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Abstract

The paper derives and tests maximum likelihood parameter estimators for symmetrically
correlated Weiner processes observed at discrete intervals. Such processes arise when pricing
and determining Value-at-Risk for portfolio derivatives. Cases of driftless and mean-reverting
state variables are considered. The procedure is applied to jointly evolving credit qualities in
a portfolio of bonds.
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The securitization of and creation of credit derivatives based on large portfolios in the
banking industry is expanding at a rapid pace. The theoretical value of such contracts depends
critically on the degree of comovement of default risk among borrowers, or other sources of
correlation in security returns, within the portfolio. Similarly, intra-portfolio correlations are
a primary determinant of Value-at-Risk in large portfolios and thus concern management,
rating agencies and regulators. Tractable correlation structures and matching estimation
methods are essential for the business of banking. This paper provides maximum likelihood
estimators for the parameters of symmetric, correlated Weiner processes observed at discrete
intervals. Situations are considered where the underlying processes have either zero drift or
are mean-reverting. This is a natural starting point for the problem of portfolio derivatives.

The paper is organized as follows. Section I sets out candidate correlation structures in
continuous time. Section II obtains the discrete time processes that would correspond to
feasibly observable data. Section III derives maximum likelihood estimators for the case of
zero drift processes. Section IV repeats this for mean-reverting processes. Section V describes
how asymptotic standard errors can be obtained. Section VI performs simulation testing, both
to verify large sample and to explore small sample properties of the estimators. Finally section
VII provides an illustrative application to jointly evolving (latent) credit quality of publicly
traded firms’ debt. An Appendix extends the estimators to situations with incomplete or
partial observations.

I. Candidate correlation structures

Suppose we have a number of state variables xi(t) whose evolution in continuous time can be
described by stochastic differential equations

dxi = αi(x, t) dt+ σi(x, t) dzi i = 1, . . . , n (1)

in which dzi are increments in standard Weiner processes with correlations ρij(x, t) between
them. For example, xi might describe the credit quality of a given borrower or, price of a
given security, within a portfolio.

The difficulty with this modestly general specification is that, in situations of interest, n
may be large and specific information about individual i’s either unavailable or too costly
to warrant acquisition. Moreover historical data available is likely about specific firms or
individuals that are distinct from the group relevant for an application at hand. Let us thus
assume that data has already been grouped so that the drift and volatility functions, αi and σi,
are the same for all i both in the historical sample and in some current application. Similarly,
we must have simple structures for the correlation coefficients ρij , both so that they may be
reliably estimated with the limited and incomplete data likely to be available, and so that
parameter estimates may be applied to borrowers or securities viewed as being of the same
generic type, but for which no history is available.

With these considerations in mind, the particular structure we examine in this paper is
the linear, constant volatility, single common factor case:

dxi = κ(µ− xi) dt+ σ(ρ1/2 dz0 + (1− ρ)1/2 dzi) (2)

in which the zi(t), i = 0 . . . n are independent standard Weiner processes and the parameters
κ, µ, σ, 0 ≤ ρ ≤ 1 are constants.1 This structure includes the cases of zero, constant (as a

1The process extends to situations of −1/(n− 1) ≤ ρ < 0 by defining dz0 ≡
∑n

1 dzi and changing
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Table 1: Alternative correlation structures

dxi Total volatility Correlation No. of parameters

σ(ρ1/2 dz0 + (1− ρ)1/2 dzi) σ ρ 2

σi(ρ1/2 dz0 + (1− ρ)1/2 dzi) σi ρ n+ 1

σ(ρ1/2
i dz0 + (1− ρi)1/2 dzi) σ (ρiρj)1/2 n+ 1

σi(ρ
1/2
i dz0 + (1− ρi)1/2 dzi) σi (ρiρj)1/2 2n

limiting case), and mean-reverting drift. z0 has the interpretation of a common factor giving
rise to correlation between the movements of the various xi. The resulting correlation matrix
has 1’s on the diagonal and ρ in all off-diagonal locations. Our problem is to estimate the
four fixed parameters from a time series of observations at discrete intervals of the xi.

For comparison, alternative simple correlation structures, ranked in order of number of
parameters to estimate, are suggested in Table I. (drift terms suppressed). The last case is
equivalent to standard factor analysis with a single common factor. Note, however, that all
but the first case would require specific further information about a borrower/security not in
the estimation group to permit application of results to another group. Thus only the first is
considered here.

