
Analyzing Credit Lines with Fluctuating Credit Quality
Preliminary

Robert A. Jones∗

March 2001

The revolving credit line—an arrangement under which customers may borrow and repay

at will subject to a maximum outstanding—has been a standard form of bank lending for

decades. The interest rate paid on borrowings, or the spread over some reference rate in the

case of floating rate loans, is typically fixed for the term of the contract. This grants a valuable

option to the borrower: As credit quality, and hence rate that would be paid on alternative

borrowings, subsequently fluctuates, he can raise or lower borrowings on the line. The loan

spread and likelihood of default from the perspective of initial credit quality may thus present

a misleading picture of loan profitability to the lender.

This paper examines credit lines using the tools of modern contingent claims analysis. The

objective is a broadly applicable, computationally tractable, arbitrage-free framework for de-

faultable securities when creditworthiness evolves independently of the security being valued.

I.e., the security in question does not itself influence solvency of the issuer.1 Credit exposure

to a given customer can take a variety of forms, all considered by him (or the ambitious

bank relationship-manager) simultaneously: fixed rate bullet (constant balance) loan; floating

rate bullet loan; program of guaranteeing the customer’s commercial paper; floating rate loan

with spread reset according to credit quality; unsecured fixed/floating interest rate swap with

the customer; third party credit default swap based on that customer; revolving credit line;

standard credit line (maximum cumulative drawdowns independent of prepayments); option

on any of these (loan commitment). Clearly an analytically consistent framework is needed

to avoid internal arbitrage and to ensure the same compensation for bearing the same risk

regardless of contractual form.

Section I lays out a model of credit quality evolution and the numerical valuation of default-

risky securities. Section II describes estimation of risk-neutral process parameters from US

traded corporate bond price data. Section III analyses the revolving credit line in particular.
∗Economics Department, Simon Fraser University, and Wells Fargo Bank. tel: 604-291-3367 email:

rjones@sfu.ca
1Using the terminology of Duffie and Singleton (1997), we are looking for a reduced-form rather

than structural model.
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I. The default process and security valuation

1. Credit quality evolution

Let us treat credit quality as a scalar s(t) that follows a calendar time independent jump-

diffusion process. As a Markov process, this provides computational tractability, facilitates

treatment of securities with American option features, and allows room for a second factor that

may influence contractual payouts or values (e.g., riskfree interest rates, variable entering swap

or option contract, etc.). Default is associated with the credit state crossing an exogenously

specified barrier, here s = 0. Thus

ds = α dt + σ dz + µdπ (1)

in which z(t) is a standard Brownian motion, π(t) counts the jumps in a Poisson process with

instantaneous intensity λ, independent of z, α is the diffusion drift, σ the diffusion volatility,

and µ the (random) jump size conditional upon a jump occurring. α, σ, λ are permitted to

be ‘nice’ functions of s. Jump sizes are specified by a conditional distribution function

F (x, x′) ≡ prob{s(t+) ≤ x | s(t−) = x′, dπ(t) = 1} (2)

with µ otherwise independent of z and π.2 The resulting default time—first t such that

s(t) ≤ 0—will be denoted by τ . Default states are treated as absorbing: i.e., ds(t) = 0 for

t > τ .

2. Theoretical security values

Assume there is a continuously functioning, frictionless market in default-free bonds. Let r(t)

denote the interest rate on instantaneously maturing bonds at time t, with the process for r

being independent of s.

Consider financial securities—or contracts between two parties—of the following form:

There is a finite set {ti}i=0,1,... of contractual payment dates. Contract maturity T is the last

payment date; contract origination t0 = 0 is the first. One party is designated the purchaser

or lender, and treated as default free; the other, the seller or borrower, has credit quality

evolve as in the previous section. Security valuation is from the perspective of the lender.

