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How much do people discount the future? How does their discounting change as

they consider events further in the future?1 Perhaps more fundamentally, why do people

discount at all?

Irving Fisher’s (1930, pp. 84–85) pioneering study of intertemporal trade-offs called

attention to one reason future rewards are discounted—an intervening death may prevent

us from realizing such rewards. The possibility of death has played a recurring role in

discussions of discounting (e.g., Menahem E. Yaari (1965)). Ingemar Hansson and Charles

Stuart (1990) and Alan R. Rogers (1994) argue that evolution should select in favor of

people whose discounting reflects the growth rate of the population with whom they are

competing (see also Arthur J. Robson and Balazs Szentes (2007)). Putting these ideas

together leads to models in which people discount at the sum of the population growth

rate and the mortality rate.

One difficulty with this argument is that the numbers don’t obviously match. Studies

of contemporary rates of time preference have produced estimates as high as twelve to

twenty percent per year (Emily C. Lawrance (1991)). Steffan Andersen, Glenn W. Har-

rison, Morton I. Lau and E. Elisabet Rutström (2008, Table III), arguing that estimated

discount rates fall when correcting for the confounding effects of risk aversion, find (still

surprisingly high) discount rates of about ten percent . In contrast, Michael Gurven and

Hillard Kaplan (2007, pp. 330-331) use data from contemporary hunter-gatherers to esti-

mate that annual mortality rates during our evolutionary history ranged from one percent

for ten-year-olds to four percent for sixty-year-olds, while the average population growth

rate over this two-million year period must have been approximately zero, suggesting dis-

count rates of a few percent. A second issue is the growing evidence that intertemporal

preferences exhibit a present bias not captured by the exponential discounting of standard

models.

This paper re-examines the foundations of intertemporal preferences. Like Hans-

son and Stuart (1990) and Rogers (1994), we view peoples’ preferences as having been

1Recent policy discussions, especially those regarding global warming, have focussed attention on the

first question (e.g., William Nordhaus (2007)), while recent work in behavioral economics has directed

attention to the latter (Shane Frederick, George Loewenstein and Ted O’Donoghue (2002)).
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shaped by biological evolution. We consider the evolution of intertemporal preferences

in age-structured populations, i.e., populations in which each individual can reproduce

at different ages, focussing on the simplest question of how people discount future repro-

duction. When all the risk affecting survival and reproduction is idiosyncratic, we find

the standard result that there is a close connection between the evolutionary criterion

for success and the simplest criterion for intertemporal choice—the discounted sum of

expected utility. This result involves the anticipated rate of discount, namely the sum of

the population growth rate and the mortality rate.

Our contribution derives from the observation that the risks in our evolutionary en-

vironment are unlikely to have been purely idiosyncratic. Fluctuations in the weather or

abundance of predators, epidemics, and failures of food sources are all bound to have a

common effect on death rates. Such aggregate uncertainty breaks the connection between

discounting and the sum of the growth and death rates. We first show that aggregate

uncertainty “generically” lowers the growth rate below that arising with comparable id-

iosyncratic uncertainty.2 Furthermore, if the environmental fluctuations have a uniform

effect on people of different ages, then future reproduction is discounted at a rate exceed-

ing the population growth rate plus the mortality rate corresponding to mean survival—so

that aggregate risk may lie behind the apparent gap between discount rates and growth

and mortality rates.3

What if the effects of aggregate uncertainty differ across ages? We find that discount

rates need no longer be constant, and we present natural (but by no means universal)

conditions under which the rate of discount falls as a function of age. This “present

bias” in discounting is reminiscent of the present bias that has played a central role in

behavioral economics. However, the discount rates that emerge from our model are tied

to age rather than time, precluding preference reversals.4

2See Robson (1996) for an analogous result for populations without an age structure.
3Section 2.4 explains how this model formalizes and generalizes the “sawtooth” explanation sometimes

advanced to reconcile an average growth rate near zero in our evolutionary past with the higher growth

rates often seen in contemporary hunter-gatherers. This sawtooth model couples periods of sustained

growth with rare, rapid and evolutionarily-neutral population collapses.
4Partha Dasgupta and Eric Maskin (2005) and Peter D. Sozou (1998) also present evolutionary foun-

3



Section 1 introduces the mechanics of age-structured populations for the simpler

case of an environment with only idiosyncratic uncertainty. Section 2 examines aggregate

uncertainty. Section 3 discusses some of the features that are left out of our analysis.

Proofs not contained in the body of the paper are collected in Section 4.

1 Idiosyncratic Uncertainty

It is helpful to first consider the more straightforward case of idiosyncratic uncertainty,

drawing on Brian Charlesworth (1994) and Alasdair I. Houston and John M. McNamara

(1999), and following Robson and Larry Samuelson (2007).

1.1 The model

Time is discrete, given by t = 0, 1, . . .. We take a census of a population at the start of

each period t, letting Nτ (t) be the number of agents then of age τ ∈ {1, 2, . . . , T}.

The first event in period t is that each agent of age τ ∈ {1, 2, . . . , T} has offspring,

with xτ denoting the expected number of offspring born to an age-τ parent. Each agent of

each age τ ∈ {0, . . . , T −1} then either dies or survives, with S the probability of survival.

Agents of age T disappear from our system. This may reflect either death or a continuing

life without reproduction, essentially equivalent fates from a biological point of view.5 All

surviving agents younger than T enter the next period one year older. This brings us to

the beginning of period t+ 1, where we take the next census, finding Nτ (t+ 1) agents of

age τ ∈ {1, 2, . . . , T}, and begin the process anew with the next round of births.

The assumption that survival rates are constant across ages looks restrictive. How-

ever, because we place no restrictions on the pattern of fertility, the constant-survival-rate

assumption is innocuous. In particular, all of the evolutionarily relevant information is

dations for presently-biased preferences, including in Dasgupta and Maskin’s case the possibility of pref-

erence reversals. We discuss these papers in Section 3.
5Continued life without reproduction scales up the population but does not affect its growth rate. A

mutation that increased one of {x1, . . . , xT } by even a very small amount, while sacrificing all survival

beyond age T , would increase the growth rate and hence would be evolutionarily favored.
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contained in the agent’s expected number of offspring at each age, where this expecta-

tion includes the probability that an intervening death may fix the realized number of

offspring at zero. Given an arbitrary specification of age-dependent survival rates and

expected offspring conditional on survival, we can find a formally equivalent description

in which survival rates are constant across ages and fertilities are adjusted accordingly to

preserve the expected number of offspring at each age, allowing us to apply the techniques

described below. Section 3 further discusses the implications of this equivalence in a more

general setting. In the meantime, taking death rates to be constant allows us to isolate

other factors that may lie behind varying discount rates.

Depending on the magnitude of the survival rate S, the population may be exploding

or shrinking to zero. None of the subsequent analysis would be affected if there were an

environmental carrying capacity that would eventually cap the size of the population, as

long as our S is then interpreted as the endogenously determined zero-population-growth

steady-state survival rate.

We are ultimately interested in people’s preferences over the wide variety of things

they consume, rather than simply reproduction. We view our study of intertemporal

preferences over reproduction as a necessary first step in studying preferences over con-

sumption. Reproduction is the currency of evolution, with the various features of our

preferences having survived the evolutionary screen because of their salutary effects on

reproduction. We thus cannot understand the evolutionary implications of other intertem-

poral trade-offs without understanding trade-offs over reproduction. To make the link to

preferences over consumption, we would view the fertility xτ as being a function of the

consumption of food, shelter, status, and a host of other economic goods, with intertem-

poral preferences over these goods induced by their implications for xτ . We do not assert

that people explicitly consider the reproductive implications of each decision they make.

