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1 Introduction

The decision to invest in fixed capital is central to the theory of the firm,
whether for the prescriptive purpose of capital budgeting or for the descrip-
tive purpose of macroeconomic modelling. Yet some aspects of actual invest-
ment behaviour appear difficult to reconcile with conventional theory. These
include the short payback periods frequently required of risky projects; the
notion that decreased ‘confidence’ (increased uncertainty) depresses capital
spending, even by those in the business of taking calculated risks; and the
relative instability of short run investment relations in econometric models.
This essay portrays such phenomena as natural when viewed in terms of the
optimal timing of investment under uncertainty.

Shifting focus from ‘whether to invest’ to ‘when to invest’ forces a differ-
ent perspective on the way capital expenditure is determined. Rather than
reflecting the isolated evaluation of a once and for all opportunity, capital
expenditure reflects the interaction of a rational investment policy with a
stochastic environment. Investment results from a process, in which new
information arrives and is expected to continue to arrive, rather than from
a single static decision.

The investment problem is conventionally approached by assuming that
the current decision has no impact on other opportunities, current or fu-
ture. But for timing to be an issue current investment must impact future
options. Investment today and similar investment tomorrow must, to some
degree, be mutually exclusive. There are several reasons to think that this
is more likely to be the rule than the exception. Investing now may use up
some scarce, though perhaps not explicitly purchased, resource: Oil reserves

∗Simon Fraser University. An ancestor of this paper was presented at the 1984 Cana-
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developed today cannot be developed again next year; a field planted in corn
today cannot also be planted in oats tomorrow. Managerial or technological
decreasing returns to scale may cause investment today to reduce the return
from investment in the future: A unit of capital installed tomorrow could
yield less if it is the second such unit than if it were the first. Or market
imperfections may link tomorrow’s opportunities with today’s action: Fi-
nancial constraints may bind sooner; the output from prior investment may
exhaust rents in monopolistic product markets. Thus investment today may
render similar investment tomorrow uneconomical. They become, in effect,
mutually exclusive to a rational decision maker.1

Such considerations are largely irrelevant whenever investment is re-
versible. There are two distinct aspects to reversibility. The first is the
return of funds spent to acquire the capital—can you get your money out?
The second is the reinstatement of opportunities you would have had if the
investment had never taken place—can you get your options back? Irre-
versibility in the first sense does not create a problem. It simply implies
uncertainty about the price that could be realized if the capital is sold. But
irreversibility in the second sense means that options continue to be impaired
by the original act of investment. This fundamentally alters the criterion
for investment.

This paper considers the consequences of irreversibility and exclusivity in
an extreme case. A firm must decide how to manage an opportunity to make
a one time investment in an indivisible project. The rational policy has the
following properties: (a) with uncertainty, a benefit/cost ratio significantly
greater than one is needed to induce investment; (b) a rise in uncertainty
usually reduces current investment through increasing the value of the option
to invest at a future date; and (c) a rise in interest rates can stimulate
investment in projects of short to medium duration. The conventional ‘net
present value’ rule, and unambiguous negative impact of higher interest rates
on investment, emerge as limiting cases when the level of uncertainty goes
to zero.

Many of these ideas are not new. The notion that irreversibility deters
fixed investment, or requires premium rates of return even in the absence
of risk aversion, can be traced back to Lavington (1921). It is developed
by Hirshleifer (1972), Nickell (1978) and Bernanke (1983), among others.
The importance of option value when irreversibly altering the environment

1In the above cases, a cost of investing was the elimination, or worsening of the terms, of
opportunities for future investment. There are situations where investment today enhances
future options, as in the case of research and development expenditures. However we focus
here on options given up.

2



is shown by Fisher et al. (1972), Henry (1974) and Arrow and Fisher (1974).
Hart (1942), Epstein (1980) and Jones and Ostroy (1984) focus more gener-
ally on the value of flexibility when waiting brings information. Hicks (1974)
suggests the importance of such considerations for macroeconomic analysis.
Closely related is the literature on optimal sequential investment. This in-
cludes the work of Baldwin and Meyer (1979), Prastacos (1983) and Moene
(1985), and has much in common with search models of labour markets.
Learning need not take place in the sense of changing beliefs about future
opportunities, but incentives exist to wait for strictly positive rents (i.e., net
present values).