II. Discrete time likelihood function

Let the n-vector x(t) ≡ (xi) be observed at T equally-spaced intervals of length h. Assume x
follows a constant coefficient, linear process in continuous time

dx = (Ax+ b) dt+ dz with E( dz dz′) = Ω dt (3)

A and b are respectively a n×n matrix and a column n-vector of constants. Following Wymer
(1972), the exact discrete time process for x is

x(t+ h) = ehAx(t) +A−1[ehA − I]b+ ηt where ηt ∼ N(0,
∫ h

0
eτAΩeτA′ dτ) (4)

I denotes the n × n identity matrix. I.e., the distribution of x(t + h) conditional on x(t) is
joint normal. The expression eA is defined as V eDV −1, where V is a matrix whose columns
are the eigenvectors of A, and eD is a diagonal matrix with elements eci , where the ci are the
corresponding eigenvalues of A. Note that the eigenvectors of hA are the same as for A but
with corresponding eigenvalues of hci.

For the process of equation (2), these components are

A = −κI A−1 = −1
κ
I b = κµe Ω = σ2[(1− ρ)I + ρee′] (5)

in which e denotes a column vector of 1’s. Observing that A has n eigenvalues all equal to −κ
with eigenvectors being the n unit vectors ei (ith element 1 and the rest 0), the covariance

the random term in (2) to σ((1− ρ)1/2 dzi − ((1− ρ)1/2 − (1 + nρ− ρ)1/2)/n dz0). For more negative

ρ, the covariance matrix is not positive-definite.
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matrix of x(t+ h) is obtained:∫ h

0
eτAΩeτA′ dτ =

∫ h

0
e−sκIΩI ′e−sκ′ dτ = Ω

∫ h

0
e−2sκ dτ =

1− e−2hκ

2κ
Ω (6)

Substituting these relations into equation (4) and rearranging,

x(t+ h)− e−hκ︸ ︷︷ ︸
a

x(t)− (1− e−hκ)µ︸ ︷︷ ︸
b

e ∼ N( 0 ,
(1− e−2hκ)

2κ
σ2︸ ︷︷ ︸

s

[(1− ρ)I + ρee′] ) (7)

It is this expression that forms the basis for the likelihood function.
The likelihood function will be expressed, and estimation conducted, in terms of parame-

ters a, b, s as defined in equation (7). The continuous time parameters are then retrieved from
the one-to-one relationships

κ = −1
h

ln a µ =
b

1− a
σ2 =

2s ln a
h(a2 − 1)

ρ = ρ (8)

The zero drift case obtains by setting a = 1 and b = 0. The constant drift case obtains by
setting a = 1, estimating b, and noting that the continuous time drift rate is simply b/h.

Now suppose that we have observations on the n state variables at equally spaced times
tj , j = 1 . . . T + 1. Define the n-vector

yj ≡ x(tj+1)− ax(tj)− be j = 1 . . . T (9)

Being joint normally distributed, and independent because the x process is Markov and the
time intervals do not overlap, the likelihood function for these observations is

L =
T∏

j=1

1
(2π)n/2|Ω̃|1/2

e−y′jΩ̃−1yj/2 (10)

where from equation (7)
Ω̃ ≡ s[(1− ρ)I + ρee′] (11)

Maximizing L is equivalent to maximizing Λ, defined as

Λ ≡ 2 lnL = −nT ln(2π)− T ln |Ω̃| −
∑T

j=1 y
′
jΩ̃
−1yj (12)

We are almost there. One may verify that that Ω̃ satisfies the following:2

|Ω̃| = sn(1− ρ)n−1(1 + nρ− ρ) Ω̃−1 =
1

(1− ρ)s
[I − ρee′

1 + nρ− ρ
] (13)

Substituting into Λ gives

Λ = −nT ln(2π)−nT ln s−(n−1)T ln(1−ρ)−T ln(1+nρ−ρ)−
∑

j y
′
jyj

s(1− ρ)
+

ρ
∑

j y
′
jee′yj

s(1− ρ)(1 + nρ− ρ)
(14)

2One may also verify that Ω̃ has unique largest eigenvalue of (1 + nρ− ρ)s with eigenvector e, and

n−1 eigenvalues of value (1−ρ)s with (non-unique) eigenvectors −ei +(e+
√
ne1)/(n+

√
n), i = 2 . . . n.
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The final step is to substitute for yj from (9). Letting xj denote x(tj) and x̃j denote x(tj+1),
yields the (two times) log-likelihood in terms of the model parameters and moments of the
data. Summations are understood to be over j = 1 . . . T .

