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I INTRODUCTION

Continuous time models of the term structure of interest rates (see bibliography) provide
unified theories of the pricing of all interest rate related claims: bills and bonds of different
maturities, and options and futures contracts on these instruments. More specifically, they
postulate that the prices of all such securities depend on a usefully small common list of
underlying ‘factors’, and that economic agents have rational expectations about how these
factors fluctuate over time. This paper explores the empirical validity and usefulness of this
view.

Section II of the paper sets out a a stylized continuous time model of general equilibrium,
with stochastic production and endogenous capital stock. The model gives rise to a two factor
pricing model of interest rate related claims. One state variable is the instantaneous interest
rate; the other is the unobservable value to which it is regressing. Security prices are solutions
to the appropriate partial differential equations.

Section III addresses three problems of empirically implementing the model of section II.
First, the model parameters are those of a continuous time process which must be estimated
from discrete time observations. Second, theoretical security prices predicted by the model
are only implicitly defined as the solution to a partial differential equation. Finally, only one
of the conceptual state variables is observable. The first two problems are handled by solving
the state variable equations to obtain the equivalent discrete time process, and by using a
numerical solution of the partial differential equation for security prices. The third problem
is handled by jointly estimating the time path of the latent state variable along with the
other model parameters. This approach permits all parameters of the model, and the latent
state variable, to be estimated from a time series cross-section of prices from any interest
rate market. Since theoretical models in finance frequently have conceptual variables that
∗Wells Fargo Bank and Simon Fraser University respectively. We are grateful to Michael Brennan

and Andrew Lo for helpful discussion and comments on an earlier version of this paper presented at
the 1985 Winter meetings of the Econometric Society.
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cannot be directly observed (e.g., expectations, aggregate wealth, etc.), the method used has
potentially broad application.

Section IV presents empirical results. The model is fit to weekly observations of US Trea-
sury Bill and Note prices between 1978 and 1984, and separately to Treasury Bill futures prices
over the same period. Hypotheses investigated include whether representative participants in
the cash and futures markets held similar beliefs about the process governing interest rate
movements, whether their perception of the current state was the same, and whether their
beliefs were ex post rational. The results suggest that expectations significantly deviated from
rationality in a statistical sense, but that the deviation was quantitatively small. In addition,
we explore the quantitative importance of the distinction between futures and forward prices
arising from the daily settlement of gains and losses on futures contracts. Finally we look at
the adequacy of using the approximate discrete time analogue of the continuous time model.

II EQUILIBRIUM INTEREST RATES AND SECURITY PRICES

1 An Equilibrium Pricing Model

The theoretical framework guiding our empirical specification is a specialization of Cox, In-
gersoll and Ross (1978). Consider an economy with one good — consumable capital. The
stock of this good at time t is w. There is one constant returns to scale stochastic production
activity, in which all nonconsumed capital is invested. The capital stock evolves according to
a stochastic process

dw = wf(x) dt+ wg(x) dz − c dt (1)

where dz is the increment to a standard n-dimensional brownian motion, x is a vector of
technology state variables, and c is the rate of consumption at time t.1 Technological change
is exogenous to the model, and follows a known observable process

dx = a(x) dt+ s(x) dz (2)

There is one individual. His objective is to maximize E0
∫∞
0 u(c, t) dt. The above elements

constitute the real side of the economy. constitute the real side of the economy.
Now introduce a competitive market for a single financial asset. Each unit promises a

dividend flow q(x,w, t) dt and payment at maturity T of P (x,w, T ). Let P (x,w, t) be its
price at time t, with x,w denoting the entire history of x and w up to time t, or current
information state. P is a nonanticipative functional. The individual may allocate wealth
as he chooses between real production and this security. Trading is costless; the asset is

1f(x) is a scalar valued function; g(x) and a(x) are a n-dimensional row and column vectors respec-
tively; s(x) is a n× n matrix. The vector x may include any other exogeneous state variables relevant
for real security prices (e.g., the price level in a money economy), even though they do not affect the
return on real investment.
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divisible; its aggregate supply is zero. The problem is to find a P (x,w, t) that is consistent
with equilibrium.

The economy is completely specified by its technology f, g, a, s, tastes u, security charac-
teristics q, P (., T ), and initial state x0, w0. Let α denote the fraction of wealth invested in
the security at time t. An equilibrium consists of a

stochastic process for w

consumption rule c∗(x,w, t)

investment rule α∗(x,w, t)

pricing functional P (x,w, t)

such that

(a) The individual optimizes: c∗, α∗ solve
maxc,αE0

∫∞
0 u(c, t) dt sub-

ject to the wealth dynamics
dW = (1− α)[f dt+ g dz]W+

α[q dt+ dP ]W/P − c dt

(b) Markets clear: α∗ = 0

(c) Consistent expectations: w = W ∗ for all x,w, t.2

Though there is only one individual, planned wealth W is distinguished from aggregate
wealth w to emphasize his price-taking behaviour in the security market. That is, he takes
the process for w, and hence P , as given when selecting c∗, α∗. Together, (a)-(c) describe a
Radner (1968) equilibrium of plans, prices and price expectations. The security price is the
individual’s marginal rate of substitution between current consumption and a security with
the given characteristics.

Solving for the equilibrium entails solving the individual’s consumption-investment prob-
lem. However the optimality condition invoked below requires that the variables x and P

follow Ito processes — given their current values, future values cannot depend on history.
This would be the case if P (x,w, t) depended only on the current x,w, t, and if, from inspec-
tion of (1), aggregate consumption also depended only on the current state. Assuming the
above, one obtains an optimal control for individual consumption that indeed does lead to

2As it stands, there is no apparent constraint on consumption. The decision problem as posed in
(a) is intended as a shorthand for the limiting utility and consumption/investment policies, if they
exist, of a sequence of finite horizon problems

max
c,α

E0{
∫ T̄

0
u(c, t)dt+B(W, T̄}

as T̄ → ∞, where B(W, T̄ ) is an appropriate utility of terminal wealth function. The expectation
operator is conditional on the information available at time 0 (i.e., x0, w0).
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these properties, validating the assumption and providing an equilibrium solution. Hence let
us write the dynamics of P as

dP

P
= β(x,w, t) dt+ σ(x,w, t) dz (3)

Define the value function for the individual’s consumption-investment problem

J(x,W, t) ≡ max
c,α

Et

∫ ∞
t

u(c, τ) dτ (4)

Under appropriate regularity conditions, a sufficient condition for the feedback rules c∗(x,W, t), α∗(x,W, t)
to be optimal within the broader class of nonanticipative controls is that they solve3

0 = Jt + max
c,α
{u(c, t) + Ψc,αJ(x,W, t)} (5)

Ψc,α denotes the differential generator of J — the expected rate of change in J for particular
values of c, α.4 Performing the static maximization in (5) with respect to c, α gives first order
conditions for an optimum. Substituting in the market clearing condition α∗ = 0, they are