Evolution has instead doubtlessly found it more expedient to simply endow us with pref-

erences over economic goods, but these preferences are shaped by the implications of the

resulting decisions for reproduction.6

6To be more precise, if fertility xτ were a function fτ of consumption at date τ , then attitudes to

intertemporal inequality in consumption would be affected by the properties of fτ (its concavity, for
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The intertemporal trade-offs examined in our model explicitly concern the timing of

reproduction within an agent’s lifetime. Intertemporal trade-offs often involve intergen-

erational allocations.7 Our model can be applied to examine such transfers: We can view

the reproductive profiles (x1, . . . , xT ) appearing in our analysis as the product of both

consumption and intergenerational transfer decisions, so that our results would provide

insight into preferences over transfers as well as consumption once the appropriate links

between consumption and reproduction are made.

We also recognize that our modern environment is quite different from that in which

we evolved. However, precisely because evolution found it more expedient to simply

give us preferences over economic goods rather than make us relentless reproduction

calculators, insight into the preferences that shape behavior in our modern world is to be

found by examining our evolutionary past.

1.2 Evolution

An agent in this environment is characterized by its reproduction profile {xτ , τ ∈ {1, 2, . . . , T}}.

This profile is heritable—each agent’s reproductive profile matches that of their parent.

Notice that we have abstracted away from a number of realistic considerations. Repro-

duction is asexual in this model, there are no errors or distortions in the process of genetic

transmission, all the agents apparently do is live and reproduce, there is no explicit trade-

off between the quantity and quality of offspring, and so on. This allows us to focus on

the basic determinants of time preferences.

We now ask which reproductive profiles will be selected by evolution. In particular,

suppose a population initially contains a variety of reproductive profiles. Some agents

may have offspring in many different periods, some in only a single period. Some may

example) as well as the way in which the xτ combined to yield population growth. Since the first effect

is relatively familiar, we concentrate here on the derivation of the growth rate criterion from the xτ .

Extending the analysis from reproduction to consumption is relatively straightforward if reproduction at

age τ is a function of consumption at age τ (only), and becomes more complicated as we move away from

this simple case (cf. Robson, Szentes and Emil Iantchev (2005)).
7Work on intergenerational transfers includes Rogers (1994).
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have offspring early but have only a few, others may wait longer to reproduce but then

have more offspring. Among these reproductive profiles, some will tend to generate more

ultimate descendants than others, and if we examine the population after natural selec-

tion has had ample time to work, it will be composed almost entirely of agents bearing

this descendant-maximizing reproductive profile. Subsequent mutations introducing re-

productive profiles leading to fewer ultimate descendants will die out relatively quickly.

In making this idea precise, we follow the standard approach in assuming the number

of agents following each reproductive profile is large, captured formally by viewing the set

of agents as a continuum. This allows us to construct a convenient deterministic model

of the population. Each agent faces idiosyncratic uncertainty, in the sense that the agent

may have more or fewer offspring in a given period and may or may not survive until the

next, but the average number of offspring born to all agents of age τ (with reproductive

profile {xτ , τ ∈ {1, 2, . . . , T}}) can be taken to be precisely xτ and the proportion of

survivors can be taken to be precisely S.8

The population of agents characterized by reproductive profile {xτ , τ ∈ {1, 2, . . . , T}}
8Intuitively, each agent of age τ takes an independent (across agents and across periods) draw from

an offspring lottery with mean xτ , determining the agent’s number of offspring, and a draw from a

survival lottery that yields survival with probability S and death with probability 1 − S. The law of

large numbers then ensures that average and expected numbers of total offspring, as well as average and

expected numbers of total surviving agents, coincide. More precisely, it is well known that one cannot

appeal to such a law-of-large-numbers result with a continuum of random variables (cf. Nabil Ibraheem

Al-Najjar (1995)). In our case, as in many applications, independence is not necessary, allowing one to

construct explicit probability spaces yielding random variables with the properties that are important for

our results.
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thus evolves according to

[N1(t+ 1), . . . , NT (t+ 1)] = [N1(t), . . . , NT (t)]



Sx1 S 0 . . . 0

Sx2 0 S . . . 0
...

...
...

...

SxT−1 0 0 . . . S

SxT 0 0 . . . 0


(1)

≡ N ′(t)X,(2)

where ′ denotes transpose. Each row of the matrix X describes the fate of one of the

age cohorts in the population. The second row, for example, tells us that each two-

period-old agent has x2 offspring, which survive with probability S to become period-t+1

one-period-olds, and each current two-period-old survives with probability S to become a

three-period-old. The transition matrix X is the Leslie matrix (P. H. Leslie (1945,1948)).

The number of agents at time t characterized by the reproductive profile giving rise

to the Leslie matrix X is given by

N ′(t) = N ′(0)X t.

We can form one such equation for each possible reproductive profile (though we refrain

from introducing such notation). Which reproductive profile will give rise to the most

descendants at some point in the future? This is equivalent to asking which reproductive

profile will give rise to the “largest” X t for large t. In answering this question, we assume

that the Leslie matrix X is primitive, in that there exists some k > 0 for which Xk is

strictly positive.9 This allows us to bring standard results in matrix theory to bear in

examining X t.

In particular, the Perron-Frobenius theorem (E. Seneta (1981, Theorem 1.1)) implies

that the Leslie matrix has a “dominant” eigenvalue φ that is real, positive, of multiplicity

9A sufficient condition for this is that there exist two relatively prime ages τ and τ ′ for which xτ and xτ ′

are both nonzero. It suffices, for example, that τ and τ ′ are adjacent. Note that xT > 0 by assumption,

since otherwise agents of age T would be past reproductive age and removed from our consideration.
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one, strictly exceeds the modulus of all other eigenvalues, and satisfies (Seneta (1981,

Theorem 1.2))

lim
t→∞

X t

φt
= vu′ and hence lim

t→∞

N ′(t)

φt
= N ′(0)vu′,

where the vectors u and v are the strictly positive left (u′X = φu′) and right (Xv = φv)

eigenvectors associated with φ, normalized so that u′v = 1 and
∑T

τ=1 uτ = 1. Regardless

of the initial condition N ′(0), the proportion of the population of each age τ approaches

uτ . The vector u thus describes the limiting age distribution of the population. The vector

v gives the “reproductive value” of an individual of each age, or the relative contribution

that each such individual makes to the long run population.

This result can be more easily interpreted after premultiplying the first equation by

the vector u′, postmultiplying by v and then taking logs so that

(3) lim
t→∞

1

t
ln(u′X tv) = lnφ.

The expression u′X tv is referred to as the total reproductive value of the population and

serves as a convenient measure of the period-t population. This result then tells us that

the population growth rate is given by the log of the dominant eigenvalue of the Leslie

matrix. Those reproductive profiles whose Leslie matrixes have higher dominant eigenval-

ues will leave more ultimate descendants than others, and eventually the population will

be composed virtually entirely of the reproductive profile that maximizes this eigenvalue.

The effects of natural selection are thus easily characterized—given any set of alterna-

tives, evolution will select the reproductive profile (and only that one) maximizing the

dominant eigenvalue of the corresponding Leslie matrix.10

10The ultimate fate of the population depends on the magnitude of this dominant eigenvalue φ. The

population grows without bound it φ > 1, shrinks if φ < 1, and converges to a constant state if φ = 1.

