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Abstract

Good estimates for the tails of loss severity distributions are essential

for pricing or positioning high-excess loss layers in reinsurance. We de-

scribe parametric curve-�tting methods for modelling extreme historical

losses. These methods revolve around the generalized Pareto distribution

and are supported by extreme value theory. We summarize relevant the-

oretical results and provide an extensive example of their application to

Danish data on large �re insurance losses.
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1 Introduction

Estimating loss severity distributions from historical data is an important ac-
tuarial activity in insurance. A standard reference on the subject is Hogg &
Klugman (1984).

In this paper we are speci�cally interested in estimating the tails of loss
severity distributions. This is of particular relevance in re-insurance if we are
required to choose or price a high-excess layer. In this situation it is essential
to �nd a good statistical model for the largest observed historical losses; it
is less important that the model explains smaller losses. In fact, as we shall
see, a model chosen for its overall �t to all historical losses may not provide a
particularly good �t to the large losses. Such a model may not be suitable for
pricing a high-excess layer.

Our modelling is based on extreme value theory (EVT), a theory which until
comparitively recently has found more application in hydrology and climatol-
ogy (de Haan 1990, Smith 1989) than in insurance. As its name suggests, this
theory is concerned with the modelling of extreme events and in the last few
years various authors (Beirlant & Teugels 1992, Embrechts & Kl�uppelberg 1993)
have noted that the theory is as relevant to the modelling of extreme insurance
losses as it is to the modelling of high river levels or temperatures.

For our purposes, the key result in EVT is the Pickands-Balkema-de Haan
theorem (Balkema & de Haan 1974, Pickands 1975) which essentially says that,
for a wide class of distributions, losses which exceed high enough thresholds
follow the generalized Pareto distribution (GPD). In this paper we are concerned
with �tting the GPD to data on exceedances of high thresholds. This modelling
approach was developed in Davison (1984), Davison & Smith (1990) and other
papers by these authors.

To illustrate the methods, we analyse Danish data on major �re insurance
losses. We provide an extended worked example where we try to point out the
pitfalls and limitations of the methods as well as their considerable strengths.

2 Modelling Loss Severities

2.1 The Context

Suppose insurance losses are denoted by the random variables X1; X2; : : : . We
assume that we are dealing with losses of the same general type and that these
loss amounts are adjusted (for ination and social ination) so as to be compa-
rable.We also assume that they are independent of one another.

That is, we consider X1; X2; : : : to be independent, identically distributed
random variables. We denote their common distribution function by FX(x) =
PfX � xg where x > 0.

Now, suppose we are interested in a high-excess loss layer with lower and
upper attachment points r and R respectively, where r is large and R > r. This
means that the payout Yi on a loss Xi is given by

Yi =

8><
>:
0 if 0 < Xi < r;

Xi � r if r � Xi < R;

R� r if R � Xi <1:
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The process of losses becoming payouts is sketched in Figure 1. Of six losses, two
pierce the layer and generate a non-zero payout. One of these losses overshoots
the layer entirely and generates a capped payout.
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Figure 1: Possible realizations of losses in future time period

Two related actuarial problems concerning this layer are:

1. The pricing problem. Given r and R what should this insurance layer cost
a customer?

2. The optimal attachment point problem. If we want payouts greater than a
speci�ed amount to occur with at most a speci�ed frequency, how should
we choose r?

To answer these questions we need to �x a period of insurance and know
something about the frequency of losses incurred by a customer in such a time
period. Denote the unknown number of losses in a period of insurance by
N so that the losses are X1; : : : ; XN . Thus the aggregate payout would be
Z =

PN
i=1 Yi.

The pricing problem usually reduces to �nding moments of Z. A common
pricing formula is Price = E [Z] + k:var [Z], where the price is the expected
payout plus a risk loading which is k times the variance of the payout, for some
k. The expected payout E[Z] is also known as the pure premium and it can be
shown to be E[Yi]E[N ]. It is clear that if we wish to price the cover provided
by the layer (r; R) we must be able to calculate, amongst other things, E[Yi],
the pure premium for a single loss. We will calculate E[Yi] as a price indication
in later analyses in this paper.