The contract specifies net payments to the lender on payment dates of q(s, r, ti) if no

prior default, where s, r are values at ti. At each t there is also a contractual recovery balance
2Appropriate choice of the functions α, σ, λ, F allows representation of a wide range of reduced-

form default models, such as ratings-based specifications (α, σ = 0, F a step function), pure diffusion

to barrier (λ = 0), jumps are always to default (F (x, x′) steps up from 0 to 1 at x = 0 ∀x′), fixed

distribution of jump sizes (F (x + y, x′ + y) = F (x, x′) ∀x, x′, y), and so on.
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B(s, r, t). If default occurs at time τ , the lender receives ρB(s, r, τ) at that time. ρ is a recovery

rate assumed constant in the current application.3 Initial loan advance, origination fees or

purchase price are subsumed in the (possibly negative) origination date payment q(s, r, 0).4

Consistent with equilibrium in the absence of arbitrage opportunities, we assume existence

of a (risk-neutral) probability measure Q over realizations such that the time t fair market

value of the contract, conditional on no prior default, is the expected discounted cash flows

remaining:

V (s′, r′, t) = EQ[
∑

t≤ti<τ
R(ti)q(s, r, ti) + iτ<T R(τ)ρB(s, r, τ) | s(t) = s′, r(t) = r′, τ > t ] (3)

where iτ<T is an indicator taking value 1 if τ < T , otherwise 0, and

R(ti) ≡ e−
∫ ti

t
r(x)dx (4)

is the riskless rate discount factor along the realized path.

3. Numerical solution for security values

We obtain an approximate numerical solution for V (s, r, t) by recursively working back

from contract maturity T in a discretized state space. We will treat r as deterministic in

the current paper. Discount factors R(ti) can thus be calculated directly and consideration

of the r state is suppressed. We solve for V on a uniformly spaced rectangular grid on

[0, T ] × [smin, smax] with mesh size h in the s direction and k in the t direction, chosen so

that payment dates lie at gridpoints. Since we also take recoveries to be independent of how

negative is s, we let smin = 0 correspond to the default barrier. smax is chosen to be a large
3Though B will be interpreted in what follows as the contractual loan balance, it could readily be

the netted fair market value of a portfolio of derivatives in which the ‘borrower’ is the counterparty,

payment received under a credit default swap based on the borrower, etc. Depending on the application,

the s referred to might be s(τ+), embodying say a dependence of recoveries on how far s jumped into a

default region, or it might be s(τ−), embodying the influence of prior credit state on borrower actions

such as drawdowns on a credit line.
4Contractual payments q and recovery balance B will generally depend on actions taken by borrower

or lender that are permissible under the contract—e.g., drawdown of a credit line or exercise of an

option. These plausibly depend on the entire time path of r, s up to the date of such action(s). The

current specification assumes that actions influencing contract payments and recovery balance at time

t are functions of the then current s, r only, that the contingent actions of both parties are known to

the lender, and that all this is already incorporated in functions q, B. That said, some dependence of

contractual payments on prior dates’ states will be accomodated, reflecting for example the payment

of interest in arrears on loans or swaps.
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enough that exceeding it from initial s(0) of interest within time T is sufficiently unlikely.5

Let Vij , i = 0 . . . I, j = 0 . . . J be the solution at credit quality step i up from the default

barrier and time step j away from origination. Vector Vj denotes the solution at time step j.

Its length is the number of states considered in the s-direction.

The maturity value V (s, r, T ), conditional no prior default, is assumed known from the

contract terms and used to fill in values in the terminal vector VJ . We work backward one

timestep k by treating the jump and diffusion changes in s as occuring in sequence: I.e., within

each interval all changes in s from diffusion over time k occur first, with no jumps; then all

jumps in s over time k occur, with no diffusion.

The diffusion part is handled by applying the Crank-Nicholson finite difference method to

a the vector of s-contingent values, just as if the jump process were not present, with boundary

condition at smin imposed by recovery value ρB. The partial differential equation being solved

is what one gets from the Feynman-Kac formula for conditional expected value,

1
2
σ2Vss + αVs + Vt = 0 (5)

At the upper boundary we use the (technically incorrect) expedient of assuming V to be

quadratic in s. I.e., the value of Vj at smax is the quadratic extrapolation of its values at the

three neighbouring interior gridpoints. In certain cases, if the value of the security were it

default-free is known, it works better to suppose that default is effectively inaccessible from

smax and impose that as a known-value condition at that edge. The result of this step is to

multiply vector Vj by some matrix C.

The jump part is handled by constructing a transition matrix M over s-states approxi-

mating the changes from this source over interval k. This matrix is pre-calculated as follows.