A more realistic model would allow the death rate to vary as does the population, increasing as the

population grows in response to increasingly scarce resources and bringing the population to a steady

state. We can capture this possibility in a simple way by reinterpreting the death rate S as the steady-

state death rate.
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1.3 Discounted expected utility

We must now turn this characterization of the evolutionary process into a statement about

intertemporal preferences. What does the maximization of an eigenvalue have to do with

the trade-off between xτ and xτ ′? The eigenvalue φ solves the characteristic equation11

(4) Φ = x1 +
x2

Φ
+
x3

Φ2
+ . . .+

xT
ΦT−1

,

where

Φ =
φ

S
.

Evolution would thus endow an agent with preferences, (or more precisely, would endow an

agent with behavior consistent with preferences) whose indifference curves are described

by the right side of (4), evaluated at the optimal growth rate. That is, a reproduction

profile (x1, . . . , xT ) giving a higher value for the right side would lead to a higher growth

rate, and the fact that it is not observed indicates that it must be infeasible. A profile

giving a smaller value of the right side of (4) is inferior, leading to a smaller growth rate

that would doom its adherents to dwindle away as a proportion of the population.

This description of preferences is self-referential, since alternatives are ranked accord-

ing to a criterion expressed in terms of the optimal growth rate, which is itself determined

by the optimal alternative. This self-reference is not necessary, serving only to provide a

convenient and familiar description of the preferences for which evolution selects. The evo-

lutionary criterion is clear: a reproductive profile (x1, . . . , xT ) is better than (x̂1, . . . , x̂T )

if and only if the Leslie matrix associated with the former has a larger dominant eigen-

value. This gives us a complete and unambiguous ranking of reproductive profiles, one

that can be checked without reference to the optimal choice. However, there is no explicit

11This is a rearrangement of ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sx1 − φ S 0 . . . 0

Sx2 −φ S . . . 0
...

...
...

...

SxT−1 0 0 . . . S

SxT 0 0 . . . −φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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functional form capturing this ranking, whereas the growth rate associated with the best

profile gives us an explicit and simple way (in the form of (4)) of describing preferences.

We can move closer to our objective of talking about intertemporal trade-offs by

extracting marginal rates of substitution from (4) of the form:

(5) −dxτ+1

dxτ
= Φ.

Intuitively, an agent should be willing to forego current offspring only if the return is Φ

as many offspring next period. Marginal rates of substitution between xτ+1 and xτ are

independent of τ and independent of the magnitudes of xτ+1 and xτ .

Equivalently and perhaps more informatively, we can capture the preferences repre-

sented by (4) in a utility function of the form:

(6) U(x1, . . . , xT ) =
T∑
τ=1

Φ−(τ−1)xτ =
T∑
τ=1

e−(lnφ−lnS)(τ−1)xτ .

The agent thus discounts exponentially at the rate ln Φ, that is, at the sum of the popu-

lation growth rate (lnφ) and the death rate (− lnS).12 This exponential discounting has

an intuitive interpretation. As one delays a birth, one falls behind the rest of the popu-

lation at rate ln Φ, since one’s death occurs at rate − lnS and the rest of the population

is growing at rate lnφ. The delay must then be compensated by an increment in births

sufficient to balance these losses.

The finding that evolution will select for a discount rate equal to the sum of the growth

and death rates echoes a long-standing view to which we alluded in the introduction,

namely that discounting is at least partly motivated by the possibility of an intervening

death. Perhaps surprisingly, however, the resulting discount rate is independent of the

death rate (for a fixed fertility profile). An increase in the death rate would simply prompt

a compensating decrease in the population growth rate, leaving their sum, and hence the

discount rate, unchanged. We see this in (5), giving marginal rates of substitution equal

to Φ, which (4) reveals to be determined by the fertility rates (x1, . . . , xT ) only.

12We can write the survival probability from one period to the next as S = e−δ, where δ is the

continuously compounded death rate, and then take logs to express the death rate as δ = − lnS.
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In the environment described by this simple model, we would observe only one equi-

librium profile (x1, . . . , xT ), from which we could infer marginal rates of substitution and

hence discount factors (via (4) and (5)). How might we reconcile the model with the

wide variety of choices we actually see people making? Suppose that newborn agents

are independently (across time and agents) assigned a feasible set XT ⊂ <T+ of possible

reproductive profiles from which they must choose.13 Some agents may find themselves in

more favorable circumstances than others, with correspondingly more favorable prospects

for reproduction. A reproductive strategy would now be not simply a profile (x1, . . . , xT ),

but rather a vector of such profiles, one for each of the possible feasible sets, allowing

evolution to tailor the agent’s reproductive profile to the appropriate feasible set. An

agent would be characterized by such a vector of reproduction profiles, with this entire

vector being heritable across generations. Each such vector gives rise to an “average”

growth rate Φ, where this average is taken over the collection of feasible sets with which

agents might be faced. Evolution will select for the vector of reproductive profiles that

gives the highest average growth rate. We would then observe a potentially vast variety of

behavior, but a straightforward calculation shows that all of the resulting choices would

be consistent with preferences that are again described by (4) (applied to the appropriate

feasible set in each case), with the common value of Φ now being the average population

growth rate corresponding to the optimal vector of reproductive profiles. We could again

infer that marginal rates of substitution are given by (5) and the utility function by (6).

2 Aggregate Uncertainty

We now examine the case of aggregate uncertainty. There are a number of ways such

uncertainty might matter, but we focus on the particularly salient possibility that death

rates may have a common component across individuals. Perhaps a particularly severe

winter or dry summer decreases all survival probabilities, or a good growing season for

food or an epidemic among predators increases them. On top of this, we will then also

13Robson, Szentes and Iantchev (2005)) develop a similar approach.
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allow these aggregate fluctuations to have varying effects on agents of different ages. An

infestation of predators may especially affect younger agents, for example, or an epidemic

may disproportionately affect older agents.

2.1 Why does aggregate uncertainty matter?

Why does it make a difference whether uncertainty is aggregate or idiosyncratic? It is

helpful here to consider the model of Robson (1996), in which the population has a trivial

age structure. Agents survive from age zero to age one with probability S. At age one

they have x expected offspring and then die. With purely idiosyncratic uncertainty, the

population size N(t) in period t is given by

N(t) = (Sx)N(t− 1) = (Sx)tN(0).

Hence the growth rate is lnSx (and Sx is the dominant eigenvalue φ of the trivial Leslie

matrix [Sx]).

Now suppose that instead of a fraction S of the agents surviving from age 0 to age

1, an independent random draw in each period determines whether all agents survive

or all perish, with the probability of survival being S. This shift from idiosyncratic to

aggregate uncertainty leaves expected survival rates untouched but has a profound effect

on the population, whose fate is now eventual extinction with probability one. We have

constructed this example to be particularly simple and to give a particularly striking

result, but it is a quite general result that aggregate uncertainty gives a lower growth rate

(in an unstructured population) than does the equivalent idiosyncratic uncertainty.

2.2 Aggregate uncertainty in age-structured population

Our task now is to extend the model of aggregate uncertainty to age-structured pop-

ulations. Let S̃τ be a random variable giving the probability that an agent of age

τ ∈ {0, . . . , T − 1} survives until the next period, with mean S. Hence, we think of

each agent of age τ ∈ {1, . . . , T − 1} as first receiving a common realization S̃τ with

support contained in (0, 1], identifying the probability that this agent will survive until
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the next period, from a distribution with mean S. The agent then takes an idiosyncratic

draw from a Bernoulli random variable that gives survival with probability S̃τ and death

otherwise. Draws of S̃τ are independently and identically distributed over time.