Λ = − nT ln(2π)− nT ln s− (n− 1)T ln(1− ρ)− T ln(1 + nρ− ρ) (15)

−
nTb2 + Σx̃′j x̃j − 2aΣx′j x̃j + a2Σx′jxj + 2abΣx′je− 2bΣx̃′je

s(1− ρ)

+
ρ(Tn2b2 + Σx̃′jee′x̃j − 2aΣx′jee′x̃j + a2Σxjee′xj + 2nabΣx′je− 2nbΣx̃′je)

s(1− ρ)(1 + nρ− ρ)

III. Maximum likelihood estimators: zero drift

The section specializes to the case of zero drift by setting a = 1 and b = 0. The likelihood
function reduces to

Λ = −nT ln(2π)− nT ln s− (n− 1)T ln(1− ρ)− T ln(1 + nρ− ρ)

−
∑

(x̃j − xj)′(x̃j − xj)
s(1− ρ)

+
ρ
∑

(x̃j − xj)′ee′(x̃j − xj)
s(1− ρ)(1 + nρ− ρ)

(16)

Taking partial derivatives with respect to s and ρ, equating to 0 then solving, gives explicit
maximum likelihood estimators:

ŝ =
∑

(x̃j − xj)′(x̃j − xj)
nT

(17)

≡ 1
nT

∑T
j=1

∑n
i=1(x̃ij − xij)2

ρ̂ =
∑

(x̃j − xj)′[ee′ − I](x̃j − xj)
(n− 1)

∑
(x̃j − xj)′(x̃j − xj)

(18)

≡ − 1
n− 1

+
1

(n− 1)nT ŝ
∑T

j=1(
∑n

i=1(x̃ij − xij))2

Λ∗ = −T ((ln 2π + ln ŝ+ 1)n+ (n− 1) ln(1− ρ̂) + ln(1 + nρ̂− ρ̂)) (19)

The continuous time volatility estimate is related to ŝ by

σ̂ = (ŝ/h)1/2 (20)

An unbiased estimate of the common component of the state change over the jth observation
interval, σρ1/2(z0(tj + h)− z0(tj)), is simply the average x change

ε̂j =
1
n

∑n
i=1(x̃ij − xij) (21)

This will be a noisy estimate, with error variance converging to 0 only as the number of
diffusions n in the cross-section goes to infinity.

Making use of the true covariance matrix from (7), one can verify that E(ŝ) = σ2 and
E(ρ̂ŝ) = ρσ2. The maximum likelihood estimates of the instantaneous variance/covariance
of the x-process are thus unbiased. However the maximum likelihood estimates of the in-
stantaneous volatility and correlation (σ and ρ), being nonlinear functions of the estimated
variance/covariance, will be biased in finite samples.

4



IV. Maximum likelihood estimators: mean reversion

For the general mean-reverting process case, the likelihood function is as in (15). However
the ML estimators are too unwieldy to present in their entirety. Indeed, we resort partially
to numerical optimization of Λ as described below.

We proceed as follows. First, maximize Λ with respect to a, b, s for given ρ by setting the
partial derivatives with respect to those variables equal to 0 and solving for their values. This
gives

a =
nT (1 + nρ− ρ)Σx′j x̃j − ρnTΣx′jee′x̃j − (1− ρ)Σx′jeΣx̃′je
nT (1 + nρ− ρ)Σx′jxj − ρnTΣx′jee′xj − (1− ρ)Σx′jeΣx′je

(22)

b =
Σx̃′je− aΣx′je

nT
(23)

s =
1
nT

Σ(x̃j − axj − be)′(x̃j − axj − be) (24)

Note that s is expressed above in terms of the expressions for a, b. Substitution of these into
Λ gives a concentrated likelihood function Λ∗(ρ). We maximize this numerically with respect
to ρ to obtain ρ̂, substituting the outcome into (22) to (24) to get â, b̂, ŝ.3