One possible way of formulating the attachment point problem might be:
choose r such that PfZ > 0g < p for some stipulated p. That is to say, r
is determined so that in the period of insurance a non-zero aggregate payout
occurs with probability less than p where, for a high-excess layer, p will be
set to very small. The attachment point problem essentially boils down to the
estimation of a high quantile of the loss severity distribution FX(x).
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In both of these problems we need a good estimate of the loss severity dis-
tribution for x large, that is to say, in the tail area. We must also have a good
estimate of the loss frequency distribution of N , but this will not be a topic of
this paper.

2.2 Data Analysis

Typically we will have historical data on losses which exceed a certain amount
known as a displacement. It is practically impossible to collect data on all losses
and data on small losses are of less importance anyway. Insurance is generally
provided against signi�cant losses and insured parties deal with small losses
themselves and may not report them.

Thus the data should be thought of as being realizations of random variables
truncated at a displacement �, where � � r. This displacement is shown in
Figure 1; we only observe realizations of the losses which exceed �.

The distribution function (d.f.) of the truncated losses can be de�ned as
in Hogg & Klugman (1984) by

FX� (x) = PfX � x j X > �g =

(
0 if x � �;
FX(x)�FX(�)

1�FX(�) if x > �;

and it is, in fact, this d.f. that we shall attempt to estimate.
With adjusted historical loss data, which we assume to be realizations of

independent, identically distributed, truncated random variables, we attempt to

�nd an estimate \FX� (x) of the truncated severity distribution FX� (x). One way
of doing this is by �tting parametric models to data and obtaining parameter
estimates which optimize some �tting criterion - such as maximum likelihood.
But problems arise when we have data as in Figure 2 and we are interested in
a very high-excess layer.

Figure 2 shows the empirical distribution function of the Danish �re loss data
evaluated at each of the data points. The empirical d.f. for a sample of size n is
de�ned by Fn(x) = n�1

Pn
i=1 1fXi�xg; i.e. the number of observations less than

or equal to x divided by n. The empirical d.f. forms an approximation to the
true d.f. which may be quite good in the body of the distribution; however, it
is not an estimate which can be successfully extrapolated beyond the data.

The Danish data comprise 2157 losses over one million Danish Krone. We
work in units of one million and consider the displacement � to be one. The
x-axis is shown on a log scale to indicate the great range of the data.

Suppose we are required to price a high-excess layer running from 50 to 200.
In this interval we have only six observed losses. If we �t some overall parametric
severity distribution to the whole dataset it may not be a particularly good �t
in this tail area where the data are sparse.

There are basically two options open to an insurance company. Either it
may choose not to insure such a layer, because of too little experience of possible
losses. Or, if it wishes to insure the layer, it must obtain a good estimate of the
severity distribution in the tail.

Even with a good tail estimate we cannot be sure that the future does not
hold some unexpected catastrophic loss. The extreme value methods which
we explain in the next section do not predict the future with certainty, but
they do o�er good models for explaining the extreme events we have seen in
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Figure 2: High-excess layer in relation to available data

the past. These models are not arbitrary but based on rigorous mathematical
theory concerning the behaviour of extrema.

3 Extreme Value Theory

In the following we summarize the results from EVT which underlie our mod-
elling. General texts on the subject of extreme values include Falk, H�usler &
Reiss (1994), Embrechts, Kl�uppelberg & Mikosch (1997) and Reiss & Thomas
(1996).

3.1 The generalized extreme value distribution

Just as the normal distribution proves to be the important limiting distribution
for sample sums or averages, as is made explicit in the central limit theorem,
another family of distributions proves important in the study of the limiting
behaviour of sample extrema. This is the family of extreme value distributions.

This family can be subsumed under a single parametrization known as the
generalized extreme value distribution (GEV). We de�ne the d.f. of the standard
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GEV by

H�(x) =

(
exp(�(1 + �x)�1=�) if � 6= 0;

exp(�e�x) if � = 0;

where x is such that 1 + �x > 0 and � is known as the shape parameter.
Three well known distributions are special cases: if � > 0 we have the Fr�echet
distribution with shape parameter � = 1=�; if � < 0 we have the Weibull
distribution with shape � = �1=�; if � = 0 we have the Gumbel distribution.