The problem we set up is most similar to that of McDonald and Siegel
(1986). McDonald and Siegel obtain the optimal policy in the case when
project value follows a lognormal diffusion (our section III.2) and the In-
tertemporal Capital Asset Pricing Model assumptions hold. The method by
which we characterize the optimal policy is most similar to that of Brennan
and Schwartz (1985). They use arbitrage pricing methods to establish the
operating policy and value of a mine in terms of spot and futures commod-
ity prices. The decision to initially develop a property, though only one
aspect of their much larger problem, corresponds to the investment decision
in our context. Like Brennan and Schwartz, we use arbitrage methods to
handle risk aversion. This extends McDonald and Siegel’s results to situa-
tions where ICAPM assumptions could not hold. In contrast with Brennan
and Schwartz, however, our investment policy is expressed in terms of the
project characteristics (initial cash flow, depreciation rate, etc.) were it to
be put in place immediately. This obviates the need to identify a priori
exactly what causes the project’s cash flows to be uncertain.

The paper has three somewhat distinct objectives. First, we wish to
emphasize that, with appropriately complete and perfect capital markets,
there is an optimal investment timing policy that is independent of the deci-
sion maker’s attitude towards risk and (some aspects of) expectations about
the future. In other words, the Fisherian ‘Separation Theorem’ that proved
powerful in developing standard discounted cash flow analysis applies also
in a world of uncertainty and irreversibilities. Second, we illustrate how
arbitrage pricing principles allow optimal policy to be expressed in terms
of variables (prices of bundles of contingent claims) that are potentially ob-
servable by, or at least familiar to, decision makers—in this case the initial
project characteristics. It thus suggests how these principles might be useful
for implementing optimal policy in practical contexts. Third, we examine
the implications of this perspective on investment for questions of macroeco-
nomic interest. Namely, what is the relationship between interest rates and
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capital spending? Though our analysis is highly preliminary, it does suggest
that the presence of uncertainty has the potential to reverse long standing
presumptions about the relations between some aggregate economic vari-
ables.

2 Direct Solution for the Investment Criterion

Consider the choice between undertaking and postponing a one time indi-
visible investment when the decision maker is risk neutral.2 The analysis
is kept as simple as possible to highlight the essence of the problem. As-
sume the decision maker knows the expected Net Present Value (NPV) of
the project if undertaken immediately, and the distribution of NPV’s real-
izable at future dates if postponed. Change in perceived value can result
from project returns being dependent on economic conditions at the time
of undertaking, or simply reflect the arrival of information allowing better
assessment of its (implicity fixed) prospects. The decision maker compares
the NPV realized by proceeding at once with the most favourable expected
discounted NPV realizable by undertaking the project at future dates. This
comparison forms the basis for his decision.

To be concrete, let N(t) be the NPV realized as of time t if the project
is undertaken at time t, and let N(t) follow the random walk

dN(t) = σ dz(t) (1)

where σ is a constant and z(t) is the standardized Wiener process. Given
N(t0) ≡ N0, the random variable N(t) is normal with expected value N0

and variance σ2(t − t0). Moreover, for σ > 0, N(t) with probability one
eventually exceeds any given N̄ . Clearly, if the decision maker does not
discount the future and if the option of proceeding with the project does
not expire, then the project is rationally postponed forever – it is costless to
wait for assuredly more favourable circumstances. But if the discount rate
is positive, then the higher is this rate, the higher is the cost of waiting, and
the more reasonable it would seem to settle for a finite N̄ . In fact, for σ = 0
any project with positive N should proceed at once. Thus it appears that
the higher the discount on the future, the more likely the project will be
undertaken for a given value of σ; and the higher is σ the more likely the
project will be postponed given the discount rate. We demonstrate this to
be the case under plausible assumptions.