0 = uc − JW

0 = (f − β − q/P )JW + (gg′ − gσ′)WJWW + (g − σ)s′JxW

(6)

Subscripts indicate partial differentiation and g′ indicates the transpose of g. Various equilib-
rium yield relationships can be obtained by rearranging the second equation in (6).5 However
to solve for prices, β and σ must be eliminated. Applying Ito’s lemma to P (x,w, t),

βP = Pt + a′Px + (wf − c∗)Pw +
1
2

∑
(ss′)ij(Pxx)ij + gs′Pwx +

1
2
gg′Pww

σP = Pwg + P ′xs (7)

The consistent expectations assumption has been invoked here by using the process parameters
for w implied by (1). Given a utility function u, the equilibrium can be determined by solving

3See Kushner (1967) Th.IV.8, or Fleming and Rishel (1975) Cor. VI.4.2. Their results do not
appear to rule out the possibility of non-feedback rules (i.e., rules that depend on past values of the
state variable as well) that do just as well as the feedback rule. Thus there may well exist other
equilibria for which security prices do depend on how the economy arrived at its current state.

4The differential generator is in this case

Ψc,αJ = a′Jx +
∑

(ss′)ij(Pxx)ij/2 + [(1− α)f + α(β + q/P )− c/W ]WJW

+[(1− α)2gg′ + 2α(1− α)gσ′ + α2σσ′]W 2JWW /2 + [(1− α)g + ασ]s′WJxW

5The instantaneous riskless rate r is the dividend yield required on a security that is riskless (σ = 0)
and offers no capital appreciation (β = 0). Substitution into (6) gives r ≡ q/P = f + gg′wJww/Jw +
gs′Jwx/Jw as the equilibrium rate, permitting the equilibrium yields on other types of securities to be
expressed relative to r.
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(6a) for c in terms of JW , substituting this into (5), and solving the resulting partial differential
equation for J . Substituting this J plus the expressions for β, σ from (7) into (6b) then gives
a partial differential equation for P (x,w, t) that can be solved for prices.

If we assume logarithmic utility with constant rate of time preference λ, the equilibrium
can be solved up to the differential equation for P without restrictions on the technology. The
solution, which may be verified by substitution, is

u(c, t) = e−λt ln c c∗(x,w, t) = λw

dw = w[f − λ] dt+ wg dz α∗(x,w, t) = 0

J(x,w, t) = e−λt

λ lnw + h(x, t)

(8)

For securities with q and P (., T ) not dependent on w, equilibrium prices are also independent
of w, and given by the solution P (x, t) to

0 =
1
2

n∑
i,j=1

(ss′)ij(Pxx)ij + (a′ − gs′)Px + q + Pt − (f − gg′)P (9)

subject to the given boundary condition P (x, T ).6

2 The Riskless Interest Rate

The individual rationally anticipates always holding zero quantity of the financial asset. His
marginal rate of substitution between it and current consumption would be unaffected by the
availability of additional securities that he anticipates also never holding. Thus (9) applies to
all zero aggregate supply financial assets that might be introduced.7

6If either q or P(.,T) does depend on w, then the additional terms

. . .+ gg′w2Pww/2 + [f − gg′ − λ]wPw + gs′wPwx

must be added to the pde for P . The function h(x, t) is the solution to

0 = ht + a′hx +
∑

(ss′)ij(hxx)ij/2 + e−λt(f − λ+ λ lnλ− gg′/2)/λ

7More formally, let αi denote the fraction of wealth invested in the ith zero aggregate supply
security and expand the individual’s optimal consumption- investment problem of (a). The first order
conditions for an optimum, upon substitution of the market clearing conditions α∗i = 0, are as in (6)
except that there is one additional equation like (6b) for each additional security. The β, q, P, σ in the
ith such equation are the values for the corresponding security only. Its pricing function can thus be
found without reference to the other securities. This piecemeal approach is only valid, however, in a
world of homogeneous individuals. With differences in tastes or endowments equilibrium prices would
generally be influenced by the menu of securities available for trade, i.e., the degree of completeness of
markets.
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Consider a riskless asset whose yield accrues entirely in the form of dividends. Since its
price cannot vary with either x or t, it is characterized by

Px = Pxx = Pt = 0

Equation (9) reduces to 0 = q − (f − gg′)P . The dividend yield q/P , or riskless interest rate,
is thus

r = f − gg′ (10)

at each point in time. This is the instantaneous expected rate of return on real investment less
its instantaneous variance (times the individual’s index of relative risk aversion). The pricing
relation for any other securities present may be expressed as a differential equation involving
r by substituting rP for the last term in (9). By appropriate selection of the technology
{f, g, a, s}, various equilibrium processes for r can be induced, and the corresponding risk
adjustment gs′ determined.

3 A Two Factor Interest Rate Process

The particular technology we assume in order to empirically specify the model is as follows.
There are two state variables: x ≡ (x1, x2)′. Let the technology be

f(x) = (1 +G2
1 +G2

2)x1 g(x) = (G1x
1/2
1 , G2x

1/2
1 )

a(x) =

(
κ1x1 ln(x2/x1)
κ2x2 ln(γ/x2)

)
s(x) =

[
x1σ1 0
ρx2σ2 x2σ2(1− ρ2)1/2

]

The parameters are all constants. Substituting these into (10) gives the equilibrium riskless
rate

r = f − gg′ = x1 (11)

Defining the new variables µ ≡ x2, dz̃1 ≡ dz1, dz̃2 ≡ ρ dz1 + (1 − ρ2)1/2dz2 and substituting
the relevant functions into equation (2) determines the joint process followed by r, µ :

dr = κ1r(lnµ− ln r) dt+ σ1r dz̃1

dµ = κ2µ(ln γ − lnµ) dt+ σ2µdz̃2
(12)

where dz̃1, dz̃2 have variance per unit time of 1 and local correlation coefficient ρ. The riskless
rate r tends toward a current target level µ , while µ in turn regresses toward some long run
normal value γ, subject to stochastic shocks. The magnitude of these shocks are proportional
to the current levels of r and µ respectively, insuring that interest rates remain positive.

The technology was chosen, of course, to induce this particular two factor interest rates
process. It is a natural extension of the one factor ‘regression towards normal value’ models
of Cox, Ingersoll and Ross (1978) or Vasicek (1977), and in the spirit of the two factor models
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of Brennan and Schwartz (1979,80). The reason for having the speed of adjustment depend
on logarithms of current values will become apparent in the next section.