Choose a modest sized integer n, and approximate the Poisson process over a subinterval of

length k/2n by supposing at most one jump occurs in that subinterval. From a particular

level si on the grid, the probability of one jump is λ(si)k/2n. If that occurs, the probability

of moving to level sl is taken to be F (sl + 1
2h, si) − F (sl − 1

2h, si). I.e., it is assumed that

jumps are exclusively to gridpoints. The subinterval jump transition probabilities are thus6

prob{sl|si} =

 1− (1− F (si + 1
2h, si) + F (si − 1

2h, si))λ(si)k/2n for l = i

(F (sl + 1
2h, si)− F (sl − 1

2h, si))λ(si)k/2n for l 6= i
(6)

The resulting matrix is then squared n times to get the transition matrix M (which allows

5This obviously will depend on the particulars of the processes involved and the relative magnitude

of cash flows in different regions of the state space.
6Jumps to below smin are treated as being to smin and to above smax as being to smax.
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for up to n jumps) over interval k.7

Discounting by the default-free rate over time interval [(j − 1)k, jk] is accomplished by

multiplying the result (for the non-default s levels) by the s-independent quantity

dj ≡ e
−
∫ jk

(j−1)k
r(x) dx

We thus get

Vj−1 = djCMVj (7)

In practice, computation costs are reduced by treating as 0 elements of M below some thresh-

old (e.g., 10−10), storing the rescaled result as a sparse matrix, and using a sparse matrix

multiplication routine. The ‘multiplication by C’ is done by solving the tridiagonal equation

system that comes out of the Crank-Nicolson algorithm. Computation costs per time step are

thus typically much less than a single matrix multiplication of Vj .8

One proceeds thus back from time T , pausing at each payment date ti to add to each

element of Vj the s-contingent contractual payment received by the lender in non-default

states. Security values for s not at gridpoints is found by (cubic) interpolation on V0.

II. Specification and estimation

1. Process chosen

After some experimentation with fit to bond price data (see below), and desiring to keep

the number of parameters small, the following specification was tentatively adopted for the

processes involved:

α(s) = κ(s̄− s)

σ(s) = σ

λ(s) = λ0 max{0 ,
e(10−s)δ − 1

e10δ − 1
}

F (s, s′) =


0 s < a

(s− a)/(b− a) s∈ [a, b]

1 s > b

7The alternative of allowing for arbitrarily large number of jumps in interval k would require cal-

culating the eigenvalues and eigenvectors of the I × I matrix of infinitesimal transition probabilities,

which would be computationally more costly.
8We are losing something by ignoring the interaction of jump and diffusion within the interval when

the components of each depends on s. A more ‘centered’ approximation over interval k can be achieved

by doing M1/2CM1/2 rather than CM .
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That is, the diffusion volatility of credit quality s is constant; the diffusion drift is mean-

reverting; the instantaneous jump intensity is an exponential function with maximum value

λ0 at the default boundary, declining to 0 for s at 10 or above, with curvature parameter δ;

and s-levels after a jump are uniformly distributed over a fixed interval [a, b].9

For this specification there are thus eight time-invariant model parameters, including the

recovery rate in default: θ ≡ {κ, s̄, σ, λ0, δ, a, b, ρ}.

2. Parameter estimation from bond prices

Preliminary estimate of model parameters—and some sense of the model’s promise—come

from looking at US corporate bond prices. The data set initially available consisted of month-

end bond price quotes, obtained from Interactive Data Corporation, for 737 US firms with

publicly traded debt. Prices were available for the period May 1993 to December 1997. Even

within this period, observations were missing much of the time for a majority of firms. Prices

for two months, May 1996 and January 1997, were missing for all bonds. Altogether there

were 114614 price observations.

From this, a subset of 105 firms was selected which (i) had price observations every month

(except for May 96 and Jan 97 as noted above), and (ii) had multiple bond issues outstanding

during the period.10 Only non-callable, fixed rate bonds were considered. This left 40,955

price observations. The included bonds had agency credit ratings ranging from B to AAA, and

maturities ranging from a few months to over 25 years. Average number of bonds outstanding

per firm at month end was 8.