2This analysis is a simplified version of that of McDonald and Siegel (1986) under risk
neutrality.
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Let the decision maker’s policy take the form of a reservation price, N̄ ,
for the NPV of the project: if N(t) ≥ N̄ at time t then the project is
undertaken at that time; if not it is postponed. Assume the opportunity
to undertake the project never expires. Since process (1) is stationary, the
optimal reservation price will be constant. Consider the decision at time
0, with N(0) = N0. The decision maker must choose N̄ . If N̄ ≤ N0 he
proceeds immediately and if N̄ > N0 he waits. For N̄ > N0, there will be
a probability distribution of possible times τ when N first equals N̄ . Let
π̄(N0, N̄ , τ) denote the density function of first passage times conditional
on N0 and N̄ . Figure 1 depicts paths of N that could lead to investment
occuring at t1, together with the density function for τ . Since the project
is undertaken at time τ , value N̄ is realized as of that time. From the
perspective of time 0, the expected NPV from postponing and holding out
for N̄ is thus

E0(NPV ) = N̄

∫ ∞
0

e−rτ π̄(N0, N̄ , τ) dτ (2)

where r is the decision maker’s assumed constant rate of discount. The
decision maker chooses N̄ to maximize (2). For N following process (1) it
can be shown that3

π̄(N0, N̄ , τ) =
N̄ −N0

σ(2πτ3)1/2
exp{−(N̄ −N0)2/2σ2τ} (3)

Substituting (3) into (2) and integrating yields

E0(NPV ) = N̄ exp{(N0 − N̄)(2r)1/2/σ} (4)

It is easily shown that (4) is maximized by setting

N̄ = σ/(2r)1/2 (5)

Thus the project is initially postponed if N0 < σ/(2r)1/2. Since the pro-
cess is stationary this result holds for all times t. N̄ does indeed have the
anticipated properties: increasing with σ and decreasing with r.

Direct solution for the optimal investment policy was feasible because
the process followed by N was simple and risk neutrality was assumed. Risk
aversion on the part of the decision maker complicates the problem. His
marginal utility of wealth will vary with his wealth from other sources, the
target level of prospective project returns he selects, and when during his life
cycle uncertainties are resolved. The solution to the optimal policy problem,

3See Cox and Miller (1970), pp.220-222.
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if opportunities to trade in other risky securities are neglected, depends on
the particulars of the individual’s situation and utility function. At first
glance, this would appear to rule out the possibility of an unambiguously
optimal policy. As in the Fisherian deterministic consumption– investment
problem, however, these difficulties can be resolved if the individual can
control risk through trading in other securities. That is the route taken in
the next section.

3 An Arbitrage-Based Decision Model

Arbitrage pricing methods circumvent the problems created by individual
circumstances by viewing the investment opportunity, properly managed, as
a bundle of state contingent claims, and assuming that: a) the market is
already complete with respect to claims contingent on those factors affecting
the investment4 ; b) the decision maker trades to equilibrium in this larger
market, in addition to managing his own investment opportunity; c) the
project is small enough that his policy does not alter the prevailing state
claim prices. Under these conditions, the value of the investment opportu-
nity combined with a particular management policy is the market price of
the bundle of claims it represents. The decision maker rationally chooses a
policy that maximizes this market value, using trading in other securities to
accomodate his own tastes. As a result, the optimal policy can be expressed
solely in terms of the prices of related traded securities.

This section adopts the above framework to express the value of an in-
vestment opportunity, and the criterion for exercising it, in terms of the
project’s market value were it already in place. An explicit solution is dis-
played for the case where future prospects have a lognormal distribution.