The corresponding risk adjustment term in the pricing equation (9) is

gs′ = (λ1r
3/2, λ2µr

1/2) (13)

in which g1 ≡ σ1G1 and λ2 ≡ σ2[ρG1 + (1 − ρ2)1/2G2] are constants, and the substitutions
r ≡ x1, µ ≡ x2 have been made. These risk adjustments are proportional to the covariances of
w with r and µ respectively. The partial differential equation satisfied by the pricing function
P (r, µ, t) for securities with q and P (., T ) independent of w is thus

1
2r

2σ2
1Prr + ρrµσ1σ2Prµ + 1

2µ
2σ2

2Pµµ + [κ1r ln(µ/r)− λ1r
3/2]Pr

+ [κ2µ ln(γ/µ)− λ2µr
1/2]Pµ + q + Pt − rP = 0

(14)

The eight pricing model parameters are Γ ≡ {κ1, κ2, γ;σ1, σ2, ρ;λ1, λ2}.
Theoretical prices for interest rate related securities are given by the solution to (14).

Different securities are distinguished by their dividend rate q, terminal value P (., T ) and any
other applicable boundary conditions. Our empirical concern is with the prices of bills, futures
contracts on bills, and (European) options on bills. For notational convenience, let time now
be measured backwards from the maturity date of an instrument. With t denoting time to
maturity, (14) applies with the sign on Pt reversed. Using B rather than P when referring to
prices of discount bonds, the relevant dividend rates and terminal values are as follows:8

Bills with maturity value 1: q = 0
B(r, µ, 0) = 1

Futures prices for M year bills: q = rP

P (r, µ, 0) = B(r, µ,M)

Options on M year bills q = 0
with exercise price X: calls P (r, µ, 0) = max{0, B(r, µ,M)−X}

puts P (r, µ, 0) = max{0, X −B(r, µ,M)}

4 Discussion

In this model fluctuations in security prices result from fluctuations in the expected return
to current and future real investment. These expectations are in the minds of the investors.
Their rationality depends on whether the assumed technology truly does describe the process
of realized returns, and on whether individual perceptions of the process parameters are

8See Cox, Ingersoll and Ross (1981). By an arbitrage argument, they show that the equilibrium
futures contract price (with daily settlement of gains and losses) equals the price P of an asset that
pays a continuous dividend rP and whose value on delivery day equals the spot market price of the
commodity on which the contract is written.
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correct. But nothing so far requires rationality in that sense. The function P (r, µ, t) gives
equilibrium prices that would prevail if investors held firm beliefs that the return on physical
capital was as assumed and held point expectations about parameter values. The model is
thus most appropriately viewed as a framework for describing expectations about interest rates
in an internally consistent fashion. The issues of rationality of expectations (not assumed)
and their consistency (assumed) should be sharply distinguished.

Before proceeding further, some comment should be made on the general equilibrium ap-
proach we have taken versus an arbitrage approach to the same pricing problem. Relation
(14) can be obtained directly from (12) and (13) directly by arbitrage arguments alone (cf.
Richard, 1978, or Brennan and Schwartz 1979). A straight arbitrage approach leaves unspeci-
fied the form of the risk adjustment terms, and a functional form would have to be arbitrarily
selected for empirical work. As has been pointed out by Cox, Ingersoll and Ross (1985),
however, reasonable forms for these terms can lead to an internally inconsistent model —
one that does admit opportunities for riskless arbitrage. The problem is that there may be
no economy (tastes and technology) that could both follow the claimed process for interest
rates and support the assumed risk premiums. By starting from a general equilibrium model
(despite the additional pain to the reader) we are assured that this type of inconsistency has
not been introduced.

Strictly interpreted, arbitrage arguments also imply an exact raltionship between state
variables and security prices. That is, they imply zero pricing residuals when comparing
observed security prices with those predicted by the model because pricing residuals would
imply arbitrage opportunities. There are many factors determining security prices which are
not captured in theoretical models. There is a tradition in general equilibrium modelling
of treating the resulting model as a stochastic relationship which only explains part of the
data. If P denotes the theoretical price and P̂ the observed security price, then the general
equilibrium model is usually taken to imply that P̂t = Pt + εt where εt is a random variable.
The theoretical model usually provides no guidance to the structure of εt. Its specification and
analysis becomes a problem of econometrics. Problems in the estimation of model parameters
are thus more readily formulated in the general equilibrium setting.

As is stands, we have derived a model of the term structure of real rather than nominal
interest rates. However, one may interpret all real variables in the model of this section as
nominal variables. The inflation rate becomes one component of the ‘state of technology’
x influencing the nominal return to investment in real capital. The influence of monetary
policy would be subsumed in the overall process for x. A problem arises with utility being a
function of nominal consumption. However the logarithmic utility function chosen is additively
separable in prices and nominal consumption. As long as nominal money balances form a
negligible component of aggregate wealth, it can be shown that the equilibrium process for
nominal interest rates will take the form (12).
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III EMPIRICAL IMPLEMENTATION

This section describes the estimation method in more detail. Three problems arise in trying to
fit the theoretical model (12) and (14) to observed prices. First, (12) specifies the continuous
time dynamics of r, µ; but only discrete data are available for estimation. Second, the predicted
security prices conditional on r, µ given by (14) is not explicit. Finally, the state variable µ
has no obvious empirical proxy — it is an unobservable, or ‘latent’, variable. These problems
are treated respectively by solving for the relationship between the parameters of (12) and
the parameters of the corresponding discrete time process, by numerically solving differential
equation (14) for predicted security prices conditional on Γ, and by jointly estimating the
sample path of µ along with Γ.9 In addition, since all the parameters of (12) also enter (14),
there may be a conflict between the values of Γ that give the smallest security pricing errors
and the values that best describe the time series properties of r, µ. Attaching more weight
to the former gives estimates of the market’s apparent ex ante beliefs about the r, µ process;
attaching more weight to the latter gives estimates of what would have been rational ex post.

1 Discrete Time Dynamics of the State Variables

Define the transformed variables R ≡ ln r, L ≡ lnµ, G ≡ ln γ. Applying Ito’s lemma to (12),
the transformed state variables follow the process

dR = [κ1(L−R)− σ2
1/2] dt+ σ1dz̃1

dL = [κ2(G− L)− σ2
2/2] dt+ σ2dz̃2

(15)

That is, they follow a linear, constant coefficient, constant variance Ito process. In discrete
time, the process followed by R and L can be shown to be (derived in the appendix; see
Wymer 1972)

Rt+1 = (1− k1)Rt + κ1

( k1 − k2

κ1 − κ2

)
Lt

−
(σ2

1k1

2κ1
+ (

σ2
2

2
−Gκ2)(

k2

κ2
− k1 − k2

κ1 − κ2
)
)

+ ψ1t

Lt+1 = (1− k2)Lt + k2G−
σ2

2k2

2κ2
+ ψ2t (16)