The mean Leslie matrix is familiar and is given by

(7) X =



Sx1 S 0 . . . 0

Sx2 0 S . . . 0
...

...
...

...

SxT−1 0 0 . . . S

SxT 0 0 . . . 0


,

and we continue to let φ denote the dominant eigenvalue of this matrix, so that lnφ is the

population growth rate that would prevail in a population with the same mean behavior

but no aggregate uncertainty. The Leslie matrix in period t is a random variable denoted

by

(8) X̃(t) =



x1S̃0(t) S̃1(t) 0 . . . 0

x2S̃0(t) 0 S̃2(t) . . . 0
...

...
...

...

xT−1S̃0(t) 0 0 . . . S̃T−1(t)

xT S̃0(t) 0 0 . . . 0


.

Section 3 briefly explores how the the assumption of of a common idiosyncratic death

rate S across ages in (7) can be relaxed, even when there are aggregate shocks to survival

rates.

Analogously to (3), we are interested in the growth rate

lim
t→∞

1

t
lnu′X̃(1) . . . X̃(t)v,

where u and v are the eigenvectors associated with the mean Leslie matrix X. We can

interpret this as an approximation of the long-run growth rate of total reproductive value,

evaluated with the population proportions u and reproductive values v from the mean

Leslie matrix.14 This is now a product of random matrices. Not only can we not apply the

14There is no difficulty using the eigenvectors u and v from the mean Leslie matrix in this approximation
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Perron-Frobenius theorem, but it is no longer obvious that the limit exists. Fortunately,

we have the following remarkable result (first established by H. Furstenberg and H. Kesten

(1960, Theorem 2) and extended in David Tanny (1981, Theorem 7.1)):15

Proposition 1 Since −∞ < E lnu′X̃v < ∞, there exists a finite λ ∈ <++ such that,

almost surely,

lim
t→∞

1

t
lnu′X̃(1) . . . X̃(t)v = lnλ.

We refer to lnλ as the growth rate under aggregate uncertainty.

Natural selection then favors reproductive profiles that maximize the growth rate lnλ.

Once we leave the case of only idiosyncratic uncertainty, it is no longer obvious that we can

restrict attention to pure strategies. Indeed, it is well known that in populations without

an age structure, but with aggregate uncertainty, mixing may be strictly better from an

evolutionary point of view than any pure strategy (e.g., Theodore C. Bergstrom (1997) ,

W. S. Cooper and R. H. Kaplan (2004), Houston and McNamara (1999, Section 10.4) ).16

Similar forces can obviously arise in a population with an age structure. However, mixing

confers no evolutionary advantage, even in the presence of aggregate uncertainty, when

the set of pure strategies is convex and the evolutionary criterion depends only on the

of the growth rate. Proposition 1 below holds for any norm ||X̃(1) . . . X̃(t)||. We retain our assumption

that the mean Leslie matrix X is primitive. Together with the restriction that the support of S̃ is

contained in (0, 1], this ensures that asymptotically, all elements of X̃(1) . . . X̃(t) grow at the same finite

rate.
15Taking each S̃τ = 1 gives us an upper bound an u′X̃v, ensuring that we satisfy E lnu′X̃v <∞. Our

assumption that S̃τ has support contained in (0, 1] ensures that E lnu′X̃v > −∞, so the more general

sufficient condition in Tanny (1981) is satisfied.
16Consider, for example, agents who can amass either a small or large cache of food for the winter.

Building a large cache carries a higher risk of death at the hands of predators. Winters are typically mild,

with very rare harsh winters. A small cache ensures survival during a mild winter but leads to death in

a harsh winter, while a large cache ensures survival in either case. The pure strategy of always choosing

a small cache leads to extinction at the hands of the first harsh winter, while always collecting a large

cache leads to inefficiently high mortality at the hands of predators. The optimal strategy is to mix,

with most agents choosing a small cache that typically ensures survival at minimal risk, but with a few

choosing large caches to ensure someone survives a harsh winter. Similar examples can be constructed

when strategies are drawn from a continuum.
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(idiosyncratic) number of expected offspring produced at each age, as in our case. That

is, the realized Leslie matrix X̃(t) in each period t depends only on the realized survival

rates and the reproductive profile (x1, . . . , xT ). As a result, a population whose members

attached idiosyncratic probability p to reproductive profile (x1, . . . , xT ) and probability

1−p to profile (x′1, . . . , x
′
T ) would be indistinguishable from a population whose members

all chose the reproductive profile (px1 + (1 − p)x′1, . . . , pxT + (1 − p)x′T ). It thus suffices

to consider pure strategies.

Aggregate uncertainty builds risk aversion into the evolutionary selection criterion.

We see this in the example of Section 2.1, where it would be worth paying virtually any

price to avoid the possibility of zero offspring.17 Returning to our discussion in Section 1.1,

might intergenerational transfers now be useful as a way of mitigating risk? Transfers that

cannot be conditioned on the aggregate uncertainty add nothing new to the model. In this

case, transfers are again simply tools that might be used in implementing a reproductive

profile (x1, . . . , xT ), and the implications of such transfers are captured by our analysis of

reproductive profiles.

2.3 Aggregate uncertainty slows growth

Our first result is a generalization to age-structured populations of the finding that ag-

gregate uncertainty slows the population’s growth rate.18 Section 4.1 proves:

Proposition 2 Aggregate uncertainty concerning survival reduces the population growth

17This risk is effectively pooled across agents when uncertainty is idiosyncratic, leaving a risk neutral

selection criterion.
18This result depends on the assumption that the idiosyncratic uncertainty is independent across pe-

riods. For example, an environment in which the Leslie matrices X1 and X2 alternate gives a higher

population growth rate than does the mean Leslie matrix X, where

X1 =

 0 1

8 0

 X2 =

 0 1

0 0

 X =

 0 1

4 0

 .
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rate:19

λ ≤ φ.

“Generically,” the growth rate is strictly lower under aggregate uncertainty, but for excep-

tional circumstances such as all of the possible realized Leslie matrices having the same

dominant eigenvalue and associated left eigenvector. The following example illustrates

this latter possibility.

Example 1 Suppose there are two equally likely Leslie matrices, X ′ and X ′′, with mean

matrix X, given by

X ′ =

 x 1

0 0

 X ′′ =

 0 1

x2 0

 X =

 x
2

1

x2

2
0

 .
In each period, the realized Leslie matrix is independently drawn to be either X ′ or X ′′. The

mean matrix X has dominant eigenvalue x (and hence growth rate lnx), left eigenvector

u′ =
[

x
1+x

, 1
1+x

]
, and right eigenvector v =

[
2(1+x)

3x
, 1+x

3

]
. The matrices X ′ and X ′′ each

have the same dominant eigenvalue and left eigenvector. For any t, any product of the

form u′X(1)X(2) . . . X(t)v, where each X(t′) is either X ′ or X ′′, has the same value, xt.

As a result, the growth rate without aggregate uncertainty (i.e., with X(t′) = X for all t′)

matches that with aggregate uncertainty.

2.4 Common survival rates

Perhaps the most natural case to consider is that in which the aggregate shocks affect the

survival rates of all ages equally.

Proposition 3 Let the random variables S̃0, . . . , S̃T−1 be identical. Then evolution selects

for preferences under which

(9) −dxτ+1

dxτ
= Φ =

φ

S
,

19See Philip A. Curry (2001), J. H. Gillespie (1973), and Houston and McNamara (1999, Chapter 10)

(as well as Robson (1996)) for similar results for the case of T = 1.
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and hence for discounting at the sum lnφ− lnS of the growth rate and death rate of the

mean Leslie matrix.