3.1 The Investment Opportunity

Consider an investment opportunity with the following characteristics. The
initial capital cost is C regardless of when it takes place. Revenue subsequent
to commitment accrues at the rate

X(t, u, s)

where t is the time of the cash flow, u is the time the project was undertaken,
and s is a scalar describing those aspects of the state of the world as of time

4The state contingent payoffs in which one can implicitly trade include those attainable
through feasible intertemporal trading strategies in existing securities.
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t relevant for the project’s payoffs (e.g., output price).5 This state variable
follows a continuous Markov process described by the stochastic differential
equation

ds = µ(s, t) dt+ ω(s, t) dz.

dz is a standardized Wiener process.
Something must be said about trading opportunities available to the

decision maker. First, it is assumed able to borrow or lend at the riskless
instantaneous interest rate r. Second, although the project itself and the
option to invest in it may not be tradeable (they may embody firm-specific
resources or expertise, or reflect a “good idea” to which property rights
cannot be assigned), assume it is possible for the decision maker to trade
in a security whose return is locally perfectly correlated with s. If the
decision maker trades to equilibrium in these other securities, then the value
it rationally ascribes to the investment opportunity must be the same as its
market price were it divisible and tradeable.6 This price can be determined
by the now standard technique: combine the asset to be valued in a portfolio
with traded securities so that all risk is hedged; the resulting portfolio must
then have a value such that its rate of return is the riskless interest rate.7

If embarked upon at time u, let the price for which the project can be
sold at time t in state s be

Q(t, u, s)

Q is the risk-adjusted present value of the cash flows remaining — the market
value of the bundle of contingent claims implicit in X given (t, u, s). It obeys
the partial differential equation

1
2
ω2Qss + (µ− λ(t, s))Qs +Qt(t, u, s) +X(t, u, s)− rQ(t, u, s) = 0 (6)

5The cash flow X may embody the solution to a subsidiary maximization problem at
time t, such as a choice of production level, as in Brennan and Schwartz (1985), or exercise
of an option to scrap the project. In fact, X need not even be actual receipts as of time
t, but can instead be interpreted as the discounted present value of that portion of the
project’s future cash flows that becomes certain once s(t) is known. Q(t, u, s) would then
be the market value of revenues to be received from t onward, less that portion of those
flows already discounted into prior X’s. The purpose of such interpretation would be to
allow limited dependencies of current revenues on past values of the state variable within
the present analytical framework.

6Equivalently, the value may be thought of as either a) the current price of a portfolio
of traded securities that could provide a self-financing replica of the cash flows from the
investment opportunity and chosen exercise policy, or b) the present amount that could
be borrowed so that, with appropriate hedging against all subsequent fluctuation in s, the
loan would be exactly repaid by the project project cash flows when it proceeds.

7See for example Cox, Ingersoll and Ross (1985) and Brennan and Schwartz (1985).
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where subscripts indicate partial differentiation, r is the instantaneous risk
free interest rate, and λ(t, s) is the excess expected return on a portfolio
constructed so that its value is always equal to s.8

Let V (s, t) denote the value of the not yet exercised option to invest in
the project when the policy s̄ is to invest whenever s(t) first hits s̄(t). It
obeys the differential equation

1
2
ω2Vss + (µ− λ(t, s))Vs + Vt(t, s)− rV (t, s) = 0 (7)

with the boundary condition

V (s̄, t) = Q(t, t, s̄)− C (8)

Optimality of the chosen policy (i.e., it maximizes V (t, s)) requires that
the Merton–Samuelson ‘high contact condition’ be satisfied at the time of
exercise:9

Vs(s̄) = Qs(t, t, s̄) (9)
8See Cox, Ingersoll and Ross (1985, p.375). An informal demonstration of (6) is as

follows. Suppose there exists a non-dividend paying (for simplicity) tradeable security
whose price Z(t, s) at time t depends solely on the then current state s. Construct a
portfolio consisting of 1/Zs units of this security plus s − Z/Zs dollars of riskless loans.
Adopt a policy of extracting ‘dividends’ from the portfolio at the (possibly negative) rate
per unit time of

c(t, s) = [
1

2
ω2Zss + µZs + Zt + (sZs − Z)r − µZs]/Zs

Let S(t, s) denote the value of the portfolio at time t. Applying Ito’s lemma to Z(t, s),
one may verify that S follows the same stochastic process as s, the stochastic component
of its return is ω dz, and hence that S = s at all times. The excess expected return on
this portfolio is the dividend flow plus expected capital appreciation µ less the risk free
opportunity cost rs. This is