9Brennan and Schwartz face the same estimation problem in their two factor model of the term
structure. In their formulation, the two state variables are the risk free instantaneous rate and the
unobserved consol rate. They use the long term bond rate as a proxy for the consol rate. That
procedure anchors both ends of the yield curve so risk parameters only determine the curvature of the
yield curve between these points. In our estimation the yield curve is only anchored at one end by the
risk free rate. The value of µ at each point in time is then selected which, together with the model
parameters, gives the best fit to the overall yield curve at that time point. Although our procedure is
computationally more complex, it should lessen the measurement error bias that results from imperfect
observation of the long term conceptual state variable.
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where k1 ≡ 1− exp−κ1, k2 ≡ 1− exp−κ2. The stochastic terms ψ1t, ψ2t are serially uncorre-
lated and normally distributed, with zero means and approximate covariance matrix

Ω1 =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
(17)

Equations (16) and (17) give the distribution of one period ahead values of R and L in
terms of their current values and the continuous time parameters. The reasons for selecting
the technology of section II.3 should now be apparent. First, at least one state variable
corresponds to an observable (x1 = r). Second, the pair of state variables have an explicit
distribution over discrete intervals (joint lognormal) with parameters readily related to those
of the continuous time process.10

2 Predicted Security Prices

Although we cannot solve differential equation (14) explicitly for theoretical prices, it can
be solved numerically for given values of Γ. A finite difference approach is used in which
P (r, µ, t; Γ) is computed on a grid [0, r̄] × [0, µ̄] × [0, T ] using centered differences as approx-
imations to differentials, where r̄, µ̄ denote the maximum values of r, µ considered. P at
the grid points is calculated using the alternating direction implicit method of McKee and
Mitchell (1970), used also by Courtadon (1982) and Schaefer and Schwartz (1983). For n,m
grid points in the state variable directions, the solution at each time step involves solving n
tridiagonal systems of m linear equations, plus m systems of n equations.

States r = 0 and µ = 0 are absorbing barriers for process (12). One can show that
P (0, µ, t) = P (r, 0, t) = 1 for unit discount bonds. However Pr, Pµ → −∞ as r, µ → 0, and
imposition of these values renders the numerical solution unstable. Consequently all boundary
grid values at each time step are generated by quadratic extrapolation of immediately interior
values.11

10The joint lognormality of the state variables also makes computation of the distribution of future
interest rates, and of the steady state distribution of rates, relatively straightforward for forecasting
and other applications. The exact conditional covariance matrix, rather than the approximation of
equation (17), must be used when seeking the conditional distribution of states more than a short time
into the future.

11In essence we are imposing the condition Prrr = Pµµµ = 0 one and a half grid points in from
the boundary. In the empirically relevant range (for the parameter estimates obtained), the resulting
solution seemed quite insensitive changes in the size or mesh of the grid, transformation of the variables
to ln r, lnµ, etc.

First partial derivatives of security prices with respect to state variables, required in the estimation
procedure and for computing hedge ratios, are computed as the derivatives of the quadratic Taylor
series interpolation of the grid solution (cf. Isaacson and Keller, 1966). Derivatives with respect
to model parameters, also required for the estimation procedure, are computed by incrementing the
relevant parameter and resolving the system.
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3 Joint Estimation of Γ and L

We now turn to the problem of jointly estimating the sample path of L (equivalently µ ) and
the parameters Γ. Part of the statistical model’s structure was obtained above. From (16) we
have

ψt =

(
Rt+1

Lt+1

)
−
(
F1(Rt, Lt; Γ)
F2(Rt, Lt; Γ)

)
(18)

F1 and F2 are the right hand side expressions of (16), and ψt ∼ N(0,Ω1). At each sample
point, we observe Rt and a vector of prices P̂t = (P̂it) of n interest rate related securities.
Let Pt = (Pi(Rt, Lt; Γ)) denote the vector of corresponding theoretical prices obtained from
the numerical solution of (14). There may be no Lt,Γ for which the theoretical and observed
prices coincide exactly. We postulate pricing residuals

εt = P̂t − Pt (19)

with the following structure: for some scalar α,

νt ≡ εt − αεt−1 ∼ N(0,Ω2) (20)

Thus the n pricing residuals at each point in time are permitted to have a single common
level of autocorrelation and a constant covariance matrix.

We do not perform a full maximum likelihood estimation. However it is instructive to see
what it would entail. The log likelihood function (times 2) of a sample of T observations is

−T ln |Ω1| −
∑
t

ψ′tΩ
−1
1 ψt︸ ︷︷ ︸

SSR1

−T ln |Ω2| −
∑
t

ν ′tΩ
−1
2 νt︸ ︷︷ ︸

SSR2

+ const. (21)

Direct maximization of (21) with respect to all the unknown parameters would be difficult.
Not only are there the usual problems associated with FIML estimation of a nonlinear system,
but the elements of Ω1 directly enter the theoretical price function P .12

Suppose that estimates of Ω1 and Ω2 were available. Maximum likelihood estimation of
the remaining parameters would then reduce to the generalized least square estimator

min
κ,λ,L
{SSR1 + SSR2 } (22)

This is in fact what we do. The solution to (22) is found by an iterative procedure, adjusting
{κ, λ, L} towards the values that minimize SSR1 + SSR2 , with Ω1 and γ derived from the
L of the preceeding iteration. The method of Marquardt (1963) is used, which interpolates
between a gradient and a Taylor series method of minimizing the SSR. An estimate for Ω2

12If an estimator based on (21) was desired, the work of Dempster, Laird and Rubin (1977) suggests
this could be accomplished by iteratively estimating L|Γ, then Γ|L, and repeating until convergence
obtains. They term such a procedure an ‘EM algorithm’, and demonstrate that it converges to a joint
maximum likelihood estimator under fairly general conditions.
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was found by initially assuming a diagonal covariance matrix, solving (22), then using the
resulting pricing residuals to form the estimate. An estimate of α was obtained in similar
fashion.

Our reason for proceeding in this fashion is primarily computational. Since one endpoint
and the general slope of the yield curve at each sample point are accomodated by Rt, Lt,
the remaining parameters mainly influence its curvature properties. It seems unlikely that
more than the four additional parameters κ, λ can be feasibly identified from these properties.
Letting Ω1 be determined solely by the time series characteristics of R and L resolves this
indeterminacy with little effect on the maximized likelihood. As was later verified empirically,
procedure did not cause parameter estimates to deviate significantly (in a statistical sense)
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from their maximum likelihood values.13

The theoretical model (12) and (14), or their empirical counterparts (16) and (19), in a
sense predict two things: future values of the state R,L and security prices conditional on
R,L. The estimates of κ from (22) also reflect these two things. The value for κ that minimizes
SSR1 by itself would be that which best describes the ex post time series properties of R,L.
It would be the ex post rational belief about the process driving interest rate movements.
The value of κ that minimizes SSR2 by itself would be that which was most consistent with

13An example using the Cox, Ingersoll and Ross one factor term structure model will help clarify the
estimation procedure. The interest rate process is dr = κ(µ− r) dt+ σr1/2 dz where µ is the assumed
constant long run value of r. If we define yt = r