As before, φ and S are the dominant eigenvalue and survival probability associated with

the mean Leslie matrix (7). Comparing with (5), we thus see that aggregate uncertainty

in death rates has no effect on marginal rates of substitution, and hence discounting. At

the same time, it decreases the growth rate if the random variables S̃τ are nondegenerate

(to lnλ < lnφ; cf. Proposition 2). Under aggregate uncertainty, the discount rate will

thus exceed the sum of the actual growth rate and the death rate associated with mean

survival.

Proof. Let S̃(t) denote the common realization in period t of the random variables

S̃0, . . . , S̃T−1. Then, almost surely

lnλ = lim
t→∞

1

t
ln
(
u′X̃(1) . . . X̃(t)v

)
= lim

t→∞

1

t
ln

(
S̃(1)

S
. . .

S̃(t)

S
u′X tv

)

= lnφ + lim
t→∞

1

t
ln

(
S̃(1)

S
. . .

S̃(t)

S

)
= lnφ− lnS + E ln S̃.(10)

Since the fertilities (x1, . . . , xT ) appear only in lnφ, the arguments of Section 1.3 ensure

that evolution will select for marginal rates of substitution given by (9).20

Intuitively, shocks that are common across ages distort none of the intertemporal

trade-offs captured by the marginal rate of substitution. The marginal rate of substitution

and hence the discount rate is then fixed at the specification appropriate for the mean

Leslie matrix. Indeed, this discount rate could be obtained from a Leslie matrix with

no mortality at all, an observation used below. If the aggregate uncertainty is severe,

the growth rate λ may fall well short of φ, giving us discounting at a rate significantly

exceeding the the sum of the growth rate and the death rate associated with mean survival.

20Notice that, since ES̃ = S and hence E ln S̃ < lnS, we have lnλ < lnφ, in accordance with

Proposition 2.
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Hence, as long as our ancestral environment featured aggregate uncertainty, there is no

puzzle in our having evolved to have discount rates higher than can be justified on the

basis of the long-run average population growth rate and the death rate associated with

mean survival.

Gurven and Kaplan (2007, pp. 345–348) note that contemporary hunter-gatherer

groups often exhibit annual growth rates in excess of two percent, considerably higher

than the approximately zero growth rate that prevailed over the vast bulk of our evolution-

ary history. They suggest two explanations. First, contemporary hunter-gatherers may

not reflect our evolutionary past. Second, population dynamics may exhibit a saw-tooth

pattern, with intermixed periods of relatively strong growth and occasional and perhaps

quite rapid population crashes, and with the former bound to be disproportionately rep-

resented among contemporary data. As long as the population crashes are evolutionarily

neutral, and so do not change the population age structure, this argument is formalized

and generalized by the model presented in this section. The rare and rapid population

crashes could keep long-term growth rates hovering near zero, while the marginal rate of

substitution would be adapted to the mean Leslie matrix.

To get an idea of the numbers involved, we need an idea of the upper bound on

human growth rate, i.e., an idea of how fast a population would grow in the absence of any

mortality. Suppose that individuals start reproducing at age 15 and stop at age 45, that

the probability of giving birth in a given year is 0.15, and that here is no death risk before

age 45. With the exception of the absence of death before the end of one’s reproductive

age, these numbers are reasonably consistent with observations of contemporary hunter-

gatherers.21 We can ignore the risk of death on the strength of the previous observation

21Kim Hill and A. Magdalena Hurtado’s (1996, Chapter 8, especially Table 8.3) study of the Ache

suggests a prime-age birth probability of 0.15 per year. (We cut the birth probabilities reported there in

half. The 0.15 then represents the probability of a female birth, providing a valid comparison with our

model of asexual reproduction.) Kendra McSweeney and Shahna Arps (2005, especially p. 14) survey

indigenous populations in lowland Latin America who are recovering from prior catastrophic declines

with rapid population growth. They find total fertility rates (roughly, the number of children born to a

woman over the course of her child-bearing years) between 3.9 and 10.5, with a median of 7.9. A total

fertility rate of 9, somewhat near the upper end of this range, coupled with a thirty-year reproductive
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that an increased death risk would only prompt a compensating decrease in the growth

rate, leaving the discount rate unchanged. From (4), the implied dominant eigenvalue

is the solution to 1 =
∑45

τ=15
(0.15)
φτ , which yields φ = 1.05675 and hence a growth and

discount rate of lnφ = 0.055.

If this discount rate is the product of an evolutionary past featuring aggregate un-

certainty and a zero growth rate, then we must have, from (10),

0 = lnλ = lnφ− lnS + E ln S̃ = 0.055 + E ln S̃,

where the second equality gives the realized growth rate as the difference between the

discount rate (lnφ− lnS) and expected log of the random survival probability. The final

equality inserts our discount rate of 0.055. For simplicity, suppose that with probability

1 − p we have an ordinary period in which the death rate is about two percent.22 With

probability p a catastrophe with a lower survival rate of S† appears. Then we have

E ln S̃ = p lnS† + (1 − p)(−0.02) = −0.055 (recalling that − lnS is the death rate).

That is, we need catastrophes to appear with probability 0.25 if 85% of the population

survives; with probability 0.1 if 70% survive; with probability 0.05 if 50% survive; or

with probability 0.015 if only 10% survive.23 To further examine the effects of aggregate

uncertainty, consider this last possibility. Each agent faces a compound survival lottery

featuring a 10% chance of survival with probability 0.015 and a 98% chance of survival

with probability 0.985. The mean survival rate is thus 0.9668, with a corresponding

continuous death rate of 0.034. If all this risk were idiosyncratic, the population would

still grow at about two percent. It is the aggregate nature of the uncertainty that brings

the growth rate down another two percent, to zero.24

span (see McSweeney and Arps (2005, p. 15) and especially Hill and Hurtado (1996, Table 8.3)), gives a

yearly birth probability of 0.3. Halving this to account for our asexual model again gives us 0.15.
22Recall that Gurven and Kaplan (2007, pp. 330–3341) estimate that annual mortality rates ranged

from one percent for ten-year-olds to four percent for sixty-year-olds.
23Though direct evidence is scarce, it seems inevitable that the ice ages would have caused sharp drops

in primitive human population levels.
24In contrast, the catastrophic aggregate uncertainty we are discussing here makes little difference if the

catastrophes are frequent and mild. Idiosyncratic survival lotteries featuring an 85% chance of survival
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These calculations bring us from the discount rates of a few percent implied by a

model with only idiosyncratic uncertainty to discount rates between five and six percent.

This still does not bring us to the ten percent rates of Andersen, Harrison, Lau and

Rutström (2008). It is significant here that estimates of the pure rate of time preference

derived from actual behavior are often lower than estimates derived from experimental

data, sometimes coming closer to our rough calculation of five to six percent (e.g., Robert

H. Litzenberger and Cherukuri U. Rao (1971, Tables 1 and 2)).

Once again, we have a model with the rather counterfactual prediction that we should

observe only a single reproductive profile. As is the case under idiosyncratic uncertainty,

we can suppose that newborn agents are independently (across time and agents) assigned

a feasible set XT ⊂ <T+ of possible reproductive profiles from which they must choose.