λ(t, s) ≡ [
1

2
ω2Zss + µZs + Zt − rZ]/Zs

By construction, the gross expected return on the portfolio is λ+rs at each point in time.
Now consider the project with value Q(t, u, s) combined with a hedge of −Qs units of

the above s–portfolio. Applying Ito’s lemma to Q, the expected return on the combination
is

[
1

2
ω2Qss + µQs +Qt +X − (λ+ rs)Qs] dt

However the return on the combination is riskless since the stochastic components +Qs ds
and −Qs ds offset each other. The return that could be earned on the same amount of
money invested in riskless loans would be (Q− sQs)r dt. In an arbitrage-free environment
these two riskless returns must be equal. Equating them gives equation (6).

9See Samuelson (1965) and Merton (1973). The graphical intuition behind this condi-
tion is provided in the next section.
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Solution to the optimal timing problem involves the simultaneous solution
of (6) and (7) subject to (8) and (9). However without specifying the nature
of the underlying state variable s, the solution is without economic content.

Let us define
P (t, s) ≡ Q(t, t, s)

That is, P (t, s) is the value of the project at time t assuming it was just
undertaken at time t. Figure 2 depicts the relationship between the X, Q
and P for a particular time path of s(t). X(t, u1, s) and X(t, u2, s) are the
project’s cash flows over its life cycle if initiated at times u1 and u2 respec-
tively. The lower graph depicts the corresponding paths of the project’s
market value, generally declining as cash flows are paid out. Q(u2, u1, s) is
the market value of the revenues represented by the shaded area. P (t, s) is
the curve joining the initial values of the project begun at various dates.

To this point, no restrictions have been placed on the way µ and ω may
depend on s and t. As long as P is strictly monotonically related to s, we
may without loss of generality suppose s to be scaled so that s ≡ P (t, s) at
all times. The distinction between P and s will be reintroduced in section
IV.

Assuming that s ≡ P (t, s) at all times t, so that the value of the op-
tion to invest is expressed in terms of the value of the underlying project,
Qss(t, t, s) = 0 and Qs(t, t, s) = 1. Let

Qt ≡ lim
u→t−

Qt(t, u, s)

denote the instantaneous rate of depreciation on the project newly put in
place at time t assuming no change in P .10 Letting u → t−, equation (6)
becomes

Qt + (µ(s, t)− λ(s, t)) +X(t, t, s)− rP (t, s) = 0 (10)

Using equation (10) we can eliminate the unobservable λ from equation (7)
. Thus

1
2
ω2VPP + (−Qt −X + rP )VP + Vt − rV = 0 (11)

Equation (11) involves as inputs the cash flow and depreciation rate on
the project, parameters which presumably can be estimated by the project
managers. ω2 is the variance per unit time of the market value of the

10If there was no dependence of ω, α, λ on t then this would be the same as the observed
price differential per unit increase in age for similar recently initiated projects, and hence
could be calculated by managers from a cross-section of market prices.
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project newly put in place, a quantity that might be estimated from the
market prices of securities issued against similar projects already in place.

Rewriting the boundary conditions to reflect the use of P as a proxy for
s, the optimal policy P̄ (t) and value of the opportunity to invest V (P, t) are
then jointly determined by

ω2VPP /2 + (rP −X −Qt)VP + Vt = rV

V (P̄ , t) = P̄ − C (12)
VP (P̄ , t) = 1

System (12) is noteworthy for what it does not contain rather than for
what it does. V (P, t) and P̄ (t) are completely determined by the three
functions ω(t, P ), Qt(t, t, P ) and X(t, t, P ). The investment policy is in-
dependent of the decision maker’s preferences, circumstances, and beliefs
about the expected path of P . This is the Separation Theorem at work.
What is perhaps surprising is that all relevant aspects of the project’s cash
flows, their timing and risk, are embodied in the two numbers X and Qt for
new projects alone.