An estimate of the state change attributable to movement in the common factor over the
jth observation interval, (ρs/h)1/2(z0(tj +h)−z0(tj)), is the average x change with estimated
drift removed4

ε̂j =
1
n

∑n
i=1(x̃ij − âxij − b̂) (25)

An estimate of the change in z0—for comparison, say, with changes in other factors—is
ε̂j/(ρ̂ŝ/h)1/2. Note that this will be biased in small samples because only estimated ρ, s
values are available. It will also be noisy for arbitrarily large T (but small n) because random
comovement of the independent zi in the same direction will be erroneously attributed to
movement in z0.5

V. Distribution of estimated parameters

Under certain regularity conditions, the maximum likelihood estimates of a parameter vector
γ are asymptotically distributed around the true γ as follows:6

T 1/2(γ̂ − γ) d→ N(0, lim(I/T )−1) (26)

3The first order condition ∂Λ∗/∂ρ = 0 is revealed by Maple to be a third order polynomial in ρ,

so could in principle be solved analytically. However the polynomial coefficients are very lengthy ex-

pressions involving sixth moments of the data. Numerical maximization using the BRENT subroutine

from Numerical Recipes seemed the more expedient route.
4Compared to no mean reversion, a given movement in z0 has less impact on the states because its

effect is diminished by mean reversion between observation dates. I.e., ρs/h < ρσ for κ > 0.
5The asymptotic (T →∞) variance of the error in estimating ∆z0 is (1− ρ)h/ρn.
6See Dhrymes (1974, p.122) or Judge et al (1985, p.178)
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in which I denotes the information matrix

I = −E(
∂2 lnL
∂γ∂γ′

) (27)

L is the sample size T likelihood function evaluated at the true γ, and the limit in (26) is as
T goes to infinity. There are a variety of methods for obtaining an estimate of this matrix.
We adopt a method of Berndt, Hall and Hausmann as given in Judge (1985, p.180, eq.5.6.8).
Their estimator for lim(I(γ)/T is

1
T

[
T∑

t=1

(
∂ lnLt

∂γ

)(
∂ lnLt

∂γ

)′]
γ=γ̂

(28)

where Lt denotes the probability density of the one-period observation yt. Thus, for each ob-
servation date separately, we determine numerically the partial derivatives of the log-likelihood
with respect to the four parameters γ ≡ (σ, ρ, κ, µ)′ evaluated at the maximum likelihood es-
timate γ̂, and accumulate the outer product of that vector with itself.7 Standard errors for
the parameters are square roots of the corresponding diagonal elements of the inverse of this
matrix.

VI. Simulation testing

To test the estimation method and determine the small sample characteristics of the param-
eter estimates, hypothetical data sets were created by Monte Carlo simulation and MAXLIKE
applied to them. From a reverse perspective, this also tests the procedure used to simulate
multiple correlated diffusions. Such procedures are required to value contingent claims whose
payouts depend on the joint evolution of correlated diffusions within a portfolio (e.g., credit
derivatives).

Benchmark parameter values used for the mean-reverting case were κ = 1, µ = 5, σ = 1,
ρ = .25 (assume one year time unit). Observation intervals were set at .25 years. For each
variation below, 500 simulations/estimations were performed.8

To verify large sample performance, simulations of 100 joint diffusions over 100 observation
intervals are reported in Table 2. As can be seen, the average of each parameter estimate agrees
closely with the true value used to create the data. Furthermore, the Berndt-Hall-Hausmann
estimate of the standard errors agrees quite well with the simulation standard deviations, with
no obvious bias in either direction.

Table 3 reports on simulation of 10 joint diffusions for progressively shorter numbers of
observation intervals from 50 down to 5. Aside from the understandably larger standard errors
as the number of observation intervals shrinks, the most notable feature is the progressively
larger bias toward 0 in the estimated ρ, mild downward bias in σ, and upward bias in the mean-
reversion coefficient κ. This is consistent with the idea that the randomly occuring ‘trend’

7An alternative estimator tried based on the numerically evaluated matrix of second partials of the

log-likelihood (given in Judge as eq. 5.6.7) , behaved in a less satisfactory manner on some data sets.
8Uniform random variables generated by RAN1 of Numerical Recipes were converted to normal

deviates using their routine GASDEV. These were used in turn to generate x changes following equation