1/2
t , Itos’s lemma gives

dy =
1
2y

[κ(µ− y2)− σ2/4] dt+
1
2
σ dz

Next expand 1/y in a Taylor series about the sample mean ȳ to obtain dy = (ay+ b) dt+ 1
2σ dz, whose

solution is
yt =

b

a
(ea − 1) + eayt−1 + εt

where εt ∼ N(0, σ2/4), a = (σ2/4− κµ)/2ȳ2 and b = (κµ− σ2/4)/ȳ.
Solution of the appropriate pricing equation gives prices for discount bonds maturing in τ periods

of
P (r, τ) = A(τ)e−rB(τ)

where

A(τ) =
2γ e(κ+λ+γ)τ/2

(κ+ λ+ γ)(eγτ − 1) + 2γ
2κµ/σ2

B(τ) =
2(eγτ − 1)

[(κ+ λ+ γ)(eγτ − 1) + 2γ]

γ =
[
(κ+ λ)2 + 2σ2

]1/2
and λ is an additional parameter that specifies the market price of interest rate risk.

Estimating the model would require determining four parameters κ, µ, σ2 and λ from time series
data for r and discount bond prices. An examination of the equation for yt indicates that only two
parameters can be uniquely determined from the time series for rt. The value of σ2 can be determined
from the autoregressive residuals, but only the product κµ can be inferred from the intercept and
slope parameters. The time series rt, of course, provides no information on λ. Similarly, only three
parameters can be identified from bond prices because only the combinations κµ/σ2, κ+λ and γ affect
bond prices. As a result, no information is lost if σ2 is estimated from the autoregressive residuals, λ
is determined only from the bond prices, and κ and λ are jointly estimated from the data on rt and
bond prices.

The workings of the two factor model are not much different from this example. Equations (16) only
provide information on the values of κ and σ2 and not the values of λ. Similarly, the bond prices do
not provide enough information to determine all the model parameters. Although there is not formally
the lack of identification that occurs in the one factor model, numerical analysis indicated that a close
to similar situation prevails in our two factor case. As a result, little or no information should be lost
if equations (16) are used to determine Ω1 and γ, with the remaining parameters estimated jointly.
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the various cross-sections of security prices observed. It would be the value that the market
appeared to believe in, given the structure of prices. The theoretical model assumes that
expectations are consistent in the sense of section II.4. If expectations were also rational, then
the two estimates of κ should coincide. The criterion function (22) imposes this restriction
to improve efficiency. However this restriction can be lifted, two separate estimates of κ can
be obtained (the ‘ex post rational beliefs’ and the ‘market beliefs’), and the hypothesis of
rational expectations tested.14

4 Data used in the estimation

The theoretical pricing relation (14) applies to any default free interest rate related claim.
Hence the model parameters can be estimated from a time series {Rt, P̂t}, where the price
data P̂ is drawn from any market for interest rate securities.

The model was fitted to observations of US government Treasury Bill and Note prices in
the cash market; then separately fitted to prices for futures contracts on 91 day Treasury
Bills traded on the Chicago Mercantile Exchange. Weekly observations were obtained for 344
weeks from Jan. 5, 1978, to Aug. 9, 1984 (Thursday price quotes) for 4, 13, 26 and 52 week
Bills, 3, 5 and 7 year Notes, and the four nearest to delivery T-Bill futures contracts. The
Note yields were Federal Reserve Bank of NY estimates of the coupon rates for which Notes
of those maturities would trade at par. That is, they represent FRBNY estimates of the yield
curve rather than price quotes on actual Notes.15

For the riskless instantaneous interest rate, rt, we used the overnight US Federal Funds rate
minus the average differential between the reserve adjusted yield on 3 month bank certificates
of deposit and 3 month Treasury Bills. Assuming that the cost of funds yield differential

14No properties of the resulting estimators have been demonstrated. The number of Lt’s to be esti-
mated grows in direct proportion to the length of the sample. There is thus an incidental parameter
issue, raising the possibility of inconsistent structural parameter estimates. We do not feel this is a
problem for several reasons. The model is similar to a ‘random effects’ model in that, although succes-
sive realizations of Lt are not independent, there exists a stationary distribution for the state variables
with their degree of intertemporal dependence shrinking to zero through time. Moreover changes in
Rt, Lt are independently and identically distributed after allowance for the deterministic component in
their drift. Thus it may be possible to demonstrate consistency of the maximum likelihood estimator of
the structural parameters based solely on (19) along the lines of Kiefer and Wolfowitz (1956). However
we have not done this. Additionally, in our particular context, we make use of the dynamic relation
(18) in the estimation procedure. This further identifies the parameters to be estimated beyond what
is typically the case when incidental parameters are a problem.

15For a given maturity of bond, the height of the FRBNY estimated yield curve was interpreted
as the coupon rate required on a bond trading at face value. I.e., a bond with that coupon rate was
taken to have an observed price of 1.0. The theoretical prices of the discount bonds representing those
semiannual coupon payments and the principal repayment were summed. The difference between this
sum and 1.0 was used as the pricing residual. Although this procedure carries the disadvantage of not
using actual bond quotes, it has the advantage of avoiding tax related coupon effects.
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between unsecured bank liabilities and Treasury securities was the same for overnight funds
as for 3 month funds, this is a proxy for an overnight Treasury rate.16

IV EMPIRICAL RESULTS

1 What are the questions?

The theoretical model of section II, and related arbitrage based models, take a unified view
of the pricing of all interest rate claims. This is attractive for several reasons. It permits
a parsimonious description of the world, allowing many markets to be treated as one. It
explains relationships between yields on technically distinct securities. It provides a way of
valuing customized contracts for which no established market exists. And it provides a basis
for hedging the risk implicit in one contract or security with positions in other seemingly quite
different securities. In this spirit, the fundamental hypothesis might be stated as follows:

On average, the prices of all interest rate securities are a common function of the current
instantaneous interest rate rt and one other common underlying factor µt.

By ‘on average’ is meant up to a pricing error structure of the form (20). By ‘common
function’ is meant that the prices satisfy equation (14). And by ‘common factor’ is meant
a variable that is perceived in a similar fashion by particpants in all markets. Nothing is
said about the presence or absence of arbitrage opportunities, which would involve further
hypotheses about the error structure, transaction costs, admissible strategies and so on. The
hypothesis is not market efficiency, but rather the appropriateness of viewing these markets
in a unified manner.

This fundamental hypothesis is of course a joint hypothesis about many things. A rejection
of it could be interpreted as a rejection of the adequacy of a two factor description of the
exogenous forces driving interest rates, of the correctness of specification (14), or of a multitude
of other maintained assumptions underlying the empirical specification.