This does not mean, of course, that the basic problem of project valu-
ation has been eliminated. To obtain P and Qt the decision maker would
have to solve (6). To do this, he would have to identify the relevant state
variable, quantify his expectations about its future path, and form an as-
sessment of the appropriate market risk price. Once all that was done, (10)
stipulates that (µ−λ) could be used interchangeably with (rP −X−Qt) in
system (12). µ would be the expected drift in project prospects and λ the
excess expected return that the market would require on the new projects
just after they were put in place.

What the above analysis does accomplish is to link the solution of the
optimal timing problem to the project valuation problem. If we are willing
to add structure concerning the solution to the latter problem we can get
some insight into the solution of the former.

3.2 Investment Policy when Project Value is Lognormally
Distributed

Let us examine a case for which P̄ has an explicit solution. In particular,
suppose that

ω(t, P ) = σP µ(t, P ) = αP λ(t, P ) = βσP (13)

where α, β, σ are constants. That is, the value of the project if postponed
(which is also the state variable influencing the cash flows of projects in
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place) is expected to improve or deteriorate at a constant proportional rate
with a constant proportional standard deviation. β is the risk premium the
market requires per unit standard deviation of this type of risk.

It is unclear a priori which case – that of positive α or that of nega-
tive α — has greater relevance. Each has plausible application. A positive
growth rate would apply, for instance, if the project was extraction of an ex-
haustible resource that was becoming increasingly scarce, or if technological
advance in the capital goods being purchased (e.g., word processing equip-
ment) meant that later investments would be more productive. A negative
growth rate, however, would likely be more common. Market situations de-
velop in which a firm can earn short run quasi-rents by acting quickly. The
longer it waits, the greater the erosion of economic profit to the activity by
competing entrants. Indeed, because it is such rent seeking behaviour that
drives market adjustment, the investment timing problem is closely linked
to the problem of competitive price dynamics.

Since the process governing P is stationary and the option never expires,
optimality requires that the critical value of P needed to induce investment
must be constant. I.e., P̄ (t) ≡ P̄ for all t, and Vt = 0. In addition, since
0 is an absorbing barrier for P , we have an additional boundary condition
V (0, t) = 0. Thus (12) becomes the linear ordinary differential equation

σ2P 2VPP /2 + (α− βσ)PVP − rV = 0. (14)

The solution to (14), subject to the boundary conditions, is

P̄ = (
a

a− 1
)C

(15)

V (P, t) = (
a− 1
C

)a−1(
P

a
)a

where11

a ≡ D + (D2 + 2r/σ2)1/2

D ≡ 1/2 + (βσ − α)/σ2 (16)

11The reader may recognize (16) as the value of Samuelson and McKean’s perpetual
warrant on a security paying a constant proportional dividend. See Samuelson (1965,
p.29), McKean (1965, p.36), Samuelson and Merton (1969, pp.41-42). The similarity is
appropriate. Our investment opportunity can be viewed as a call option on a portfolio
which is perpetually being rolled over into the newest project. The dividend rate that
could be paid from this portfolio is (X +Qt)/P = r+ βσ−α which is constant under the
assumptions of this section. This formula is also obtained by McDonald and Siegel (1982,
p.11) using methods similar to those of section two.
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This solution exists only for r+βσ > α (equivalently, a > 1). P̄ and V both
tend to infinity as α→ r+βσ. A project whose value is growing faster than
the risk adjusted discount rate should always be postponed.

In the ‘risk neutral’ formulation βσ − α = x + qt − r, where x ≡ X/Q,
qt ≡ Qt/Q for a project of 0 age, and x, qt are assumed constant. The risk
neutral form of P̄ and V can then be obtained by substitution into (16).
The necessary condition for P̄ and V to be finite then becomes x > −qt —
the initial rate of cash flow must exceed the rate of depreciation in market
value due to aging.

Figure 3 shows how the parts of (12) interact to determine the optimal
policy. The family of curves through the origin are the solutions to (14)
that satisfy the boundary condition V (0) = 0, the relations between P
and the value of the unexercised option that are consistent with lack of
arbitrage opportunities. Given any P̄ , the value of the option must be on
the line P − C when P = P̄ since the option is exercised immediately.
Finally, the optimizing choice of P̄ is that which maximizes the value of
the option subject to the above requirements: i.e., which puts one on the
highest solution curve that touches line P−C. Hence the tangency condition
VP (P̄ ) = 1.

