = 0.

If- this underiying Gaussian vector Z follows a linear factor model as
before then it is possible to derive explicitly an equivalent Bernoulli
mixture model.

Examples:

1. Student t model: W = /v/V, V ~ x2 and g;(W) = u;

2. Generalized hyperbolic: W ~ NIG and g;(W) = u; + B;W. |
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Normal Compared with t using Equivalent Mixture Approach

The profound differences between the Gaussian and t copulas that we
observed can now be understood in terms of the differences between
the mixture distributions in the equivalent mixture models.
Consider two cases (again in exchangeable special case).

Case 1: Asset Correlation held fixed.

Here we observe clear differences between the densities of the equiv-
alent mixing distributions as we vary degrees of freedom. These
account for differences in distribution of number of defaults (or to-
tal loss distribution.)

Case 2: Default Correlation held fixed.

Here the differences between the densities are much less obvious.
The distributions of the number of defaulting obligors do not differ
much at 95th and 99th percentiles. We have to go much further
into the tail to see differences. _
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Densities of mixing distribution — similar asset correlation

Densities of mixing distribution

normail

probability

Distribution of (Q) for exchangeable Gaussian and t copulas;
7 = 0.04 and p = 0.3.
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Densities of mixing distribution — similar default correlation

Densities of mixing distribution - fitted pi2

"""" 15, rho adjusted
normal

20
1

15
1

probability
10
]

0.0 0.1 0.2 0.3 0.4 0.5

Distribution of Q for exchangeable Gaussian and t copulas;
7 = 0.04 and in the normal model p = 0.3.
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Estimating Default Probability and Default Correlation

We have seen the importance of = and w5 (or py) in homogeneous
groups. How do we estimate these from historical default data for

that group?

Suppose our time horizon of interest is one year and we have n
years of historical data {(mj,Mj),j = 1,...,n}, where m; denotes
the number of obligors observed in year j and M; is the number of
these that default.

Assunﬁe an exchangeable Bernoulli mixture model in each year period
with Q1,...,Qn identically distributed. An unbiased and consistent

estimator of m is
%k:l n Mj(Mj—l)H-(Mj——k'-l—l),
njzl mj(mj—l)(mj—k-l—l)

k=1,2,3,....
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4. Implications for pricing basket credit derivatives

Insights on dependence-modelling for loan portfolios have also im-
plications for pricing of basket credit derivatives. Consider portfolio
with m obligors (the basket) held by bank A. We are interested in
pricing of following stylized default swap:

Second to default swap: Fix horizon T. Bank A receives from
counterparty B a fixed payment K at time T if at least two obligors
in the basket have defaulted (i.e. had a credit event) until time T;
otherwise it receives nothing. At ¢t = 0 A pays to B a fixed premium.

Intuition: pricing of this product sensitive to occurrence of _|0|nt
defaults.

Remark: Real second-to-default swaps are -more complicated. The
payments depend on identities of defaulted counterparties; moreover,
payment due at time of credit event.
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A pricing model

Stylized version of reduced-form model a la Duffie-Singleton or Jarrow-
Lando-Turnbull. Our simplifications:

- interest-rate r is deterministic
- default-intensities are rv's instead of processes.

Denote by 7; the default-time of obligor i in the basket.

Assumption 1: The default-times =, 1 < ¢ < m follow a mixed
exponential distribution, i.e. there is some p-dimensional random
vector ¥ (p < m) such that conditional on ¥ the 7; are independent
exponentially distributed rv's with parameter )\;(¥). In particular,

P(7; < T|®) = 1 — exp(=\()T) w0 \(T)T (1)

The default-indicators ¥; = 1 7<T} then follow a Bernoulli-mixture
model with default-probability as in (1).
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Pricing of credit-derivatives

Following standard-practice we assume that Assumption 1 holds un-
der a pricing-measure Q. Hence for every claim H depending on
T1,-..,Tm the price at t = 0 equals

Py = e_TTE(H('rl, ceeyTm)) .
In particular we get for our second-to-default swap

m
Po=¢"TQ (Zn22>.

—1

Specific model: We choose ) and ¥ so that the one-year default
probability corresponds to the default-probability in the one-factor
latent variable model with t copula, i.e.

& (n VW/iv —/p© )
M=—-Inll1-d|Z (myWiv - Ve , ©~N(0,1),W ~ x2(v)
vV1-p .
©2001 (Alexander 'McN_eiI and Riidiger Frey) . 108"

Simulations: We ran a number of simulations in a homogeneous
portfolio with m = 14, T'= 1, and varying values for default proba-
bility = and asset correlation p.

Portfolio A: m=0.15% p=0.38%
Portfolio B: T =0.50% p=3.80%

In the following table we give the ratio Pt/Pnorrnal of the price of
stylized second-to-default swap in in t~-model and normal model.

Portfolio v=5 v=10 v =20
A 11.0 7.3 4.4
B 3.3 2.6 2.0

Choice of the copula has again drastic effect!