The issues that we do explore fall into two categories. Under the heading of quantitative
issues, we ask: (a) Do the underlying parameters of the interest rate process appear stable
over the sample period? (b) Is the theoretical distinction between forward and futures prices
quantitatively important for empirical work? (c) For what length of observation interval
would an approximate rather than exact discrete time analogue of the continuous model be
adequate for estimation purposes? Under the heading of economic issues, we ask: (a) Are the
parameters describing the joint movement of short term rates and the unobserved factor the
same across the cash and futures markets? (b) Is the current state (Lt) perceived to be the
same across the two markets? (c) Were market expectations about the process followed by

16Since this is a possibly noisy proxy for a hypothetical overnight Treasury rate, we explored using
an exponentially smoothed moving average to reduce the effect of observation error. The best fit was
obtained with smoothing parameter of 0.75. However the reduction in pricing residuals and effect on
coefficient estimates were negligible, and the procedure was dropped.
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the state variables ex post rational?
Issues that will be explored in a future paper include: (a) Market efficiency: are the

pricing errors within and across markets such that ‘profitable’ trading rules can be devised?
(b) Functional form: which of the various two-factor models proposed in the literature to
date perform ‘best’? (c) Financial management and intermediation: how well do hedging
strategies based on alternative pricing models perform? (e.g., how well can interest rate
options be synthesized with futures trading strategies?)

2 Estimation results

Table 1 gives parameter estimates obtained by fitting the model to the Bill and Note data,
to the Bill data alone, and to the T-Bill futures contract prices alone. Table 2 gives some
information on the size of the resulting pricing residuals.

The parameter values are based on a time unit of one week. The corresponding values
when the time unit is one year (52 weeks), based on the Bills/Notes estimates (row 1 of Table
1) are

κ1 12.72 (half-life .054 yrs.) σ1 .596
κ2 .0718 (half-life 9.6 yrs.) σ2 .166
λ1 -3.727 ρ .236
λ2 -.0808 γ .0983

The very high value of κ1 combines with the very high value of λ1 to accomodate the very
steep initial part of the yield curve.

The long half-life of deviations of of µ from γ relative to the sample period results in wide
confidence bands for γ. Table 5, row 2, tests the constraint that this long run target for
interest rates is .00289 (15.0%/yr.) as opposed to the estimated value of .00189 (9.83%/yr.),
and cannot reject it. The Bill/Note pricing residuals are little affected since the market price
of µ risk, λ2, adjusts to compensate.

3 Quantitative issues

The sample period January 1978 – August 1984 was a time of considerable interest rate
volatility and witnessed a variety of shapes to the yield curve. The state variables, expressed
as annual yields, ranged from 5.43% to 16.98% for rt, and from 6.64% to 14.38% for the
estimated µt.

The stability of the model parameters was investigated by breaking the sample of Bill
and Note prices into two halves. Row 1 of Table 5 details the relevant likelihood ratio test.
Imposing identical parameter values over the two intervals raises the SSSR by 0.45%, which
rejects the hypothesis at the .95 confidence level but not at the .99 level.
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Table 1: PARAMETER ESTIMATES

Prices fit κ1 κ2 λ1 λ2 SSSR σ1 σ2 ρ γ

1. bills & .2446 .00138 -.5169 -.0112 2730 .0826 .0230 .236 .00189
bonds (.010) (.00007) (.020) (.0007)

2. bills .4120 .01356 -.9817 .0093 1677 .0799 .0466 .358 .00188
only (.027) (.0011) (.081) (.008)

3. futures .2476 .00128 -.5281 -.0102 1717 .0856 .0445 .300 .00170
(.002) (.00003) (.0036) (.0005)

Constrained Estimates

4. bills κ, λ, L same as (1) 25806
only κ, λ same as (1) 1915 .0786 .0425 .162 .00189

unconstrained 1677 .0799 .0466 .358 .00188

5. futures κ, λ, L same as (1) 8.02 E6
κ, λ same as (1) 1728 .0841 .0438 .310 .00173
κ, λ, L same as (4b) 7.79 E6
unconstrained 1717 .0856 .0445 .300 .00170

SSSR = SSR1 + SSR2. Standard error of coefficient estimates in parentheses are asymptotic
values based on the numerically computed partial derivatives of SSSR on the last iteration of the
minimization procedure. They are conditional upon fixed values of σ1, σ2, ρ, γ. A common value of Ω1

and Ω2 was used within (4) and within (5) to make SSSR comparable for hypothesis testing. However
Ω2 differs between (4) and (5).

Turning next to the quantitative importance of the futures- forward price distinction, the
theoretical difference between these prices arises from the fact that futures contract gains and
losses are settled daily in cash between market participants, whereas all gains and losses are
deferred to the delivery date for forward contracts. If the unanticipated components of future
price and interest rate changes are negatively correlated, then individuals with long futures
positions on average pay out cash when the opportunity cost of doing so is high, and receive
cash when the interest that can be earned on it is low. Consequently equilibrium futures
prices would be below forward prices.

For many markets, the correlation between interest rate and futures price movements
might be weak. However there can be no such presumption for interest rate futures markets.
To get some sense of the quantitative importance of the daily settlement effect, the theoretical
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Table 2: STANDARD DEVIATION OF PRICING RESIDUALS

1. bills/bonds ($100 maturity value)
maturity: 4 wk. 13 wk. 26 wk. 52 wk. 3 yr. 5 yr. 7 yr.

.038 .085 .130 .186 .181 .251 .453

2. bills only ($100 maturity value)
maturity: 4 wk. 13 wk. 26 wk. 52 wk.

.030 .034 .045 .131

3. futures (contract on $100 maturity value 91 day bill)
delivery: 1-13 wk. 14-26 wk. 27-39 wk. 40-52 wk.

.059 .017 .024 .042

Correlation Matrix of Price Residuals

bills/bonds futures contracts

1.00 .44 .36 .30 −.13 −.44 −.52
1.00 .87 .59 −.19 −.75 −.75

1.00 .77 −.01 −.76 −.83
1.00 .20 −.67 −.79

1.00 −.04 −.34
1.00 .59

1.00

1.00 .23 −.97 −.89
1.00 −.23 −.63

1.00 .83
1.00

Above are standard deviations of pricing errors after allowance for serial correlation. A common
value of α = .806 was used for all estimates. The standard deviation reported above is thus ωjj)1/2,
where ωjj is the jth diagonal element of Ω2. The standard deviations of the raw (uncorrected) pricing
residuals ranged between two and four times larger, depending on the maturity of the security priced.

forward and futures prices of 13 week and 52 week Bills were computed for various current
states, using the model parameters estimated from the Bill/Note data.

Table 3 presents the results, with prices converted to annualized yields to maturity. It is
apparent that if interest rates are in a ‘normal’ range, and if the time to delivery is relatively
short (a year or less), then the effect is negligible. The difference in implied yield is only 2
basis points for 13 week Bills deliverable in one year. However for more distant delivery dates
and/or high levels of current interest rates (the stochastic components of state changes are
proportional to the level of interest rates), then the effect is noticeable. For Bills deliverable
in five years, with rates at the 20% level, the difference in implied yield is 192 basis points.