If we introduce location and scale parameters � and � > 0 respectively we
can extend the family of distributions. We de�ne the GEV H�;�;�(x) to be
H�((x � �)=�) and we say that H�;�;� is of the type H� .

3.2 The Fisher-Tippett Theorem

The Fisher-Tippett theorem is the fundamental result in EVT and can be con-
sidered to have the same status in EVT as the central limit theorem has in the
study of sums. The theorem describes the limiting behaviour of appropriately
normalized sample maxima.

Suppose we have a sequence of i.i.d. random variables X1; X2; : : : from an
unknown distribution F - perhaps a loss severity distribution. We denote the
maximum of the �rst n observations by Mn = max(X1; : : : ; Xn). Suppose
further that we can �nd sequences of real numbers an > 0 and bn such that
(Mn � bn)=an, the sequence of normalized maxima, converges in distribution.
That is

P f(Mn � bn)=an � xg = Fn(anx+ bn)! H(x); as n!1; (1)

for some non-degenerate df H(x). If this condition holds we say that F is in
the maximum domain of attraction of H and we write F 2 MDA(H).

It was shown by Fisher & Tippett (1928) that

F 2 MDA(H) =) H is of the type H� for some �:

Thus, if we know that suitably normalized maxima converge in distribution, then
the limit distribution must be an extreme value distribution for some value of
the parameters �, �, and �.

The class of distributions F for which the condition (1) holds is large. A
variety of equivalent conditions may be derived (see Falk et al. (1994)). One
such result is a condition for F to be in the domain of attraction of the heavy-
tailed Fr�echet distribution (H� where � > 0). This is of interest to us because
insurance loss data are generally heavy-tailed.

Gnedenko (1943) showed that for � > 0, F 2 MDA(H�) if and only if
1 � F (x) = x�1=�L(x), for some slowly varying function L(x). This result
essentially says that if the tail of the d.f. F (x) decays like a power function,
then the distribution is in the domain of attraction of the Fr�echet. The class
of distributions where the tail decays like a power function is quite large and
includes the Pareto, Burr, loggamma, Cauchy and t-distributions as well as
various mixture models. These are all so-called heavy tailed distributions.

Distributions in the maximum domain of attraction of the Gumbel (MDA(H0)
include the normal, exponential, gamma and lognormal distributions. The log-
normal distribution has a moderately heavy tail and has historically been a
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popular model for loss severity distributions; however it is not as heavy-tailed
as the distributions in MDA(H�) for � < 0 . Distributions in the domain of
attraction of the Weibull (H� for � < 0) are short tailed distributions such as
the uniform and beta distributions. This class is not of interest in insurance
applications.

The Fisher-Tippett theorem suggests the �tting of the GEV to data on
sample maxima, when such data can be collected. There is much literature on
this topic (see Embrechts et al. (1997)), particularly in hydrology where the
so-called annual maxima method has a long history. A well-known reference
is Gumbel (1958).

3.3 The generalized Pareto distribution

Further results in EVT describe the behaviour of large obervations which exceed
high thresholds, and these are the results which lend themselves most readily
to the modelling of insurance losses. They address the question: given an ob-
servation is extreme, how extreme might it be? The distribution which comes
to the fore in these results is the generalized Pareto distribution (GPD).

The GPD is usually expressed as a two parameter distribution with d.f.

G�;�(x) =

(
1� (1 + �x=�)�1=� if � 6= 0;

1� exp(�x=�) if � = 0;
(2)

where � > 0, and the support is x � 0 when � � 0 and 0 � x � ��=� when
� < 0. The GPD again subsumes other distributions under its parametrization.
When � > 0 we have a reparametrized version of the usual Pareto distribution
with shape � = 1=�; if � < 0 we have a type II Pareto distribution; � = 0 gives
the exponential distribution.

Again we can extend the family by adding a location parameter �. The GPD
G�;�;�(x) is de�ned to be G�;�(x� �).

3.4 The Pickands-Balkema-de Haan Theorem

Consider a certain high threshold u which might, for instance, be the lower
attachment point of a high-excess loss layer. At any event u will be greater
than any possible displacement � associated with the data. We are interested
in excesses above this threshold, that is, the amount by which observations
overshoot this level.