Although this subset has many thousands of price observations, certain of its aspects

qualify any inference drawn. First, 1993-97 was a period of continuous economic growth.

It misses the 1991-92 recession and consequent evidence on the behavior of corporate bond

prices in such circumstances. Closely related is the fact that no firms in the sample actually

defaulted during this time period. Second, the data set ends before the dramatic mid-1998

rise in credit spreads, which has been characterized by some observers as more a drying-up

of liquidity than a widespread deterioration in credit quality. Such phenomena are of obvious

importance for both portfolio and single-issuer analysis, and inclusion of that period could

quantitatively affect conclusions.
9The choice of 10 as the instantaneously default-free credit quality can be viewed as just a scaling

parameter given the rest of the specification. Regarding F , experiments were conducted with uniform

and normally distributed relative and absolute jumps. λ(s) approaches linear as δ → 0 .
10Since the default model gives an exact fit to any single market price quote on a given day by

construction, firms with single debt issues were excluded as not legitimately testing the model.
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Estimation was exclusively of the risk-neutral process parameters. I.e., those which, when

used to generate a probability measure Q over realizations, make equation (3) a predictor of

observed market prices. These are the parameters investors behave as if they believed in, were

they actually risk-neutral; they typically differ from those describing the objective process of

s over time, since investors are risk-averse and not all risks are diversifiable. Additionally, our

abstract credit quality is not explicitly observable and must itself be inferred from observed

bond prices.

A fixed rate non-callable bond is a simple contract. In valuation equation (3), {ti} are the

coupon payment dates remaining, q(s, r, ti) equal the fixed coupon payments (plus maturity

value at T ), and B is the par value plus (linearly) accrued interest at default time τ . For given

model parameters θ and credit state for firm i at month j of sij , let Vijk denote the (numerically

computed) theoretical value of bond k of that firm.11 Let Pijk denote the corresponding actual

market price quote (plus accrued interest to transaction settlement date). Let dijk denote

the Hicks/Macauly duration of bond ijk (sensitivity of value to its own annualized yield to

maturity). The parameter estimation criterion was to find θ, {sij} minimizing the weighted

sum-squared-residuals

S ≡
∑
i,j,k

(
Pijk − Vijk

dijk

)2

(8)

subject to the constraints ∑
k

Pijk − Vijk

dijk
= 0 ∀ i, j (9)

The deflating of price residuals by duration expresses the residuals (approximately) in terms

of difference between quoted yield to maturity and the model’s forecast; if not done, the short

end of the maturity spectrum would have little influence. Constraints (9) assert that market

and model yields, averaged over all bonds of a given firm outstanding on a given day, agree

exactly. This identifies the credit state, and renders sij , conditional on θ, observable without

error—one way of handling the latent variable problem were we to bring time series properties

of s into the estimation.12 Minimization of S over θ was done using Marquardt’s algorithm,

extended to incorporate bounds on parameter values to make the search better behaved.

Notice that we make no use of actual time series properties of bond prices here. Data

dates could be shuffled with no effect. The basic question is whether a small set of fixed

parameters—common to all firms and all points in time—combined with a single firm-and-

date-specific variable s can reasonably capture all ‘term structures of credit spreads’ observed.

Equivalently, since it is only the risk-neutral density of time to default that matters for the
11Also needed for this calculation is that date’s default-free yield curve, taken from the constant

maturity US Treasury yield curve as mentioned earlier.
12See Honore (1998) and Jones and Wang (1996) for previous use of this method.
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bond values, can the one-dimensional family of density functions implied by the specification

adequately explain observed prices?

3. Estimation results

Parameter estimation is still in progress. I describe where it now stands. For the data set

initially available, within the contraints of the specification chosen, not all parameters were

well identified. To cut the story short (and the computational intensity), we imposed the

following: recovery rate ρ = .5, roughly consistent with Altman and Kishore’s (1996) reported

average for US corporate bonds;13 κ = 0, so no mean reversion; σ = 1.0 (per year), viewed

as an almost free scaling parameter. The four remaining parameters were estimated with the

following results:
λ0 .48 κ 0.0

δ .38 s̄ —

s̄a 1.10 σ 1.0

σa .80 ρ 0.5

(10)

Here s̄a and σa are the mean and standard deviation of the uniform distribution on absolute

jump destination. I.e., F is uniform on the interval [s̄a − 31/2σa, s̄a − 31/2σa] = [−.286, 2.49].