An agent is again characterized by a vector of reproduction profiles, one for each possible

feasible set, with this vector being heritable across generations. Evolution will select for

the vector of reproductive profiles that gives the highest average growth rate, inducing a

variety of reproductive profiles each of which would be consistent with preferences that

are described by (4) (applied to the appropriate feasible set in each case), with Φ now

being the average population growth rate.

2.5 Imperfectly correlated survival rates

We now turn to the case in which fluctuations in the aggregate environment have po-

tentially different effects on the survival of different ages. In doing so, our attention

turns from the level to the pattern of discounting. Our general finding is that imper-

fectly correlated survival rates push marginal rates of substitution away from exponential

discounting. The nature of the departure from exponential discounting depends on the

precise nature of the aggregate uncertainty. We first explore a plausible case that gives

rise to a present bias.

with probability 0.25 and a 98% chance of survival with probability 0.75 give a mean survival rate of

0.95, and hence a death and discount rate of 0.0543. That the first state of this compound lottery is

aggregate has virtually no effect on discount rates.
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We model survival rates as being affected by relatively small age-specific perturba-

tions around an age-independent common shock. There are elements of preference and

constraint mixed in this choice. We are more convinced that our evolutionary environ-

ment exhibited significant and correlated fluctuations in death rates than we are that

these death rates exhibited any particular pattern across ages. We thus find appealing

a model that incorporates both possibilities while emphasizing the former. In addition,

our focus on small age-specific perturbations allows us to use a convenient approximation

method as the basis for the analysis, while there are no general methods for examining

our questions in the presence of large age-specific perturbations.

As before, a random variable S̃(t) is drawn in each period t, identically and inde-

pendently distributed over time, with support contained in (0, 1) and with mean S. In

the proportion 1 − ε of the population, each individual then receives an idiosyncratic

draw giving survival with probability S̃ and death otherwise. In addition, random vari-

ables (Ŝ0, . . . , ŜT−1) are also drawn each period, again identically and independently dis-

tributed over time, with S̃ + Ŝτ having support contained in (0, 1].25 For the remaining

ε proportion of the population, each agent of age τ then obtains an idiosyncratic draw

giving survival with probability S̃+ Ŝτ and death otherwise. The random variable S̃(t) is

thus relevant for the entire population and is the counterpart of the common survival-rate

fluctuations examined in Section 2.4. The random variables (Ŝ0, . . . , ŜT−1) overlay these

common shocks with age-specific survival-rate perturbations. The larger is ε, the greater

is the variation across ages in the aggregate death rate. We consider the case of small

ε and hence small age-specific aggregate shock. There is no restriction that the shock S̃

common to all ages is small, and no restriction on the idiosyncratic uncertainty.

We find that the discount rate is no longer constant over time. Given our restriction

of our analysis to small values of ε, and hence small departures from common death-rate

fluctuations, we can infer only that discount rates will depart slightly from constancy.

However, discount rates may well exhibit more pronounced variations when age-specific

25More precisely, the random variables S̃(t) and Ŝτ (t′) for all t, t′ = 1, 2, . . . and τ = 1, . . . , T are

independent, except that the Ŝτ (t′) need not be independent across τ for a given t′.
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survival rate fluctuations are larger.

We now write the realized Leslie matrix for period t as

(11) Z̃(t) = X̃(t) + εH̃(t),

where X̃(t) is the commonly perturbed Leslie matrix as in (8), under the assumption that

the S̃τ are identical, and H̃(t) is the perturbation matrix

(12) H̃(t) =



x1Ŝ0(t) Ŝ1(t) 0 . . . 0

x2Ŝ0(t) 0 Ŝ2(t) . . . 0
...

...
...

...

xT−1Ŝ0(t) 0 0 . . . ŜT−1(t)

xT Ŝ0(t) 0 0 . . . 0


.

Each of the random variables in the matrix H̃(t) has a zero mean. Our analysis is

based on the following approximation (cf. S Tuljapurkar (1990, Chapter 12)):

Proposition 4 Suppose the matrices H̃(t) in (11) are independent across periods and

have a zero expected value. Then, almost surely,

lim
t→∞

1

t
lnu′Z̃(1) . . . Z̃(t)v

= lnφ− lnS + E ln S̃ − ε2

2φ2E

(
S

S̃

)2

E{(u′H̃v)2}+O(ε3).(13)

Section 4.2 presents the proof.

The expression for the growth rate given by (13) contains some familiar terms. The

first three terms give us the growth rate under purely common survival-rate perturbations

(cf. (10)). The term E{(u′H̃v)2} is the variance of the growth factor of total reproductive

value, evaluated in the long run using the population proportions u and reproductive

values v derived from the mean Leslie matrix. When perturbations to survival rates vary

by age, the growth rate is thus that which would prevail without such variation, minus a

“variance penalty.”26

26Revisiting some previous points, it is immediate that E{(u′H̃v)2} ≥ 0, and hence that introducing
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2.5.1 Marginal rates of substitution

When aggregate effects on survival vary across ages in a symmetric way, marginal rates

of substitution decline over time:

Proposition 5 Suppose the random variables (Ŝ0, . . . ŜT−1) share common variance V

and common covariance C of any pair. Then for sufficiently small ε, the marginal rate

of substitution is decreasing in τ , i.e.,

−dxτ+1

dxτ
≥ −dxτ+2

dxτ+1

,

strictly so if xτ+1 > 0 and C < V .

The random shocks Ŝτ to the survival probabilities may range from being independent

across agents (C = 0) to being perfectly correlated (C = V ) (notice that, necessarily,

C ≤ V ). As long as the aggregate shocks are not perfectly correlated across ages, marginal

rates of substitution are decreasing in τ , i.e., intertemporal preferences exhibit a present

bias.

The common-variance and common-covariance assumptions are sufficient but not

necessary for this result. It is clear that this present bias will continue to obtain as

long as the distributions of the various aggregate shocks are not too dissimilar. Indeed,

the method of proof can be applied to ascertain the implications of any configuration of

distributions, though with possibly much more tedious calculations.

The most striking aspect of Proposition 5 is that a present bias emerges despite the

complete symmetry of the aggregate age-specific survival shocks. These aggregate shocks

have independent and identical distributions across periods, and within periods have iden-

tical (and possibly independent) distributions across ages, but still induce asymmetries

in discounting across ages. Alternative considerations that might lie behind nonexponen-

tial discounting, such as age-dependent idiosyncratic death rates or the time structure of

variation in the effects of aggregate uncertainty across ages cannot increase the population growth rate.

Independence across τ of the Ŝτ (t) involved in the construction of H̃ is one formulation ensuring that

E{(u′H̃v)2} > 0 and hence that variation in aggregate uncertainty slows growth. In Example 1, we have

X̃(t) = X for all t, H(t) equals either X ′ or X ′′, ε = 1, E ln S̃ − lnS = 0 and E{(u′Hv)2} = 0.
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the technology transforming consumption into fertility, rely on asymmetries across ages

for their effects. A new insight derived from the study of aggregate uncertainty is that

nonexponential discounting can arise in a setting devoid of temporal asymmetries.27

2.5.2 Why not exponential?

What lies behind these results? Suppose there is aggregate uncertainty only in one survival

rate Sτ , so that survival from age τ to τ + 1 is uncertain. For much the same reason that

aggregate uncertainty reduces the growth rate in a single-age population (cf. Section 2.1),

this reduces the value of period-τ ′ births, for all τ ′ > τ . As a result, the discount rate

between periods τ and τ + 1 is increased, since it now takes more period-τ + 1 births

to counteract a given decrease in period-τ births. (Section 4.3 illustrates this claim.)