Let x0 be the �nite or in�nite right endpoint of the distribution F . That is
to say, x0 = sup fx 2 R : F (x) < 1g � 1. We de�ne the distribution function
of the excesses over the high threshold u by

Fu(x) = P fX � u � x j X > ug =
F (x+ u)� F (u)

1� F (u)
;

for 0 � x < x0 � u.
The theorem (Balkema & de Haan 1974, Pickands 1975) shows that under

MDA conditions (1) the generalized Pareto distribution (2) is the limiting dis-
tribution for the distribution of the excesses, as the threshold tends to the right
endpoint. That is, we can �nd a positive measurable function �(u) such that

lim
u!x0

sup
0�x<x0�u

jFu(x)�G�;�(u)(x)j = 0;
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if and only if F 2 MDA(H�).
This theorem suggests that, for su�ciently high thresholds u, the distrib-

ution function of the excesses may be approximated by G�;�(x) for some val-
ues of � and �. Equivalently, for x � u � 0, the distribution function of the
ground-up exceedances Fu(x � u) (the excesses plus u) may be approximated
by G�;�(x� u) = G�;u;�(x).

The statistical relevance of the result is that we may attempt to �t the GPD
to data which exceed high thresholds. The theorem gives us theoretical grounds
to expect that if we choose a high enough threshold, the data above will show
generalized Pareto behaviour. This has been the approach developed in Davison
(1984) and Davison & Smith (1990).

3.5 Tail �tting

If we can �t the GPD to the conditional distribution of the excesses above a
high threshold, we may also �t it to the tail of the original distribution above
the high threshold (Reiss & Thomas 1996). For x � u, i.e. points in the tail of
the distribution,

F (x) = P fX � xg = (1� P fX � ug)Fu(x � u) + P fX � ug :

We now know that we can estimate Fu(x � u) by G�;�(x � u) for u large. We
can also estimate P fX � ug from the data by Fn(u), the empirical distribution
function evaluated at u.

This means that for x � u we can use the tail estimate

[F (x) = (1� Fn(u))G�;u;�(x) + Fn(u)

to approximate the distribution function F (x). It is easy to show that[F (x) is
also a generalized Pareto distribution, with the same shape parameter �, but
with scale parameter ~� = �(1�Fn(u))

� and location parameter ~� = u� ~�((1�
Fn(u))

�� � 1)=�.

3.6 Statistical Aspects

The theory makes explicit which models we should attempt to �t to historical
data. However, as a �rst step before model �tting is undertaken, a number of
exploratory graphical methods provide useful preliminary information about the
data and in particular their tail. We explain these methods in the next section
in the context of an analysis of the Danish data.

The generalized Pareto distribution can be �tted to data on excesses of high
thresholds by a variety of methods including the maximum likelihood method
(ML) and the method of probability weighted moments (PWM). We choose to
use the ML-method. For a comparison of the relative merits of the methods we
refer the reader to Hosking & Wallis (1987) and Rootz�en & Tajvidi (1996).

For � > �0:5 (all heavy tailed applications) it can be shown that maximum
likelihood regularity conditions are ful�lled and that maximum likelihood es-
timates (�̂n; �̂n) based on a sample of n excesses are asymptotically normally
distributed (Hosking & Wallis 1987).
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Speci�cally we have

n1=2
�

�̂n
�̂n

�
d
�! N

��
�
�

�
;

�
(1 + �)2 �(1 + �)
�(1 + �) 2�2(1 + �)

��
:

This result enables us to calculate approximate standard errors for our maximum
likelihood estimates.

4 Analysis of Danish Fire Loss Data

The Danish data consist of 2157 losses over one million Danish Krone (DKK)
from the years 1980 to 1990 inclusive. The loss �gure is a total loss �gure for
the event concerned and includes damage to buildings, damage to furniture and
personal property as well as loss of pro�ts. For these analyses the data have
been suitably adjusted to reect 1985 values.

4.1 Exploratory data analysis
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Figure 3: Time series and log data plots for the Danish data. Sample size is
2157.