The solution makes explicit that substantially positive differences be-
tween market value and cost are required to induce investment. Invest-
ment proceeds only when P/C exceeds the reservation ‘benefit/cost ratio’,
a/(a − 1). The effect is noticable for moderate values of the parameters.
For example, with α − βσ = 0 (zero risk adjusted growth in P ), r = .03
and σ2 = .01, the required ratio is P̄ /C = 1.5 . With σ = .20, the ratio
rises to 2.22 . For projects with short lifespans, these translate into exhorbi-
tant rates of return. Does this mean that projects with positive NPV’s that
do not satisfy this requirement are bad investments? Not at all. It simply
means that given the choice between investing now or later, there is a strong
bias toward waiting to see how the future develops.

The optimal investment policy does reduce to the conventional net present
value rule in the limit. P̄ → C if any one of the following occur:

α→ −∞ β →∞ r →∞

The first circumstance indicates a fleeting opportunity. If the rents to pro-
ceeding immediately reflect a temporary market advantage in a highly com-
petitive industry, then α is likely to be very negative. Such opportunities
must be seized. The last two imply unacceptably high costs of waiting for
potentially larger NPV’s. Unlike call options on stocks, the option here
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delivers an asset that varies with the time of exercise. The effect of post-
ponement is to push forward in time the entire cash flow of the project.
This is analogous to foregoing a dividend equal to r times the capitalized
rent (NPV) were the project to proceed ahead immediately. In addition,
postponing the cash flow makes it riskier from today’s perspective. High
values of r imply high opportunity costs of waiting, and high values of β
imply high costs of hedging the associated greater risk.

The reservation value under certainty (i.e., σ2 → 0) is

P̄ = max{C, r

r − α
C}

This is the familiar rule: Harvest the forest when the rate of growth in its
value net of harvest costs, here αP/(P −C), equals the interest rate, r. For
negative or zero growth in the project’s prospects, P̄ = C. Positive NPV is
sufficient for investment.

The relationship between P̄ and the various parameters is straightfor-
ward but tedious. It can be shown that P̄ unambiguously increases with α,
and decreases with r and β. However the effect of risk on P̄ reverses for
sufficiently positive values of α:

∂P̄

∂σ
=

(βσ − 2α)a+ 2r
σ3(D2 + 2r/σ2)1/2

C

(a− 1)2
> 0 iff α <

βσ

2
+
r

a
(17)

The effect of parameter changes on V are in the same direction as their
effects on P̄ . Two observations can be made here. First, in contrast with
usual stock options, increased risk can decrease the value of the option to
invest. For any β > 0 there exists a range of growth rates α such that
∂P̄/∂σ < 0. For β ≤ 0, however, it can be shown that higher σ always im-
plies higher option values. Second, the fact that P̄ falls as r increases raises
the possibility that higher interest rates could actually encourage current
real investment. This latter possibility we explore in the next section.

4 The Effect of Interest Rates on Investment

One of the most fundamental results of capital theory is that higher interest
rates discourage investment. Yet we just saw how higher interest rates can
reduce required benefit/cost ratios. Could a rise in interest rates stimulate
capital spending?

Intuitively, two opposing forces are at work when current and future
investment are mutually exclusive. On the one hand, higher interest rates
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reduce the present value of project revenues, making them less likely to cover
initial costs. On the other hand, higher interest rates decrease the value of
the option to invest at a future date, which is an opportunity cost of investing
now. Whether a rise in interest rates discourages current investment depends
on which force is larger.