However, marginal rates of substitution between other adjacent periods are unaffected.

The marginal rate of substitution thus falls as we move beyond period τ , introducing a

present bias. At the same time, the marginal rate of substitution between periods τ and

τ + 1 is now higher than the marginal rate of substitution in earlier periods, pushing

discounting away from a present bias. We must in general consider aggregate uncertainty

in more than one survival rate, leading to contending forces.

To strip away some of the complication, suppose that there are only three age classes

(T = 3) and that S̃ = S ∈ (0, 1) with probability one, so there is no common component

to the aggregate survival shocks. Then applying (13) and then (4), we can calculate

(Section 4.3 provides details),

lnλ = lnφ− ε2u2
1v

2
1

2S2

[
V0 +

V1

Φ2

(x2

Φ
+
x3

Φ2

)2

+
V2

Φ4

(x3

Φ

)2
]

= ln
[
x1 +

x2

Φ
+
x3

Φ

]
+ lnS − ε2u2

1v
2
1

2S2

[
V0 +

V1

Φ2

(x2

Φ
+
x3

Φ2

)2

+
V2

Φ4

(x3

Φ

)2
]
,(14)

where Vτ is the variance of the aggregate shock to the period-τ survival rate. This ex-

27To be more precise, our age-specific aggregate shocks are “exchangeable” (cf. William Feller (1971,

pp. 228–230)). The terminal age T effectively builds aging into our model, but this is not the source

of the present bias, since the effect would still arise if we worked without such an upper bound and an

infinite sequence of positive fertilities xt.
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pression immediately suggests that exponential discounting is not to be expected.28 The

important question is: Given V0 = V1 = V2 = V > 0, how do the contending forces

introduced by the aggregate shocks to the various survival rates combine to affect the

marginal rates of substitution −dx2/dx1 and −dx3/dx2?

To be more precise, let us further simply by (innocuously) assuming Φ = 1, giving

(15) lnλ = lnφ− ε2u2
1v

2
1V

2S2

[
1 + (x2 + x3)2 + (x3)2] .

The growth rate lnλ depends on the various xτ in a number of implicit ways (e.g., through

v1). However, these implicit dependencies alone generate a constant discount rate. Depar-

tures from exponential discounting hinge on the explicit appearances of the xτ in (14).29

Taking the relevant derivatives and using the fact that the xτ enter terms of order ε2

(i.e., ignoring higher-order terms in ε), we find that if the term in brackets in (15) were

linear, of the form 1 + x2 + x3 + x3, then the effect of increasing x2 would be one half the

effect of increasing x3, which would in turn be consistent with exponential discounting

(cf. Section 4.3). However, since the bracketed term is 1 + (x2 + x3)2 + (x3)2 (with the

squares reflecting its origin as a variance), the effect of increasing x2 > 0 is more than one

half the effect of increasing x3, causing the discount rate to fall as we move away from

the present.

2.6 Robustness

Our first message was that aggregate uncertainty drives a wedge between discount rates

and the sum of the population growth and mortality rates. On top of this, we have now

seen that aggregate uncertainty can push discounting away from the exponential pattern

28The first term in (14) gives the growth rate that would prevail without age-dependent mortality

perturbations. The fertilities x1, x2, and x3 appear here, with each xτ divided by Φτ−1. As we have

seen, these terms alone give us constant marginal rates of substitution (equalling Φ) and hence constant

discount rates. The final term, arising out of the variance penalty, again includes the fertilities x1 x2 and

x3, but now divided by various powers of Φ. Once we mix these powers with the regular relationship

between xτ and Φτ−1 of the initial term, we cannot expect constant marginal rates of substitution.
29Section 4.3 sketches a proof of these observations.
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of discounted expected utility. How robust is the result that discount rates are pushed in

the direction of a present bias?

The building block for our analysis, that age-specific aggregate uncertainty only in

the survival rate Sτ increases the discount rate between periods τ and τ + 1, is quite

general. However, the combined effects of age-specific perturbations to multiple ages are

more fragile. Our present bias result rests on two assumptions, namely that perturbations

to survival rates that are not common across ages are relatively small and are symmetric

across ages. This strikes us as a natural setting, fueled by the belief that environmental

fluctuations affecting survival rates are likely to be felt across all ages.

However, two examples illustrate how different specifications can lead to different

results. Robson and Samuelson (forthcoming) present an example, with age-specific per-

turbations that are no by means small, in which the optimal discount rate between any

pair of ages is zero, no matter what the population growth rate and death rate.30 The

present section explores another departure from our maintained assumptions that leads

to a future bias, i.e., to marginal rates of substitution that increase as one moves away

from the present.

Suppose that newborns whose parents are of different ages have different infant

mortality rates. For example, older parents may be larger and better able to nourish

themselves, in turn allowing them to produce larger or better-nourished offspring (cf.

Charlesworth (1994, Chapter 5)). If these infant mortality rates were idiosyncratic, there

would be no difficulty in simply folding them into the values xτ , with no other change in

the analysis. However, the case that these newborn survival rates are subject to aggregate

uncertainty requires a new analysis.

To isolate the effects of this uncertainty, we assume that S̃(t) is degenerate, that there

is no aggregate randomness in other survival rates, and that parent age has no impact

lasting beyond infant mortality. We can again write the realized Leslie matrix for period

t as in (11), with X̃(t) given by X from (7) for each t and with the perturbation matrix

30The discount rate is thus constant across ages in this example, but its magnitude is nonetheless

surprising.
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H̃(t) now given by

(16)



x1Ŝ1(t) 0 0 . . . 0

x2Ŝ2(t) 0 0 . . . 0
...

...
...

...

xT−1ŜT−1(t) 0 0 . . . 0

xT ŜT (t) 0 0 . . . 0


,

where each of the random variables Sτ in the matrix H̃(t) again has a zero mean. We

have:31

Proposition 6 Let x1 = x2 = . . . = xT ≡ x. Let (Ŝ1(t), . . . , ŜT (t)) share common

variance V and common covariances C. Then for small ε, the marginal rate of substitution

is increasing in τ , i.e.,

−dxτ+1

dxτ
≤ −dxτ+2

dxτ+1

,

strictly so if Φ 6= 1 and C < V .

Though we find the model of age-specific aggregate survival rates of Section 2.5.1 the

most natural of those we have considered, it is clear that the present bias of Proposition

5 is not universal. Notice, however, that here again we have agents who are pushed

away from exponential discounting despite aggregate shocks that are symmetric across

ages—the aggregate shocks of Proposition 6 have independent and identical distributions

across periods, and within period have identical (and possibly independent) distributions

across parental ages. Our robust finding is thus that aggregate uncertainty per se can

push preferences away from exponential discounting, with the nature of the departure—

whether present bias, future bias, or possibly something more complicated—depending

upon details of the aggregate uncertainty.

31This result examines a symmetric setting in which x1 = x2 = . . . = xT ≡ x. When uncertainty is

idiosyncratic, the marginal rate of substitution between xτ and xτ ′ is independent of the levels of xτ and

xτ ′ (cf. (5)), but this need no longer be the case with aggregate uncertainty. Setting x1 = x2 = . . . =

xT ≡ x is the obvious way to isolate systematic preferences over timing.
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3 Discussion

Present bias. We have found that evolutionarily-induced intertemporal preferences

may exhibit a present bias. However, the preferences in our model do not generate

preference reversals. The marginal rate of substitution between xτ+1 and xτ may decline

in τ , but this decline is linked to age and not to time relative to the present. A trade-off

between x9 and x10 that confers evolutionary advantages when made at age 1 will still

confer such advantages when made at age 5 or at age 9. A 1-period-old will accordingly

make intertemporal choices that cannot be rationalized by exponential discounting, but

will not reverse those choices later.