The time series plot (Figure 3, top) allows us to identify the most extreme losses
and their approximate times of occurrence. We can also see whether there is
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evidence of clustering of large losses, which might cast doubt on our assumption
of i.i.d data. This does not seem to be the case with the Danish data; an
autocorrelation plot (not shown) also reveals no serial correlation structure.

The histogram on the log scale (Figure 3, bottom) shows the wide range of
the data. It also allows us to see whether the data may perhaps have a lognormal
right tail, which would be indicated by a familiar bell-shape in the log plot.

We have �tted a truncated lognormal distribution to the dataset using the
maximum likelihood method and superimposed the resulting probability density
function on the histogram. The scale of the y-axis is such that the total area
under the curve and the total area of the histogram are both one. The truncated
lognormal appears to provide a reasonable �t but it is di�cult to tell from this
picture whether it is a good �t to the largest losses in the high-excess area in
which we are interested.

The QQ-plot against the exponential distribution (Figure 4) is a very useful
guide to heavy-tailedness. It examines visually the hypothesis that the losses
come from an exponential distribution, i.e. from a distribution with a medium-
sized tail. The quantiles of the empirical distribution function on the x-axis
are plotted against the quantiles of the exponential distribution function on the
y-axis. The plot is�

(Xk:n; G
�1
0;1(

n� k + 1

n+ 1
)); k = 1; : : : ; n

�
;

where Xk:n denotes the kth order statistic, and G�10;1 is the inverse of the d.f. of
the exponential distribution (a special case of the GPD). The points should
lie approximately along a straight line if the data are an i.i.d. sample from an
exponential distribution.

A concave departure from the ideal shape (as in our example) indicates a
heavier tailed distribution whereas convexity indicates a shorter tailed distrib-
ution. We would expect insurance losses to show heavy-tailed behaviour.

The usual caveats about the QQ-plot should be mentioned. Even data gen-
erated from an exponential distribution may sometimes show departures from
typical exponential behaviour. In general, the more data we have, the clearer
the message of the QQ-plot. With over 2000 data points in this analysis it seems
safe to conclude that the tail of the data is heavier than exponential.

A further useful graphical tool is the plot of the sample mean excess function
(see again Figure 4) which is the plot

f(u; en(u)); Xn:n < u < X1:ng ;

where X1:n and Xn:n are the �rst and nth order statistics and en(u) is the
sample mean excess function de�ned by

en(u) =

Pn
i=1(Xi � u)+Pn
i=1 1fXi>ug

;

i.e. the sum of the excesses over the threshold u divided by the number of data
points which exceed the threshold u.

The sample mean excess function en(u) is an empirical estimate of the mean
excess function which is de�ned as e(u) = E[X � u j X > u]. The mean excess
function describes the expected overshoot of a threshold given that exceeedance
occurs.
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Figure 4: QQ-plot and sample mean excess function

In plotting the sample mean excess function we choose to end the plot at
the fourth order statistic and thus omit a possible three further points; these
points, being the averages of at most three observations, may be erratic.

The interpretation of the mean excess plot is explained in Beirlant, Teugels
& Vynckier (1996), Embrechts et al. (1997) and Hogg & Klugman (1984). If
the points show an upward trend, then this is a sign of heavy tailed behaviour.
Exponentially distributed data would give an approximately horizontal line and
data from a short tailed distribution would show a downward trend.

In particular, if the empirical plot seems to follow a reasonably straight line
with positive gradient above a certain value of u, then this is an indication that
the data follow a generalized Pareto distribution with positive shape parameter
in the tail area above u.

This is precisely the kind of behaviour we observe in the Danish data (Fig-
ure 4). There is evidence of a straightening out of the plot above a threshold
of 10, and perhaps again above a threshold of 20. In fact the whole plot is
su�ciently straight to suggest that the GPD might provide a reasonable �t to
the entire dataset.
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Figure 5: Performance of overall �ts in the tail area

4.2 Overall �ts

In this section we look at standard choices of curve �tted to the whole dataset.
We use two frequently used severity models - the truncated lognormal and the
ordinary Pareto - as well as the GPD.