(7). The initial distribution of the state variable was set at uniform on [0,10]. Alternative initial

distributions (all at 5; half each at 0 and 10) resulted in little difference except in very small samples.
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Table 2: Large sample simulation

κ µ σ ρ Λ

input value 1.0000 5.0000 1.0000 0.2500

avg. estimate 1.0030 5.0028 0.9985 0.2457 -2.6452e+03

minimum 0.9216 4.7122 0.9427 0.1539 -2.8386e+03

maximum 1.1221 5.2943 1.0552 0.3273 -2.4628e+03

sample st. dev. 0.0267 0.0966 0.0193 0.0291 6.5957e+01

BHH st. dev. 0.0277 0.1039 0.0203 0.0288

100 observations of 100 diffusions. 500 Monte Carlo trials. Uniform starting distribution on

[0,10].

that will be present in any short series of the common factor can be equally (statistically)
construed as stronger reversion toward a mean particular to that sample. A second notable
feature is the increasing overstatement by the BHH standard error of the true estimation
error—by a factor of 50 for T = 5. For T ≥ 20 the overstatement appears modest enough to
be ignored.

Table 4 reports on simulation for 50 observation intervals of progressively fewer joint diffu-
sions from 50 down to 2. Here no consistently developing bias appears to show up in the value
of any of the parameters. The BHH standard errors slightly overstate the true standard de-
viations, but the proportional overstatement is slight (sometimes even slight understatement)
and appears unconnected with sample size. Note that 2 is the minimum number of diffusions
for which the notion of correlation could have meaning.
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Table 3: Varying time series length for N = 10

κ µ σ ρ Λ

input value 1.0000 5.0000 1.0000 0.2500

average: T = 50 1.0186 5.0250 1.0133 0.2392 -2.0264E+02

standard dev. 0.0932 0.1660 0.0403 0.0502 3.3358E+01

BHH st. dev. 0.1127 0.1703 0.0450 0.0562

average: T = 20 1.0233 5.0085 0.9964 0.2212 -7.5998e+01

standard dev. 0.1052 0.2611 0.0572 0.0784 1.6694e+01

BHH st. dev. 0.1544 0.2816 0.0782 0.0985

average: T = 10 1.0286 5.0793 0.9721 0.2327 -3.0972e+01

standard dev. 0.1137 0.3470 0.0794 0.1053 1.2544e+01

BHH st. dev. 0.2220 0.5270 0.1514 0.2013

average: T = 8 1.0199 5.0678 0.9660 0.2088 -2.4899e+01

standard dev. 0.1154 0.3832 0.0918 0.1232 1.1745e+01

BHH st. dev. 0.2667 0.6535 0.2000 0.2753

average: T = 6 1.0435 5.1334 0.9652 0.1892 -1.8685e+01

standard dev. 0.1207 0.4361 0.1106 0.1321 1.0929e+01

BHH st. dev. 0.4861 2.3931 0.4010 0.6070

average: T = 5 1.0489 5.1747 0.9547 0.1365 -1.5684e+01

standard dev. 0.1309 0.5038 0.1217 0.1392 1.1105e+01

BHH st. dev. 5.7953 14.6454 8.6073 6.7456

Observations of 10 diffusions. 500 Monte Carlo trials. Uniform starting distribution. T

equals number of observation intervals.
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Table 4: Varying number of diffusions for T = 50