These parameters give quite a good fit to the observed bond prices. Standard deviation of

the price residuals is .70 (on par value of 100). Expressed as yield to maturity residuals, 53%

of observations are below 5 basis points, 77% are below 10 bp, 95% are below 25 bp, 99% are

below 50 bp. Model and observed yield curves of a representative firm—US Steel—for a range

of observation dates and Treasury yield curves are displayed in the appended figures.

The credit state s(t) can be given more tangible interpretation in terms of the fair credit

spread on instantaneously maturing loans. Very short term loans can only default through

jump. Expected default losses over an interval of length dt are thus (1− ρ)λ(s)F (0, s) dt, the

product of the loss rate in default, probability of a jump occuring, and probability that the

jump would land in the default region. This implied instantaneous credit spread for 0 < s < 10

and the above parameter estimates is graphed in Figure 1.

Fair credit spreads for longer maturities must allow for diffusion of s both to default

directly and to levels with different jump intensities. They are typically much larger than

the instantaneous spread above. The model’s predicted par coupon rates for selected s and

default-free yield curves are displayed in Figures 2 and 3 (respectively upward sloping Treasury

13They report mean recovery rate for senior secured notes of 57.94%, with standard deviation of

23.12%; and mean recovery rate for senior unsecured notes of 47.70%, with standard deviation of

26.60%.
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curve, May 1993, and almost flat Treasury curve, May 1997).14 For currently high quality

borrowers, credit spread increases with maturity; for low quality borrowers, after an initial

hump occuring somewhere before two years, credit spread declines with maturity.

Time series analysis of the estimated sij showed them to have small drift (.072/yr), slight

negative first order serial correlation (-.067 for monthly observations), and diffusion volatility

of σ of 0.57 . The latter was noticeably below the value of 1.0 assumed, so σ was reset to 0.75

and the parameters re-estimated, with better consistency between the assumed and realized

σ. A larger data set has since been obtained15 with the following preliminary parameter

estimates:
λ0 .622 κ 0.0

δ .244 s̄ —

s̄a .275 σ 0.75

σa 1.906 ρ 0.5

(11)

However the former parameter values are used in the credit line analysis that follows.

III. Revolving credit lines

1. The loan contract

The loan contract is assumed to grant the borrower for a fixed term the right—if no default

to date—to borrow and repay at will up to fixed amount. This is further specialized as

follows: There is a fixed payment interval associated with the loan (e.g., monthly) during

which interest accrues. Drawdowns and repayments can only occur on these ‘payment dates’.

Default, though it may be reached between such dates, will only be recognized as of these

dates.

Interest accrues between payment dates at a fixed spread above the level of a default-free

reference rate rref as of the beginning of the interval.16 The reference rate is the then prevailing

market rate (simple interest) on a default-free zero-coupon instrument of term reference rate

maturity (e.g., 90 day Libor rate). Additionally, the balance due may accrue a facility fee

payable on the full credit line amount, and/or a standby fee payable on the amount undrawn

during the interval. The latter are expressed as (simple) interest rates per year. Finally, an

up-front origination fee expressed as percent of maximum loan amount, may be charged.
14These are the annual coupon rates for semiannual pay, fixed rate bonds that would give theoretical

value of 100. This would generally not coincide with the yield to maturity on an existing bond of the

same maturity not trading at par because of its different coupon rate.
15552,278 observations on 14,617 bonds of 1794 firms over the period Jan 1982 to Aug 1999.
16Fixed rate rather than fixed spread credit lines, typical for most credit cards, can be easily acco-

modated but are not done so here.
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Contract parameters are thus: the fixed term T , maximum loan amount A, set of repay-

ment/drawdown dates {ti}, reference rate maturity Tref, loan spread c, facility cf , standby cs

and origination co fees. These parameters, together with drawdowns and the reference rate

at the beginning of a payment interval, determine a contractual balance owed at the end of an

interval. This is the basis for recoveries if default occurs within the interval; this is the amount

assumed paid in full if default does not occur, to be then followed by a new drawdown.17

2. Borrower drawdown behaviour

The proportion of the credit line drawn down depends on the borrower’s current credit quality,

as indicated by the fair market rate he would pay elsewhere on new borrowings. This alter-

native opportunity rate ropp is assumed to be the fair (simple) interest rate on a zero-coupon

bond of specified maturity Topp. We wish to account for the fact that borrower behaviour may

be rational to varying degrees—or influenced by factors other than just immediate borrowing

costs—by specifying a flexible functional form that includes full ‘rationality’ as a special case.