Finally, we explore the extent of bias that would be introduced by using approximate dis-
crete time analogues for the interest rate process to estimate the continuous time parameters
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Table 3: THEORETICAL FORWARD VERSUS FUTURES PRICES

Current State
r = µ =10%/yr. r = µ =20%/yr.

Deliverable Bill: 13 week 52 week 13 week 52 week

0 yr. forward 10.66 10.99 21.91 22.46
1 yr. forward 11.23 (.02) 11.31 (.02) 22.46 (.08) 22.27 (.07)
3 yr. forward 11.62 (.16) 11.67 (.15) 21.36 (.79) 21.13 (.58)
5 yr. forward 11.84 (.41) 11.86 (.40) 20.09 (1.92) 19.85 (1.35)

The forward and futures prices have been expressed as continuously compounded annual yields
to maturity on the delivered bill. The main entries in the table are the forward interest rates. The
quantity in parentheses following each entry is the amount by which the theoretical futures market
interest rate exceeds the corresponding forward rate. Theoretical forward and futures prices were all
computed using parameter values from row 1 of Table 1.

entering the pricing relations. The production technology assumed in the theoretical model
was chosen so that the exact discrete time process followed by the state variables could be
obtained. However most specifications for the interest rate process that have been proposed
cannot be similarly solved. The question arises whether it is reasonable to empirically imple-
ment these models by simply replacing infinitesimals in equations like (15) by differences, and
ignoring the distinction between discrete and continuous time parameters.

This is an empirical issue in that as the interval between observations shrinks, the approx-
imate discrete time parameters and exact parameters converge. The question is, how short
an interval is short enough in a given context? To shed some light on this issue, we replaced
dR and dL in (15) by differences (Rt+1 −Rt) and (Lt+1 −Lt), and used the average of L and
R at times t and t + 1 on the right hand side. This was then used in place of (16) in fitting
the model to the Bill/Note data. With weekly observation intervals there was virtually no
difference in the parameter estimates. The observation interval was then increased to a month
and the experiment repeated.

Table 4 gives the results. As can be seen, the difference in parameter estimates is now
noticeable. However the approximate model does not have much greater pricing residuals.
This suggests that with even monthly observations, the use of approximate discretizations of
continuous interest rate processes is adequate. Of greater concern is the disparity between
estimates obtained from monthly observations and from weekly observations (row 3).

4 Market expectations and perceptions

For the same pricing equation (14) to apply for all interest rate claims, the same exogenous
factors must drive the prices of distinct interest rate dependent securities, participants in these
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Table 4: APPROXIMATE DISCRETE TIME MODEL ESTIMATES

κ1 κ2 λ1 λ2 SSSR σ1 σ2 ρ γ

1. Exact discrete time model:
.5451 .00834 -.4787 -.0210 627 .1101 .0754 .391 .0081

2. Approximate discrete time model:
.4957 .00906 -.4840 -.0190 637 .1147 .0766 .394 .0081

3. Per month values implied by weekly parameter estimates:
.9784 .00552 -1.034 -.0224 .1652 .0460 .236 .0076

All estimates are based on monthly observations (4 weeks) of bill and bond prices. Row 3 gives
the parameter estimates of row 1 of Table 1 converted to equivalent values for a monthly, rather than
weekly, time unit. The value of the serial correlation coefficient for the monthly pricing residuals was
α = .726.

The parameter values of row 2 do not differ significantly from those of row 1. The appropriate test
statistic, n ln(637/627), takes the value 3.63 and is asymptotically distributed as χ2(4). The .90 and
.95 significance level values for this statistic are 7.78 and 9.49 respectively.

markets must share common beliefs about the process governing their movement, and similar
premiums for bearing equivalent risks must prevail across markets. In addition, the success
of hedging strategies based on the theoretical price relations hinges on the rationality of these
beliefs. In our context, we ask whether the parameters of the interest rate process are the
same across the cash and futures market, whether the perception of the current state is the
same in the two markets, and whether the cross equation restrictions implied by rationality
can be rejected. The likelihood ratio test statistics for these hyotheses are provided in Table
5.

Row 3 tests the hypothesis that the process parameters and risk prices are the same in
the T-Bill futures market as in the Bill/Note market. No joint fit to the Bill/Note/futures
data combined was performed. Instead we test the restriction that values of κ and λ for the
futures market equal the values obtained for the Bill/Note market (Table 1, row 1), without
constraint on the values of Lt. The hypothesis of equal process parameters and risk prices
across the two markets is not rejected at the .99 significance level.

Row 4 tests the hypothesis that, in addition, the perception of the current state (value of
the unobserved second factor µ) is the same in the futures market as the cash market. Here the
result is rather different. Imposing the values of µ estimated from the cash market increases
the futures market SSSR pricing residuals by a factor of over 4000, thoroughly rejecting the
hypothesis. This suggests either that different factors influence these two markets, or ‘news’
is processed and incorporated into prices with a different lag by representative participants of
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Table 5: STATISTICS FOR HYPOTHESIS TESTS

Null hypothesis S0
S1

n q n ln(S0
S1

) χ2
.95(q) χ2

.99(q)

1. κ, λ are the same for
the 1st half of the
sample period as the
2nd half

1.0045 2752 4 12.24 9.49 13.3

2. γ = .00289 (versus
unconstrained
estimate of .00189)

1.0008 2752 1 2.07 3.84 6.63

3. κ, λ for the futures
market = values
estimated for
bill/bond market

1.0064 1720 4 10.98 9.49 13.3

4. κ, λ, {µt} for the
futures market =
values estimated for
bill/bond market

4641 1720 347 14521 390 408

5. κ in bill/bond
market = values
estimated from time
series on rt, µt alone
(with µt fixed at
values estimated
from bill/bond)

2.0659 2408 2 1747 5.99 9.21

6. κ perceived by
bill/bond market and
that implied by rt, µt
time series are same
(i.e., rational
expectations)

1.0200 2752 2 54.37 5.99 9.21

S0 and S1 are the estimated sum squared residuals under the null and alternative (unconstrained)
hypotheses respectively. The residuals were transformed by the appropriate covariance matrix first.
n denotes the number of (independent) observations in the sample, and q the number of constraints
imposed by the null hypothesis. The likelihood ratio test statistic in column 4 is asymptotically
distributed as χ2(q). The values corresponding to 95% and 99% significance level tests are given in
the final two columns. The critical values in row 4 were computed using the normal approximation to
the χ2 distribution for large q.
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the two markets.
The rationality of expectations was investigated using Bill/Note data only. The interest

rate process parameters κ enter both equation (16), which describes the dynamic properties
of the exogenous factors, and equation (19), which determines the cross-section structure of
security prices. The value of κ that makes (16) fit best (minimizing SSR1 alone) can be
interpreted as the ex post rational belief about the interest rate process; while the value that
makes (19) fit best (minimizing SSR2 alone) can be interpreted as the market’s belief about
the interest rate process. The hypothesis of rational expectations is that these values are the
same — a cross equation restriction on parameters.