κ µ σ ρ Λ

input value 1.0000 5.0000 1.0000 0.2500

average: N = 50 1.0025 5.0101 1.0016 0.2433 -7.4240E+02

standard dev. 0.0468 0.1406 0.0296 0.0398 7.5991E+01

BHH st. dev. 0.0546 0.1533 0.0321 0.0440

average: N = 20 1.0065 5.0097 1.0086 0.2510 -3.3769E+02

standard dev. 0.0648 0.1702 0.0331 0.0423 4.7403E+01

BHH st. dev. 0.0873 0.1632 0.0391 0.0508

average: N = 10 1.0186 5.0250 1.0133 0.2392 -2.0264E+02

standard dev. 0.0932 0.1660 0.0403 0.0502 3.3358E+01

BHH st. dev. 0.1127 0.1703 0.0450 0.0562

average: N = 5 1.0323 5.0346 1.0130 0.2333 -1.1241E+02

standard dev. 0.1217 0.1743 0.0479 0.0660 2.1210E+01

BHH st. dev. 0.1532 0.1860 0.0589 0.0729

average: N = 3 1.0693 5.0241 0.9988 0.2222 -6.6727E+01

standard dev. 0.1564 0.1951 0.0563 0.0943 1.5212E+01

BHH st. dev. 0.1869 0.1991 0.0692 0.1002

average: N = 2 1.0464 5.0673 0.9831 0.2515 -4.2334E+01

standard dev. 0.1633 0.2360 0.0790 0.1386 1.5160E+01

BHH st. dev. 0.2059 0.2304 0.0847 0.1474

T = 50 observation intervals. 500 Monte Carlo trials. Uniform starting distribution. N

equals number of diffusions observed.
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Table 5: Credit series properties

Average x Minimum x Maximum x Drift Volatility Autocorrel

7.45 3.13 8.87 .08 .552 -.042

VII. Application to credit state histories

This final section applies the procedure to a time series of credit states for 104 U.S. firms with
publicly traded debt. The latent credit states xit are continuous variables with theoretical
range [0,∞) that are assumed to follow mixed jump-diffusion processes over time. Default
is associated with diffusing or jumping to a credit state less than or equal to 0. The credit
state of a given firm on a given date is not observed directly, but is inferred from the process
parameters and the current market prices of the firm’s traded bonds in the context of an
arbitrage-free valuation model.9

Month-end observations of the firms’ outstanding publicly traded debt was obtained for the
period May, 1993, to December, 1997. The process of inferring credit states is not described
here; rather the output of that process is taken as the data for the current exercise.10 We thus
start with a time series of 54 monthly observations of inferred credit states for each of the 104
firms. Our maintained hypothesis is that the credit states of all firms follow mean-reverting
correlated diffusions with identical parameters, as assumed by the estimation procedure. Our
problem is to estimate the common values of κ, µ, σ, ρ.

Summary descriptive statistics for the series are given in Table 5. The drift and volatility
are expressed as annual rates. The range of credit qualities corresponds roughly to AAA to B
rated bonds. None of the issuers in the sample went bankrupt during the period. As can be
seen, credit quality displayed a slight upward drift over the sample period, annual standard
deviation of change of approximately half a unit, and slight negative month-to-month serial
correlation of changes for any given firm.

Table 6 presents maximum likelihood estimates of the process parameters under assump-
tions of zero drift and of mean-reversion respectively. Included are the estimated standard
errors and correlation matrix of the parameter estimates using the BHH method described
earlier. First order autocorrelation coefficients of the estimated common factor series (sup-
posed to be 0 under the assumed specification) were -.106 and -.121 respectively. The very
high correlation between the estimated ρ and σ is likely a consequence of these two parame-
ters predominantly appearing as a package σ(1− ρ) in the likelihood function, though it may
indicate a weakness of the BHH estimate of the information matrix on which this correlation
is based.

The parameter estimates indicate noticable mean-reversion in individual firms’ credit qual-
ity over the sample and correlation in credit quality changes across firms. The difference of

9Appropriate account must be taken of the term structure of default-free bonds at the same time.
10The credit evolution model and its estimation are set out in Chau and Jones (1999 in progress).

Loosely speaking, credit state here corresponds to the observed market yield spread relative to U.S.

Treasuries for a hypothetical standard maturity bond.
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Table 6: Estimation results for credit quality series

κ µ σ ρ Λ∗

estimate .5604 0.2567 9704

BHH st. dev. .0109 0.0292

correlation matrix 1.000

.995 1.000

estimate .2906 7.736 .5609 0.2544 9809

BHH st. dev. .0116 0.545 .0120 0.0325

correlation matrix 1.000

.028 1.000

-.080 .490 1.000

-.116 .495 .996 1.000

149 between Λ∗ under the two drift assumptions, which should be asymptotically distributed
χ2(2) if there is no drift, strongly rejects a hypothesis of zero drift against the mean-reversion
alternative. However its quantitative importance would depend on the time horizon of the
application: With credit quality 2 units away from the target mean of 7.7, for example, the
contribution of expected annual drift of (.29)(2) = .58 is of the same order of magnitude as the
annual volatility of .56 . For horizons well under a year, the volatility will tend to dominate
the drift, and the latter might plausibly be ignored; however for multiyear horizons, it will
clearly be important. The ρ estimate of .254 means that 25.4% of the overall variance of the
monthly changes can be attributed to movements of a common factor that equally affects all
firms.