To compare the magnitude of these forces, structure must be added that
reflects the timing of project cash flows. Since the present value of these
flows is determined in part by r, the use of P as a proxy state variable must
be dropped. The simplicity of the explicit policy of the last section can be
preserved if, taking s to be the exogenous state variable, P takes the form

P (t, s; r) = f(r) s
(18)

ds = αs dt+ σs dz

where α, σ are constant and f(r) is a non-stochastic function of the interest
rate that determines the market value of the cash flows. The elasticity of
the project value with respect to r will be the same as the elasticity of f .
For any given level of r, the process followed by P becomes

dP = αsf dt+ σsf dz = αP dt+ σP dz (19)

Assuming that the price of s-risk is constant and unaffected by r, the re-
quirements of (13) are met and investment policy (16) applies. It must be
emphasized that the effect on investment we obtain is for a change in r that
is completely unanticipated, yet viewed as permanent once it has occurred.

Suppose now that the firm is just indifferent between proceeding and not.
Only at this point could a small parameter change alter current behaviour.
This requires that P = P̄ where P = sf and P̄ = aC/(a − 1). Equating
these two expressions implies the current state is

s =
C

f
(

a

a− 1
)

The effect of an increase in r hinges on the sign of ∂(P − P̄ )/∂r. If positive,
the project proceeds; if negative it is postponed. Let f ′ and a′ denote
derivatives with respect to r. Then

∂

∂r
(P − P̄ ) = sf ′ +

Ca′

(a− 1)2

which, upon substituting for s, becomes

∂

∂r
(P − P̄ ) =

Ca

a− 1
(
f ′

f
+

a′

a(a− 1)
) (20)
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Investment falls when r rises if the expression in parentheses is negative.
The derivative of a (defined in (16)) with respect to r is

a′ =
1

σ2(D2 + 2r/σ2)1/2
(21)

Substituting (21) into (20) and rearranging, investment falls if and only if

−rf
′

f
>

1
2
√
D2 + 2r/σ2

(
2r/σ2

a(a− 1)
) (22)

The left side is the project value’s elasticity with respect to interest rates.
To illustrate the plausibility of perverse interest rate effects, assume risk

neutrality and zero expected growth in s. The critical interest elasticity
below which higher interest rates encourage investing becomes

η∗ =
1√

1 + 8r/σ2
(23)

For r = .05 and σ = .20, one gets η∗ = .30 . This corresponds to a
‘duration’, or average time to receipt of revenues, of about 6 years. Shorter
duration projects are encouraged, longer duration projects are discouraged,
by increases in r. At an extreme, if σ is infinite then η∗ is 1 — the elasticity
of a consol. Only if σ equals 0 do we have η∗ equals 0, and have uniform
dampening of capital spending by interest rates.

One must conclude that for long duration projects the usual present
value considerations dominate, while for short duration projects, such as
the decision to ‘invest’ in cutting down trees, the option aspect dominates.
How long is long depends on the degree of uncertainty about the value of
the project if postponed. But for reasonable parameter values the cutoff
elasticity falls in the range of empirical relevance.

The apparent contradiction with capital theory can be resolved by rec-
ognizing that the option to invest, even if intangible and nontradeable, is
properly part of the capital stock. Going ahead with the project entails
giving up the real option at the same time. What appears to be net invest-
ment is really a shift of capital from one sector to another. This approach
creates its own problems for aggregative analysis, however, because invest-
ment opportunities are more like manna than produced capital goods in the
usual sense. How one should then model the dynamics of the capital stock
becomes an awkward question.

Lest the implications of this section be misinterpreted, it must be pointed
out that only the effect of a change in r on current investment has been
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examined. A fuller model would incorporate the stock of available options,
and recognize that investment today, by depleting this stock, means fewer
opportunities and less investment in the future. A positive initial impact
of changes in r does not rule out a negative correlation between levels of
interest rates and investment in some sort of stochastic steady state.

Nevertheless, if one is concerned with spending on produced capital
goods, say for macroeconomic forecasting, one must recognize that deci-
sions of whether to invest and when to invest are always to some extent
intermingled. Perverse initial impacts of r imply destabilizing interactions
between interest rates and investment, exacerbating business cycles. The
option perspective provides some clues about why uncertainty has a nega-
tive impact on capital spending, and why aggregate investment is so difficult
to predict.
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