Remark (Extension to more realistic model): Model default-times
as first jump of a Cox-process where the factor-process governing
jump-intensities has stochastic volatility. .
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Conclusions

e Extreme risk in latent variable models is driven by the copula of
the latent variables. '

e The assumption of a multivariate normal distribution and a cali-
bration based on asset correlations alone may seriously underes-
timate the extreme risk in latent variable models.

e Extreme risk in Bernoulli mixture models with factor structure is
driven by the mixing distribution of the factors.

e The two model types may often be'mapped into one another. It
is particularly useful (Monte Carlo simulation and also for fitting)
to represent latent variable models as Bernoulli mixture models.

e Model calibration should use historical default data and not be
based solely on assumptions about asset value correlations.

e Statistical fitting issues should now be a research priority.
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V. Other Applications: Market Risk and Risk Inte-
gration

e Multivariate risk factors - the empirical evidence

e Multivariate time series models

Multivariate extreme value theory

Analysing'market data - a case study

Integrating market and credit risk: the role of copulas

©2001 (Alexander McNeil and Riidiger Frey) 112

1. Stylized facts of Financial Time Series

A realistic time series model should reflect the Sstylized facts of fi-
nancial return series :

*Returns not iid but correlation low

*Absolute returns highly correlated and cross-correlated
*Volatility changes randomly wifh time

*Returns are heavy-tailed

*Extremes appear in clusters (over time)

*Extreme market moves occur together (across assets)
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Stylized Facts: Correlation, Heavy Tails

Correlograms of raw S&P data and absolute data, and QQ-plot of

raw data.

Series : spdata

Serles : abs(spdata)

10

N,

By
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Stylized'Facts: Clustered Extreme Values
Real data show clustered extremes (upper pictures); simulated iid
data do not (lower).
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2 Multivariate Time-Series Models for Market Risk

Goal: Introduction of a few GARCH-type multivariate time-series
models which are useful in the context of market risk management;
no exhaustive overview.

a) Univariate models: a reminder
Basic model structure: Returns follow stationary time series
(Xi,t € Z) with stochastic volatility

Xy = w4+ 01Zt, where

(1) p¢ (conditional mean) and oy (conditional s.d.) depend on past
returns,

(2) Innovations (Z;) are a (0,1) strict white noise (iid) with df Fz(z),
(3) X is strictly stationary, marginal df Fy(z).

Principal examples: Models from the ARCH and GARCH family.
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Univariate ARCH and GARCH Processes
For simplicity, consider X; = 04+Z;.
ARCH(p):  of = B+35_; N X2 ;, where 8,); > 0,Vj.

GARCH(p,a):  of =B+ XF_ MXZ 4+ Ti_; oko?
where B,A; > 0,Vj, &; > 0, Vk.

Condition for second-order stationarity: Z§=1 Aj + 2%21 0 < 1.

Our main model: GARCH(1,1)

| of = aptar(Xi—1—p-1)°+Boty,
-With ag, a1, >0 and |A] < 1.

Many other GARCH-models exist. Estimation is typically done with
(quasi)MLE.
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b) Multivariate GARCH-models

Basic model structure: Observations (X;);cz, where
X = (th, Xd) is d-dim random vector. Dynamics of X; are of

the form Xy = p; + %, 1/2 Z;, where

- p, is conditional mean-vector of X; given past observations,

t
-y =2 (23/2

and where (Z;);cz is an iid-sequence with cov(Z;) = id.
Typically a multivariate normal or t-distribution is.used for Z.

is conditional covariance-matrix of X,

Conditional .correlation: Denote by o} the conditional s.d. of Xt
Conditional correlation matrix is given by (Cvi; = (Zt)m/(ata’)
Note that ;

2= DtCtDt, where D; = diag(crtl, ces ,O‘t)
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The constant conditional correlation model

Assume u; = 0. In a general multivariate GARCH-model D; and
C: depend on its own past values and on all past values of X;_1 ®
Xi—1 (productwise multiplication). For practical application a more
parsimonious version is needed. A useful model is

Constant conditional correlation model (CCC-model): In this
model, proposed by Bollerslev (1990) it is assumed that

e Conditional correlation is constant over time, Cy = C for all t

e Conditional s.d. is g|ven by standard univariate GARCH
(0])2 = oy + b (Xi_;)” + Bloi_p)2,

e 7 is normal or t-distributed
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CCC-model - Estimation

Estimation is usually done via MLE. Often the matrix C is taken as
(robust version of) the sample correlation matrix C; alternatively
C is taken as starting value for optimization-procedure in MLE-
estimation.

An alternative: (Cross-sectional returns via historical simulation)

In CCC-model we have X; = D,Y; where the sequence (Yi)iez is
iid and Y ~ N(0,C) resp. Y ~ t,(0,C). Alternatively we could
use the empirical distribution of standardized residuals as model for
distribution of Y;. ’

As in the CCC-model standardization is done by fitting one-dimensional
GARCH-models to the components and by defining Yy := X?/ot. The
standardized residuals can be stored and used for simulations, e.g.
in the context of pricing basket derivatives.
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3. Extreme Value Theory

Univariate EVT

In classical univariate EVT there are two related modelling approaches:
1. Modelling block maxima (e.g. yearly maxima of daily data).