The values of κ estimated using these different criteria are listed below. The values of µt
for the time series estimate of κ were fixed at the values estimated for the Bill/Note market
assuming rational expectations (i.e., Table 1, row 1).

κ1 κ2

minimizingSSR1 .1264 .01210

minimizingSSR2 .2710 .00183

minimizingSSSR .2446 .00138

Comparing the first two rows, the market appeared to overestimate the rate at which short
term rates were being pulled toward their near term target µ, but underestimate the tendency
for this near term target to be pulled back towards the long run value γ.

Row 6 of Table 5 formally tests the restriction that the values of κ are the same. The
hypothesis is rejected at the .99 significance level. This suggests that expectations were not
ex post rational. However imposing equality of the two values for κ only raises the combined
SSSR by 2%, indicating that the model’s pricing residuals are only slightly affected by the
misperception of the interest rate process. Put another way, the extent of irrationality may
be statistically significant, but may not be quantitatively important for pricing and hedging
purposes (see McClosky 1985).

Finally, row 5 of Table 5 details the outcome of taking a different route to testing for
rational expectations — a two step procedure. If, instead of fitting (16) and (19) jointly
subject to the constraint of a common κ, one estimates κ from the time series of the state
variables (minimizing SSR1), then imposes this value in the pricing equation (19), the sum
squared pricing errors SSR2 more than doubles, giving the appearance of quantitatively large
deviations from rationality. The problem with performing the test this way is that it treats the
value of κ as known rather than as an estimate, increasing the chance of erroneously rejecting
the null hypothesis.
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Solution for Exact Discrete Time Model

Let y1(t) ≡ Rt ≡ ln r(t), y2 ≡ Lt ≡ lnµ(t) and G ≡ ln γ. The stochastic process (15) can be
written in vector form as

dy = Ay dt+ b dt+ dψ (A.1)

where

y ≡
(
y1(t)
y2(t)

)
A ≡

[
−κ1 κ1

0 −κ2

]

b ≡
(

−σ2
1/2

Gκ2 − σ2
2/2

)
dψ ≡

(
σ1 dz̃1(t)
σ2 dz̃2(t)

) (A.2)

From Wymer (1972), the exact discrete time solution to the constant coefficient linear system
(A.1) is

y(t+ h) = ehAy(t) +A−1[ehA − I]b+ η(t) (A.3)

The expression eA is defined as TeDT−1 where T is a matrix whose columns are the eigenvec-
tors of A and eD is a diagonal matrix with elements eci , where the ci’s are the corresponding
eigenvalues of A (Note that the eigenvectors of hA are the same as those of A and the cor-
responding eigenvalues are hci). The vector η(t) is normally distributed with mean 0 and
covariance matrix

Ω̂1 =
∫ h

0
esAΩ1e

sA′ ds ∼= Ω1 for small h (A.4)

where Ω1 is the instantaneous covariance matrix of the stochastic terms in the continuous
time process. The exact covariance matrix for larger h is derived below.

The eigenvalues and corresponding eigenvectors of A are

c1 = −κ1 c2 = −κ2

T·1 =

(
1
0

)
T·2 =

(
κ1

κ1 − κ2

) (A.5)

Hence we obtain:

A−1 =

 −1/κ1 −1/κ2

0 −1/κ2



ehA =

 e−hκ1 κ1(e−hκ2−e−hκ1 )
κ1−κ2

0 e−hκ2


and A−1[ehA − I]b ≡ (x1, x2)′ where

x1 = −σ2
1∆1/2κ1 − σ2

2∆2/2κ2 + σ2
2(∆1 −∆2)/2(κ1 − κ2)

+G∆2 −Gκ2(∆1 −∆2)/(κ1 − κ2)

x2 = (Gκ2 − σ2
2/2)∆2/κ2

(A.6)

26



In the above, ∆1 ≡ 1− e−hκ1 and ∆2 ≡ 1− e−hκ2 . Substitution of (A.6) into (A.3) yields the
discrete time relation:

Rt+h = (1−∆1)Rt + κ1

(∆1 −∆2

κ1 − κ2

)
Lt

−
(σ2

1∆1

2κ1
+ (

σ2
2

2
−Gκ2)(

∆2

κ2
− ∆1 −∆2

κ1 − κ2
)
)

+ η1t

Lt+h = (1−∆2)Lt + ∆2G−
σ2

2∆2

2κ2
+ η2t (A.7)

The stochastic terms ψ1t, ψ2t are serially uncorrelated and normally distributed, with zero
means and covariance matrix determined below.

To get the covariance matrix, multiply out the terms in (A.4) to get the integrand σ2
1ν1 + ρσ1σ2κ1

ν2−ν1
κ1−κ2

+ σ2
2κ

2
1( ν2−ν1κ1−κ2

)2 ρσ1σ2ν1ν2 + σ2
2κ1ν2

ν2−ν1
κ1−κ2

ρσ1σ2ν1ν2 + σ2
2κ1ν2

ν2−ν1
κ1−κ2

σ2
2ν

2
2

 (A.8)

in which ν1 ≡ e−sκ1 and ν2 ≡ e−sκ2 . The integral (A.4) is then the matrix of integrals of the
respective terms, which evaluate to:

σ̂11 =
σ2

1

2κ1
(1− δ21) +

2ρσ1σ2κ1

κ1 − κ2

(
1− δ1δ2
κ1 + κ2

− 1− δ21
2κ1

)

+
σ2

2κ
2
1

(κ1 − κ2)2

(
1− δ21

2κ1
− 2(1− δ1δ2)

κ1 + κ2
+

1− δ22
2κ2

)

σ̂12 =
ρσ1σ2

κ1 + κ2
(1− δ1δ2) +

σ2
2κ1

κ1 − κ2

(
1− δ22

2κ2
− 1− δ1δ2
κ1 + κ2

)

σ̂22 =
σ2

2

2κ2
(1− δ22) (A.9)

in which δ1 ≡ e−hκ1 and δ2 ≡ e−hκ2 .
The steady state distribution of R,L — obtained by letting h→∞ in (A.7) and (A.9) —

is normal with mean (
R̄

L̄

)
=

 G− σ2
1

2κ1
− σ2

2
2κ2

G− σ2
2

2κ2


and covariance matrix σ2

1
2κ1

+ σ2
2κ2(κ1+κ2)(σ2κ1 + 2ρσ1κ2) σ2

2κ2(κ1+κ2)(σ2κ1 + 2ρσ1κ2)

σ2
2κ2(κ1+κ2)(σ2κ1 + 2ρσ1κ2) σ2

2
2κ2


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