By ordinary Pareto we mean the distribution with d.f. F (x) = 1 � (a=x)�

for unknown positive parameters a and � and with support x > a. On making
the change of variable y = x� a (so that we look at excesses above a) and the
reparametrization � = ��1 and a = �=� we obtain the GPD for the case � > 0.
The distributions are thus closely related but maximum likelihood estimation
leads to di�erent �ts; the parametric form of the GPD is in general more exible.

As discussed earlier, the lognormal distribution is not strictly speaking a
heavy tailed distribution. However it is moderately heavy tailed and in many
applications it is quite a good loss severity model.

In Figure 5 we see the �t of these models in the tail area above a threshold
of 20. The lognormal is a reasonable �t, although its tail is just a little too thin
to capture the behaviour of the very highest observed losses. The Pareto, on
the other hand, seems to overestimate the probabilities of large losses. This, at
�rst sight, may seem a desirable, conservative modelling feature. But it may
be the case, that this d.f. is so conservative, that if we use it to answer our
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attachment point and premium calculation problems, we will arrive at answers
that are unrealistically high.

The GPD is somewhere between the lognormal and Pareto in the tail area
and actually seems to be quite a good explanatory model for the highest losses.
The data are of course truncated at 1M DKK, and it seems that, even above this
low threshold, the GPD is not a bad �t to the data. By raising the threshold
we can, however, �nd models which are even better �ts to the larger losses.

Estimates of high quantiles and layer prices based on these three �tted curves
are given in table 1.

4.3 Fitting to data on exceedances of high thresholds
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Figure 6: In left plot GPD is �tted to 109 exceedances of the threshold 10. The
parameter estimates are � = 0:497, � = 10 and � = 6:98. In right plot GPD
is �tted to 36 exceedances of the threshold 20. The parameter estimates are
� = 0:684, � = 20 and � = 9:63.

The sample mean excess function for the Danish data suggests we may have
success �tting the GPD to those data points which exceed high thresholds of 10
or 20; in Figure 6 we do precisely this. We use the three parameter form of the
GPD with the location parameter set to the threshold value and we obtain �ts
to these data which seem reasonable to the naked eye.
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The estimates we obtain are estimates of the conditional distribution of the
losses, given that they exceed the threshold. Quantile estimates derived from
these curve are conditional quantile estimates which indicate the scale of losses
which could be experienced if the threshold were to be exceeded.

As described in section 3.5, we can transform scale and location parameters
to obtain a GPD model which �ts the severity distribution itself in the tail area
above the threshold. Since our data are truncated at the displacement of one
million we actually obtain a �t for the tail of the truncated severity distribution
FX� (x). This is shown for a threshold of 10 in Figure 7. Quantile estimates
derived from this curve are quantile estimates conditional on exceedance of the
displacement of one million.
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Figure 7: Fitting the GPD to tail of severity distribution above threshold 10.
The parameter estimates are � = 0:497, � = �0:845 and � = 1:59.

So far we have considered two arbitrary thresholds. In the next sections we
consider the question of optimizing the choice of threshold by investigating the
di�erent estimates we get for model parameters, high quantiles and prices of
high-excess layers.
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Figure 8: Estimates of shape by increasing threshold on the upper x-axis and
decreasing number of exceedances on the lower x-axis; in total 30 models are
�tted.

4.4 Shape and quantile estimates

As far as pricing of layers or estimation of high quantiles using a GPD model
is concerned, the crucial parameter is �, the tail index. Roughly speaking, the
higher the value of � the heavier the tail and the higher the prices and quantile
estimates we derive. For a three-parameter GPD model G�;�;� the pth quantile
can be calculated to be �+ �=�((1� p)�� � 1).

In Figure 8 we �t GPD models with di�erent thresholds to obtain maximum
likelihood estimates of �, as well as asymptotic con�dence intervals for the pa-
rameter estimates. On the lower x-axis the number of data points exceeding
the threshold is plotted; on the upper x-axis the threshold itself. The shape
estimate is plotted on the y-axis. A vertical line marks the location of our �rst
model with a threshold at 10.

In using this picture to choose an optimal threshold we are confronted with a
bias-variance tradeo�. Since our modelling approach is based on a limit theorem
which applies above high thresholds, if we choose too low a threshold we may
get biased estimates because the theorem does not apply. On the other hand, if
we set too high a threshold we will have few data points and our estimates will
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be prone to high standard errors.
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Figure 9: .999 quantile estimates (upper picture) and price indications for a
(50,200) layer (lower picture) for increasing thresholds and decreasing numbers
of exceedances.