2. Modelling threshold exceedances - the POT method

Multivariate EVT

In multivariate EVT these modelling approaches are extended:
1. Modelling componentwise block maxima of vectors.

2. Modelling joint exceedances of several thresholds.

We concentrate on the latter, whose utility is more obvious. We
concentrate on building theoretically supported models for tails of
distributions. :
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Univariate EVT

We use parametric methods based on GPD (generalized Pareto dis-
tribution). Alternative: semi-parametric methods based on Hill esti-
mator of tail index.

Generalized Pareto Distribution

The GPD is a two parameter distribution with df
1-(1+¢&/B)YE 0,

1—exp(—z/B) £=0,
where 8 > 0, and the support is z > 0 when ¢ > 0 and 0 <z < —-8/¢
when ¢ < 0.

Gep(z) =

Moments: For £ > 0 distribution is heavy tailed. E(X*) does not
exist for k> 1/¢.
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A Key Result in EVT

Define the distribution function of excesses losses over a high thresh-
old u to be

Fulz) = P{X—-u<z|X>u}
F(ex+u) — F(u)
1-F(u) '’
for 0 <z < zg — u where zg < oo is the right endpoint of F.

Theorem: for a.large class of underlying distributions we can find
a function g8(u) such that
M, ogSuP _, 1Fule) = Gepu (@)l =0

This class consists of the distributions in the maximum domain of
attraction of an extreme value distribution and includes all common
continuous distributions. The GPD is thus a natural approximation
to the unknown excess distribution above sufficiently high thresholds.
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The POT Method - Smith’'s Estimator (1987)
We have data Xq,...,X, from F.

Fix u, a high threshold, and count the random number of exceedances
Ny. The GPD is fitted to the excesses above u by maximum likeli-
hood to obtain estimates £ and j.

By noting that for z > u the tail can be written
F(z) = P{X>u}P{X>z|X>u}
= Fu)Fy(z —u),
we arrive at the tail estimator .
. -1/¢
~ N, _ —
F(x)=1~—“<1+€"’ A“’) :
n B

this estimator is only valid for z > u. Properties (consistency, asymp-
totic normality) are established in the iid case.
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Estimating Measures of Tail Risk

Assume that VaRg(X) > u, so that risk measures are beyond EVT
threshold.

* Quantile (VaR) Estimator

— L B[ (1=-q\¢

Obtained by inverting tail estimator.
* Expected Shortfall

E,00 =R A28

Obtained by simple calculation due to linear form of mean excess
function for GPD.

- Asymmetric confidence intervals for these estimates can be con-
structed using profile likelihood method.
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Univariate EVT Analysis: 99% VaR and Shortfall Estimates
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©2001 (Alexander McNeil and Riidiger Frey) h . 126

Multivariate POT Analysis

Now consider iid random vectors Xq,...,X, and d thresholds uq, ..., uy.
We seek an estimate for the joint distribution F(zq,...,z4) which is
valid in the area {x:z1 > u1,...,24 > uq}-

Suitable margins for our model have already been suggested by uni-
variate EVT. We now require a copula to complete the specification
of our model.

Theory suggests we should choose a so-called extreme value copula
having property: C(u},...,u}) = C'(u1,...,ug).

There are many such copulas. An example is the Gumbel copula.
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Example: Bivariate POT Model

We model the margins with the POT tail estimators

—_ Ny~ ~1/&

We model the dependence with the Gumbel copula C’gu, for some
estimated S.

We have the joint model

F(z1,22) = C§" (Fi(2), Fa(@)) ,21 > u1, 22 > up.

Statistics. We may estimate the marginal and copula parameters
in two stages (as before) or all together.

Inference. Can calculate joint extreme probabilities or spillover
probabilities: P(X1 > k1,Xo > ko) or P(Xo > ko | X1 > k1) for
k1 > w1 and ko > uo,
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4. Towards Risk Integration: pragmatic solutions

It is often inevitable that risk measurement in a financial institution
is decentralised. Individual units or departments know their own risks
and have their own data with which they calculate their own P&L.

These may be considered to be the marginal distributions in a mul-
tivariate risk model representing the whole institution. The missing
element is the copula expressing the dependence between risks in
different units.

Example (with some basis in reality)

Calculation of market and credit risk P&L's is decentralised. Both
departments are proud of their own risk assessments. But manage-
ment needs them integrated.
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Copula-Based Solution (as implemented by financial institution X)
1. Build an economic factor model with one set of common factors
(such as market indexes in various sectors and countries) which are

considered to impact both market and credit risks.

2. Model underlying factors using distributions that are heavy-tailed
and tail dependent to take into account extreme risks!

3. Simulate market and credit losses using the factor model and use
these simulate data to estimate a suitable bivariate copula.

4. Combine estimated copula with original, locally estimated P&lLs
to produce joint model.
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