In the interest incentive model, the proportion of A drawn down is a function of the gap

g ≡ ropp − (rref + c− cs), i.e., the difference between current cost of borrowing elsewhere and

(net) cost of incremental borrowing under the credit line. The shape assumed is that of the

cumulative normal distribution function:

f(g) = dmin + (dmax − dmin) N((g − dshft)dsens) (12)

Here N( ) is the standard normal distribution function, with behavioural parameters dmin,

dmax, dsens, dshft representing minimum and maximum drawdowns, sensitivity of drawdowns

to interest incentives, and gap level where maximum sensitivity occurs.18 19 The amount

borrowed for interval [ti, ti+1] is thus Af(g(ti)). Fully rational behaviour in this model is

characterized by dmin = 0, dmax = 1, dshft = 0, dsens = ∞, and Topp equal to the payment

interval. Constant borrowing at the average of dmin and dmax is characterized by dsens = 0.

An alternative model, more suggestive that liquidity constraints rather than interest in-

centives are the dominant influence on borrower behaviour, is to specify the gap g as ropp−rref.

This means that the closer the borrower is to default, as measured by the fair market credit

spread he would pay on new borrowings, the higher will be his utilization of the credit line,
17Realistically, of course, these two transactions occur simultaneously and show up as just a net

change in drawdowns.
18Actually, we multiply the argument of N by the scale factor

√
2π so that dsens may be interpreted

as the change in drawdown, as a proportion of dmax − dmin, induced by a 1%/yr. change in g at the

most sensitive point.
19A non-zero value for dshft can either reflect real transaction or issuance costs associated with

alternative borrowing, or reflect a perception threshold, banking relationship value, etc.
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regardless of its contractual terms. This g would be used in (12) for valuation purposes. Ad-

verse selection, in the sense that line utilization will be higher when credit quality is lower,

will still be present.20 However the implications for loan contract design change since spread

c and standby fee cs no longer affect behaviour.21

3. Treatment of risk-free rates

The current implementation treats the default-free instantaneous interest rate r(t) as evolving

deterministically. The current term structure is input as an instantaneous-maturity forward

rate curve consistent with current Treasury rates. The latter is taken as the Federal Reserve

Bank H-15 constant-maturity rates (3 mo. - 30 yr.). The forward rate curve chosen is the

minimally-varying step function consistent with the rates reported. This is the path assumed

for r(t). Note that this implies no discontinuity in rates (spot or forward) that are for other

than instantaneous maturities.

It is tempting to excuse this for the moment by assuming that credit quality and default-

free rates evolve stochastically but independently. If loan cash flows depended solely on s, then

risklessly-discounted cash flows could be factored into r and s contingent components, with

the current term structure used to represent the expected discount factor, and all would be

okay. However line utilization is assumed to depend on the credit spread ropp−rref. Since that

relation is non-linear, and each of ropp and rref are non-linearly related to r(t), we are clearly

missing something by ignoring uncertainty about r. Ascertaining whether it is quantitatively

important in the r-s-independent case awaits further work.

More realistically, of course, there are good reasons to believe r and s do not evolve

independently. Both are plausibly influenced by common business cycle and macroeconomic

factors; and high interest rates by themselves can impact negatively the financial condition of

borrowers.