Figure 9 (upper panel) is a similar plot showing how quantile estimates
depend on the choice of threshold. We have chosen to plot estimates of the :999th
quantile. Roughly speaking, if the model is a good one, one in every thousand
losses which exceed 1M DKK might be expected to exceed this quantile; such
losses are rare but threatening to the insurer.

We have tabulated quantile estimates for some selected thresholds in table 1
and given the corresponding estimates of the shape parameter. Using the model
with a threshold at 10 the :999th quantile is estimated to be 95. But if we push
the threshold back to 4 the quantile estimate goes up to 147. There is clearly
a considerable di�erence these two estimates and if we attempt to estimate
higher quantiles such as the :9999th this di�erence becomes more pronounced.
This underlines the fact that estimates of high quantiles are extremely model
dependent.
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Model Threshold Excesses Shape s.e. :999th :9999th P

GPD 3 532 0.67 0.07 129 603 0.21
GPD 4 362 0.72 0.09 147 770 0.24
GPD 5 254 0.63 0.10 122 524 0.19
GPD 10 109 0.50 0.14 95 306 0.13
GPD 20 36 0.68 0.28 103 477 0.15

Models �tted to whole dataset
GPD all data 0.60 0.04 101 410 0.15
Pareto all data 235 1453 0.10
Lognormal all data 82 239 0.41

Scenario models
GPD 10 108 0.39 0.13 77 201 0.09
GPD 10 106 0.17 0.11 54 96 0.02
GPD 10 110 0.60 0.15 118 469 0.19

Table 1: Comparison of shape and quantile estimates for various models

4.5 Calculating price indications

To give an indication of the prices we get from our model we calculate P =
E[Yi j Xi > �] for a layer running from 50 to 200 million (as in Figure 2). It is
easily seen that, for a general layer (r; R), P is given by

P =

Z R

r

(x� r)fX� (x)dx + (R� r)(1 � FX� (R)); (3)

where fX� (x) = dFX� (x)=dx denotes the density function for the losses trun-
cated at �. Picking a high threshold u (< r) and �tting a GPD model to the
excesses, we can estimate FX� (x) for x > u using the tail estimation procedure.
We have the estimate

\FX� (x) = (1� Fn(u))G�̂;u;�̂(x) + Fn(u);

where �̂ and �̂ are maximum-likelihood parameter estimates and Fn(u) is an
estimate of P

�
X� � u

	
based on the empirical distribution function of the

data. We can estimate the density function of the �-truncated losses using the
derivative of the above expression and the integral in (3) has an easy closed
form.

In Figure 9 (lower picture) we show the dependence of P on the choice of
threshold. The plot seems to show very similar behaviour to that of the .999th
percentile estimate, with low thresholds leading to higher prices.

The question of which threshold is ultimately best depends on the use to
which the results are to be put. If we are trying to answer the optimal attach-
ment point problem or to price a high layer we may want to err on the side of
conservatism and arrive at answers which are too high rather than too low. In
the case of the Danish data we might set a threshold lower than 10, perhaps
at four. The GPD model may not �t the data quite so well above this lower
threshold as it does above the high threshold of 10, but it might be safer to use
the low threshold to make calculations.

On the other hand there may be business reasons for trying to keep the
attachment point or premium low. There may be competition to sell high excess
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policies and this may mean that basing calculations only on the highest observed
losses is favoured, since this will lead to more attractive products (as well as a
better �tting model).

In other insurance datasets the e�ect of varying the threshold may be dif-
ferent. Inference about quantiles might be quite robust to changes in threshold
or elevation of the threshold might result in higher quantile estimates. Every
dataset is unique and the data analyst must consider what the data mean at
every step. The process cannot and should not be fully automated.

4.6 Sensitivity of Results to the Data

We have seen that inference about the tail of the severity distribution may be
sensitive to the choice of threshold. It is also sensitive to the largest losses we
have in our dataset. We show this by considering several scenarios in Table 1.