To get a sense of whether imposing the assumption of symmetric correlation is appropri-
ate, conventional factor analysis was applied to the monthly credit state changes. Expected
drift, based on the estimates of κ and µ above, was first removed. The remaining random
components of changes had a neglibible annualized drift of -.002, volatility of .546, and slight
negative autocorrelation of -.041. Table 7 summarizes results for the first three factors in or-
der of importance. Since factor analysis permits different weights (loadings) on the common
factors for each variable, the estimated loadings vary by firm in the sample. Reported for
each factor are the minimum and maximum loadings in addition to the average and standard
deviation across the 104 firms.

The results of Table 7 reveal that a single common factor, optimally weighted for each
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Table 7: Factor analysis of credit state changes

Var explained Min load Max load Avg load Stdev load

1st factor .289 -.040 .169 .093 .032

2nd factor .087 -.121 .774 -.001 .098

3rd factor .074 -.409 .603 -.006 .098

firm, could explain 28.9% of the overall fluctuation in credit quality—a modest increase over
the 25.4% when equal loading was imposed as above. Though there is some dispersion, the
weights were mostly of the same sign and moderately clustered around their average value
of .093. In contrast, the next two most significant factors had incremental explanatory value
of just 8.7% and 7.4% of overall variance respectively, with much greater dispersion across
firms in their weights. Inspection of the individual loadings reveals both of these factors to be
heavily weighted by just one or two firms, with negligible weight on them by most others. I.e.,
they appear to embody more firm-specific fluctuation. We conclude from this that imposing
symmetric correlation is a useful and not-unreasonable approximation to describing credit
state evolution across firms in the sample, but that assuming common idiosyncratic volatility
is somewhat at odds with the data.

VIII. Conclusion

This paper has suggested a specification for correlated diffusions more basic than factor anal-
ysis with widespread potential application in the financial industry. It recognizes the reality
that inference and valuation must often be based on limited observation of generic portfolios
with changing and anonymous constituents. It also recognizes that the dominant valuation
frameworks require knowledge of underlying continuous time processes, but the statistician
must work with discrete time observation. Within these constraints, we have provided, tested
and hopefully displayed the applicability of maximum likelihood procedures.
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Appendix

A. Partial data series

The section indicates how the estimators extend to situations with partial observation series
for some or all of the state variables. For example, in the context of borrower credit states,
some borrowers/firms may have no credit history or publicly traded debt at the start of
observation, or they may drop out part way through by maturity of their debt or by default.
We assume that each state variable, for the period that it is visible, is observed at the same
interval h and is synchronized with the other state variables then being observed.

Let nj denote the number of state variables observed at both time tj and time tj+1, with
yj = xj+1 − axj − be being the nj-vector of random parts of the changes as in equation (9).
The overall likelihood function is as in equation (10) with n becoming nj and recognizing that
the covariance matrix Ω̃ is of size nj . Making this adjustment results in the revised two-times
log-likelihood function corresponding to equation (14):

Λ = −Σjnj ln 2π − Σj(nj − 1) ln(1− ρ)− Σjnj ln s− Σj ln(1 + njρ− ρ)

− 1
(1− ρ)s

Σjy
′
jyj +

ρ

(1− ρ)s
Σj

y′jee′yj

1 + njρ− ρ
(A.1)

Let N ≡ Σjnj and gj ≡ 1/(1+njρ−ρ) to simplify notation. Substituting for yj and collecting
terms allows Λ to be written in terms of the parameters and data moments as

Λ = −N ln 2π − (N − T ) ln(1− ρ)−N ln s+ Σ ln gj

− 1
(1− ρ)s

[
Σx̃′j x̃j − 2a Σx′j x̃j + a2 Σx′jxj

]
− 1
s

[
b2 Σgj − 2b Σgj x̃

′
je + 2ab Σgjx

′
je
]

+
ρ

1− ρ

[
Σgj x̃

′
jee′x̃j − 2a Σgjx

′
jee′x̃j + a2 Σgjx

′
jee′xj

]
(A.2)

Summations are understood to be over j = 1, T and the e vectors of 1’s to be of appropriate
length nj .