4. Numerical solution for line value

Valuation of the credit line proceeds as in section 3. with some modification. We must acco-

modate the fact that the size of drawdown is determined by s at the beginning of a payment
20Note that the presence of idiosyncratic additional influences, or noise, affecting drawdowns would

not alter valuation of the credit line if such influences have 0 mean effect on f and evolve statistically

independently of credit quality, interest and recovery rates. This follows from cash flows both in and

out of default being linear in f . Interpret f as expected drawdowns conditional on s, r. Note that this

rules out recoveries depending on credit state immediately prior to default.
21A mixture of the two models, adding one further parameter, is also possible if empirical evidence

on borrower behaviour is available and suggests it is appropriate.
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interval, but whether one gets paid is determined by s at the end. Moreover the interest rate

charged over the interval is based on rref prevailing at the start. Thus cash flows at ti are

determined by the r, s state at both ti and ti−1 jointly.22 This is handled as follows. Between

payment dates, the vector Vj recursively solved for is the value of the credit line’s cash flows

from the next payment date onwards, as a function of current s, conditional on no default prior

to that time. If s = 0 currently, then all future cash flows will be zero, captured by imposing

boundary condition V (0, r, t) = 0 for t not in {ti}. Let ∆ ≡ ti+1− ti be the payment interval.

If t is a payment date ti, then for each s in our discretized state space we calculate rref, ropp,

gap g, and the fair value p of a unit discount bond of maturity ∆ issued by the borrower with

the same recovery rate as the credit line. We add to Vj(s) the amount

−Af(g) + pA (f(g)(1 + (rref + c− cs)∆) + (cs + cf )∆) (13)

First term is the cash paid out as current drawdown; second term is expectedQ discounted

value of the contractual payments now due at ti+1. At s = 0 this treats the borrower as

drawing down, defaulting right away, and providing immediate recoveries a proportion of the

balance due at the next payment date. For equal length payment intervals the vector of risky

bond values p(s), up to a riskless rate discount factor independent of s, need only be computed

once.

5. Numerical experiments

This section explores numerically how credit line value varies with contract and model pa-

rameters. At times we ask what the ‘fair level’ of some parameter would be. By this we mean

the level which makes initial value of the credit line 0 to the lender. Of primary interest is

how the optionality of drawdowns affects the fair contract terms.

Our base case is a 3 year credit line with contractual maximum balance A = 100; payment

interval, reference and opportunity cost rate maturities of one month (Topp = Tref = .0833 yr);

contractual spread over reference rate c = 2%/yr; origination, facility and standby fees of 0.

Drawdown behavior parameters are dmin = 0, dmax = 1, dshft = 0 in all cases. Recovery rate

in default is ρ = .5. The default-free term structure is assumed flat at 5%/yr, continuously

compounded.

Consider first the case of dsens = 0: Drawdown is thus fixed at 50 regardless of credit

state or contractual spread, so there is no optionality. An initial credit state of s(0) = 4.72

makes this contract have 0 value to the lender. For this credit state, the fair contractual

spread for alternative maturities (the equilibrium term structure of credit spreads for fixed

22The payment of interest in arrears is not a problem in the current deterministic interest rate

setting, but would become so if the default-free rate were treated as stochastic.
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Table 1: Term structure of credit spreads

1 mo. 6 mo. 1 yr. 2 yr. 3 yr. 5 yr. 10 yr. 20 yr.

spread c .77 1.04 1.29 1.67 2.00 2.48 2.91 2.94

prob. default .0013 .0098 .0235 .0590 .1029 .2015 .4144 .6423

Table 2: Line values with high rationality

c 0% 2% 4% 10% 20% 50% fair co fair cs

1 yr. -1.24 -0.45 -0.42 -0.37 -0.34 -0.24 0.45 0.48%

3 yr. -5.32 -2.95 -2.75 -2.40 -2.18 -1.52 2.95 1.81%

Initial credit quality s(0) = 4.72. Fair co, cs are for contractual spread of 2%.

rate, monthly coupon bonds for that credit quality) is given in Table 1. Also given is the

probability of default (under the risk-neutral distribution) within the term of the contract.23

Consider next the case of dsens = 1000. Here drawdown (almost) jumps between 0 and

100 as s crosses the level for which the contract spread just equals the fair credit spread on

one month borrowings elsewhere (at approximately s = 2.4 for c = 2%). This is a no-win

situation for the lender: Borrowing only occurs, and the loan spread is only collected, in states

where is it insufficient to compensate for the risk of default. Table 2 displays the negative net

value of the credit line for initial s = 4.72, various contractual spreads up to 50%, and line

maturities of 1 and 3 years. Value is less negative the higher is c since that shrinks the set of

credit states for which any borrowing occurs. However loan origination and/or loan standby

fees can make the loan break even. Displayed are the fair values of one or the other of these

contract terms when c is 2%. Notice that they rise rapidly with maturity. The standby fee

(paid on loan amount undrawn) also alters the states in which the line is drawn down since

the marginal cost of borrowing is reduced by this amount.