If we return to our �rst model with a threshold at 10, our estimate of the
:999th quantile is 95. Dropping the largest loss from the dataset (so that we now
have only 108 exceedances) reduces this estimate to 77. The shape parameter
is reduced from 0.50 to 0.39. Removing the next two largest losses causes a
further large reduction in the estimates. The price indications P are similarly
a�ected.

On the other hand if we introduce a new largest loss of 350 to the dataset
(the previous largest being 263) the shape estimate goes up to 0.60 and the
estimate of the :999th quantile to 118. Such changes are caused by tampering
with the most extreme values in the dataset. Adding or deleting losses of lower
magnitude has much less e�ect.

5 Discussion

We hope to have shown that �tting the generalized Pareto distribution to in-
surance losses which exceed high thresholds is a useful method for estimating
the tails of loss severity distributions. In our experience with several insurance
datasets we have found consistently that the generalized Pareto distribution is
a good approximation in the tail.

This is not altogether surprising. As we have explained, the method has
solid foundations in the mathematical theory of the behaviour of extremes; it is
not simply a question of ad hoc curve �tting. It may well be that, by trial and
error, some other distribution can be found which �ts the available data even
better in the tail. But such a distribution would be an arbitrary choice, and we
would have less con�dence in extrapolating it beyond the data.

It is our belief that any practitioner who routinely �ts curves to loss severity
data should know about extreme value methods. There are, however, a number
of caveats to our endorsement of these methods. We should be aware of various
layers of uncertainty which are present in any data analysis, but which are
perhaps magni�ed in an extreme value analysis.

On one level, there is parameter uncertainty. Even when we have abundant,
good- quality data to work with and a good model, our parameter estimates are
still subject to a standard error. We obtain a range of parameter estimates which
are compatible with our assumptions. As we have already noted, inference is
sensitive to small changes in the parameters, particularly the shape parameter.
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Model uncertainty is also present - we may have good data but a poor
model. Using extreme value methods we are at least working with a good class
of models, but they are applicable over high thresholds and we must decide
where to set the threshold. If we set the threshold too high we have few data
and we introduce more parameter uncertainty. If we set the threshold too low
we lose our theoretical justi�cation for the model. In the analysis presented in
this paper inference was very sensitive to the threshold choice (although this is
not always the case).

But probably more serious than parameter and model uncertainty is data
uncertainty. In a sense, it is never possible to have enough data in an extreme
value analysis. Whilst a sample of 1000 data points may be ample to make
inference about the mean of a distribution using the central limit theorem, our
inference about the tail of the distribution is less certain, since only a few points
enter the tail region. As we have seen, inference is very sensitive to the largest
observed losses and the introduction of new extreme losses to the dataset may
have a substantial impact. For this reason, there is still be a role for stress
scenarios in loss severity analyses, whereby historical loss data are enriched
by hypothetical losses to investigate the consequences of unobserved, adverse
events.

Another aspect of data uncertainty is that of dependent data. In this paper
we have made the familiar assumption of independent, identically distributed
data. In practice we may be confronted with clustering, trends, seasonal e�ects
and other kinds of dependencies. When we consider �re losses in Denmark it
may seem a plausible �rst assumption that individual losses are independent
of one another; however, it is also possible to imagine that circumstances con-
ducive or inhibitive to �re outbreaks generate dependencies in observed losses.
Destructive �res may be greatly more common in the summer months; buildings
of a particular vintage and building standard may succumb easily to �res and
cause high losses. Even after adjustment for ination there may be a general
trend of increasing or decreasing losses over time, due to an increasing number
of increasingly large and expensive buildings, or due to increasingly good safety
measures.

These issues lead to a number of interesting statistical questions in what
is very much an active research area. Papers by Davison (1984) and Davison
& Smith (1990) discuss clustering and seasonality problems in environmental
data and make suggestions concerning the modelling of trends using regression
models built into the extreme value modelling framework. The modelling of
trends is also discussed in Rootz�en & Tajvidi (1996).

We have developed software to �t the generalized Pareto distribution to
exceedances of high thresholds and to produce the kinds of graphical output
presented in this paper. It is written in Splus and is available over the World
Wide Web at http://www/math.ethz.ch/�mcneil.
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