For given ρ, this may be maximized with respect to a, b, s by setting first partial derivatives
equal to 0. Letting M ≡ Σnjgj , this yields

a =
M Σx′j x̃j − ρM Σgjx

′
jee′x̃j − (1− ρ) Σgjx

′
je Σgj x̃

′
je

M Σx′jxj − ρM Σgjx′jee′xj − (1− ρ) Σgjx′je Σgj x̃′je
(A.3)

b =
Σgj x̃

′
je− a Σgjx

′
je

M
(A.4)

s =
Σx̃′j x̃j − 2a Σx′j x̃j + a2 Σx′jxj + b2N − 2b Σx̃′je + 2ab Σx′je

N
(A.5)

The concentrated likelihood function Λ∗(ρ) is obtained by substituting these values into (A.2).
This is then maximized numerically with respect to ρ to get estimates of the four parameters.
For the case of no mean reversion, a and b are fixed at 1 and 0 respectively when maximizing
with respect to ρ.
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N integer vector length IT giving diffusions njeach date

IT integer no. of observation dates T

H double time between observations h

X double vector length sum N(J) holding stacked xij

XH double vector length sum N(J) holding stacked x̃ij

IFLAG integer flag value MRevert + 2*GenCov + 4*GenZ + 8*Nsame

MRevert = 0 (0 drift) or 1 (mean-reverting)

GenCov = 0 (skip COV) or 1 (generate COV)

GenZ = 0 (skip Z) or 1 (generate Z)

Nsame = 0 (N differ) or 1 (N(1) applies to all)

K double estimated κ

U double estimated µ

SIG double estimated σ

RHO double estimated ρ

LMAX double maximized 2×log-likelihood Λ∗

Z double vector length IT-1 of estimated common factor changes z0(t+ h)− z0(t)

COV double vector length 3 or 10 of lower triangle of parameter

covariance matrix (ordered σ, ρ, κ, µ)

B. Subroutine MAXLIKE

This section briefly describes the Fortran subroutine MAXLIKE that implements the maxi-
mum likelihood estimators of the previous sections. The routine is invoked within a Fortran
main program by

call MAXLIKE( N, IT, H, X, XH, IFLAG, K, U, SIG, RHO, LMAX, Z, COV )

The first six arguments are inputs, and not modified by the subroutine; the next five arguments
are outputs returned. The final two are optionally returned. Argument descriptions follow.

The subroutine is self-contained (i.e., has no other arguments passed by common from
calling routine). Care must be taken that the vectors X, XH are full and store data in the
manner interpreted by MAXLIKE. The integer vector N of length IT gives the number of state
variables observed on each observation date. The vector X is assumed to be the start-of-period
observations stacked on top of each other. I.e., the N(1) x values on date 1, followed without
gap by the N(2) values on date 2, etc. Argument XH is the corresponding vector of values of
the same state variables time H later in the same order. This routine has one internal size
parameter MAXT, which is the maximum number of observation dates that can be accomodated,
and currently set to 500. Aside from this constraint, arbitarily large data sets are accepted.

In the special case where the set of state variables observed each date is the same, and
because of the way arrays are stored in Fortran, the calling program may equivalently di-
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mension X as a two-dimensional array of size (N,IT). X(i,j) would be the jth observation
in time of the ith state variable or borrower. XH(i,j) will typically be simply X(i,j+1) if
movements over the shortest observed time horizon are the basis for estimation. This can be
accomplished in Fortran by simply passing X(1,2) as argument XH. However it may be set
so that the observation interval is larger, say X(i,j+∆j), if one wishes to lessen the impact
of observation noise or error not specified in the model. Setting IFLAG appropriately lets the
first element of N apply to all dates.

The parameter covariance matrix COV and estimated vector of common factor changes Z
are optionally generated if IFLAG are set approriately. Note however that it assumes indepen-
dent increments in the time series observations and is thus only meaningful if the observation
intervals are non-overlapping (i.e., time horizon for estimation is one period). Only the 3 (no
mean-reversion) or 10 (with mean-reversion) element lower-triangular portion of this symmet-
ric matrix is returned: i.e., first element is the first diagonal, next two elements are the second
row, next three the third, etc.
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