Finally consider intermediate cases of dsens. These represent noisy or quasi-rational be-

haviour by borrowers, from the perspective of pure interest rate incentives. Line value declines
23This is computed numerically using the previously described procedure but ‘valuing’ a security

that pays 1 when default occurs, 0 otherwise, and whose value is not discounted.
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Table 3: Line value as function of contractual spread

c 0% 2% 4% 6% 8% 12% 16% 20%

1 yr. -0.88 0.06 0.63 0.87 0.87 0.50 0.07 -0.18

3 yr. -4.26 -1.58 0.08 0.86 0.95 0.04 -1.06 -1.72

dsens = 5

Table 4: Fair contractual loan spreads

dsens 0 1 2 3 4 5 6 7 10 20

1 yr. 1.28 1.72 1.75 1.78 1.81 1.84 1.88 1.91 2.06 —

3 yr. 2.00 3.05 3.20 3.36 3.57 3.87 4.39 — — —

For initial credit state s = 4.72

monotonically with dsens as long as drawdowns are centered around the full rationality point,

i.e., dshft = 0 and the rate maturities involved coincide with the payment interval. We will not

display these. But unlike the extremes considered so far, line value is no longer monotonic

in contractual spread c. Table 3 gives line values for c ranging from 0 to 20% for dsens = 5.

Origination and standby fees are 0.

The 1 yr. line reaches a maximum value of .90 at c of approximately 6.9%; the 3 yr. line

reaches a maximum of .98 at c = 7.3%. Above these levels, the reduction in balances on which

the spread is received more than outweighs the increase in spread and reduction in default

losses. The reverse happens as spreads are reduced.

A different perspective comes from looking at the lowest contractual spread at which the

line value is 0. Table 4 displays this fair line spread for a range of dsens values and initial credit

quality 4.72. For each maturity, however, there is a size of dsens beyond which there is no

spread that can make the line break even for the lender. In other words, without origination,

facility, standby fees, or a shortening of maturity, there are no terms under which the lender

can rationally grant the borrower a revolving credit line.

Table 5 gives some sense of how much drawdowns are varying with credit state for the

specification being used. It imposes the contractual spread that would be fair if borrower

14



Table 5: Line drawdowns as function of credit state

s 0 1 2 3 4 5 6 7 10 20

1 yr. 1.00 0.85 0.53 0.49 0.46 0.44 0.43 0.42 0.41 0.41

3 yr. 1.00 0.78 0.42 0.39 0.36 0.34 0.33 0.32 0.31 0.31

Fair contractual spread for dsens = 5 and s(0) = 4.72: 1.843% on 1 yr., 3.868% on 3 yr.

sensitivity were dsens = 5 and initial credit quality s = 4.72 of our benchmark case.

6. Conclusion

This paper is not finished. Hopefully, the value of the options implicit in credit lines—and the

importance of accounting for them in bank pricing policy—has been made clear. But there is

clearly much left to do and more that could be done. Of highest priority is parametrizing an

objective process for credit quality consistent with our risk-neutral specification so far. This is

needed to make use of the time series properties of bond prices, and historical data on actual

defaults, in parameter estimation. Indeed, in the context of bank portfolios, it more likely

that only the latter information will be available. This raises econometric issues of estimating

jump-diffusions for latent state variables from discrete observations.

Further, there is work to be done applying whatever specification is adopted for default

to the wide array of credit-related products mentioned in the introduction. It is unlikely

that current practice prices these instruments consistently. If it does not, then these tools

can improve management practice and market efficiency; if it does, then that is of acadmic

interest in itself as a positive theory of observed contractual arrangements.

And finally, the question of joint evolution of credit quality across a portfolio of borrowers

must be addressed. Many are now working on such problems. But advances in securitization,

the advent of portfolio credit derivatives, and progress of regulators toward viewing financial

entities as a whole raises the pressure for workable solutions.
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