We are not disappointed that the model does not generate preference reversals. We

think present bias may well be a more basic phenomenon than preference reversals, and

it seems more readily generated by evolutionary optimization.32 More importantly, our

analysis suggests that we can expect discount rates to vary systematically with age, ad-

dressing intertemporal choices over longer spans of time than those typically covered in

preference-reversal experiments. In contrast to most models of age-dependent discount-

ing, these variations do not reflect changes in the death rate. Hence, a present bias arising

out of aggregate uncertainty could offset increasing impatience arising out of increased

mortality, thus providing a possible explanation for the surprising patience of older indi-

viduals found in some studies. David M. Bishai (2004), for example, finds evidence from

wage differentials that the rate of time preference declines with age.33

Dasgupta and Maskin (2005) and Sozou (1998) also present evolutionary models

leading to a present bias in discounting, including in Dasgupta and Maskin’s case the

prospect of preference reversals. The force driving discounting in both models is the

prospect that an opportunity for future consumption may disappear before it can be re-

32Simply because it is inconsistent with exponential discounting, present bias per se is sometimes

considered anomalous (as in Frederick, Loewenstein and O’Donoghue (2002) and Richard H. Thaler

(1981)). More typically, it is assumed that a present bias must imply preference reversals.
33Eric Bettinger and Robert Slonim (2007) provide complementary evidence on the impatience of

children. Declining impatience among children could reflect decreasing mortality, but this factor alone

would imply rising impatience among adults.
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alized. A source of future food may be seized by a hungry rival or access blocked by a

predator.34 We have no doubt that uncertainty is an important element of intertemporal

decision making, but have two compelling reasons for not proceeding in a similar fash-

ion. First, these models assume that the basic evolutionary goal is to maximize total

undiscounted consumption. In contrast, we derive the appropriate basic goal from a more

primitive analysis of population growth rates. Indeed, our analysis suggests that future

consumption will be discounted even if there is no uncertainty at all. Second, we wish to

maintain the conventional dividing line between our preferences and the feasible sets over

which these preferences are defined. Dasgupta and Maskin suppose, on the other hand,

that evolutionarily important feasibility considerations were built into our preferences, so

that contemporary choices between goods are evaluated as if they are choices between

their uncertainty-adjusted evolutionary equivalents. Evolution may have have endowed

us with such preferences, but it is important to check whether such a hypothesis is nec-

essary in explaining our intertemporal behavior. Our inclination is accordingly to begin

by examining discounting over consumption opportunities that are not subject to risk,

allowing us to isolate rates of time preference.

Generalizations. Our analysis is based on an age-independent mortality rate. How-

ever, we would expect mortality to vary systematically over one’s life span, especially near

the beginning and end. We would then expect these variations to induce age-dependent

discount-rate patterns beyond those appearing in our constant-death-rate model, tending

to increase discounting among young children—who act as if there is no tomorrow—and

34Discounting is then pushed toward a present bias by the prospect of learning about the hazard rate at

which the consumption opportunity disappears (in Sozou (1998)) or by the prospect that the consumption

opportunity may arrive early (in Dasgupta and Maskin (2005)). Karl Wärneryd (2007) presents an

alternative model of presently-biased discounting based on intergenerational transfers, noting that with

sexual reproduction one typically expects a child to carry a copy of one’s genes with probability 1
2 and a

grandchild to do so with probability 1
4 , and that a tendency to select mates from somewhat interrelated

groups can push this exponential sequence toward a present bias.
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the elderly, reflecting then the typical human U-shaped mortality pattern.35

Our analysis provides the basic tools for examining age-dependent survival rates.

Suppose that a life history now consists of a profile (x1, . . . , xT ) of expected offspring and

a profile (S0, . . . , ST−1) of survival probabilities. Then, analogous to (4), the dominant

eigenvalue of the Leslie matrix is given by

(17) 1 =
S0x1

φ
+
S0S1x2

φ2 +
S0S1S2x3

φ3 + . . .+
S0 · · ·ST−1xT

φT
.

Notice first that taking S ′τ = S for all τ and x′τ = S−τS0S1 · · ·Sτ−1xτ for any S ∈ (0, 1)

gives an equivalent system with an identical growth rate. As a result, we come immediately

to Section 1.1’s observation that any analysis in which idiosyncratic survival rates vary

by age can be translated into an equivalent analysis with identical survival rates. Next,

it follows from (17) that marginal rates of substitution are given by

−dxτ+1

dxτ
=

φ

Sτ
.

This gives us the expected result that marginal rates of substitution will be higher when

survival rates are lower. Turning to the case of aggregate uncertainty, we can think of

the survival rates in (8) as being given by products Sτ S̃τ (t), allowing us to reformulate

and extend Propositions 1–4 to a combination of arbitrary age-dependent idiosyncratic

shocks with multiplicative aggregate shocks. There is thus considerable scope for pushing

our model beyond its current focus to capture other considerations.

Implications. If our evolutionary model of discounting is on the right track, what sorts

of behavior should we expect to see? First, we should not be surprised if discount rates

exceed the sum of growth rates and death rates, with the gap being larger the more

important was aggregate uncertainty in our evolutionary environment. In addition, we

should not be surprised if discount rates are not constant. We have considered only small

variations in survival rates across ages, giving rise to concomitantly small departures from

35At the same time, intergenerational transfers may well blunt the increases in discounting that would

otherwise appear once one passes reproductive age, by allowing indirect ways of enhancing effective

reproduction by pushing resources into the future.
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exponential discounting. Larger variations in death rates across ages might well rise to

larger effects on discount rates.

Next, the role of mortality risk, long considered central in discounting, is more subtle

than it first appears. Different populations that have equivalent fertility patterns and

different death rates may well nonetheless exhibit identical discount factors. In our sim-

ple model, with arbitrary patterns of idiosyncratic uncertainty and uniform aggregate

mortality shocks, any change in the death rate is matched by a corresponding change in

the growth rate, leaving discount rates untouched. However, variations in death rates

across agents within a given population, and hence within agents whose discount rates

are shaped by the same population growth rate, should be directly reflected in discount

rates.36

Perhaps most importantly, our analysis provides yet another indication that idiosyn-

cratic and aggregate uncertainty can have quite different effects, and hence may enter our

preferences quite differently. A standard finding in psychological studies of risk attitudes

is that a feeling of control is important if inducing people to be comfortable with risk.37

Risks arising out of situations in which people feel themselves unable to affect the outcome

cause considerably more apprehension than risks arising out of circumstances people per-

ceive themselves to control. Why might this be the case? The first task facing evolution

in an attempt to induce different behavior in the face of idiosyncratic and aggregate risks

is to give us a way of recognizing these risks. “Control” may be a convenient stand-in for

an idiosyncratic risk. If so, then our seemingly irrational fear of uncontrolled risk may be

a mechanism inducing an evolutionarily rational fear of aggregate risk.

36Margo Wilson and Martin Daly (1997) report that women in Chicago neighborhoods with higher

mortality rates tend to reproduce earlier, consistent with the higher discount rates that such mortality

rates may induce.
37See Paul Slovic, Baruch Fischhoff and Sarah Lichtenstein (1982) for an early contribution to this

literature and Slovic (2000) for a more recent introduction.
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4 Appendix

4.1 Proof of Proposition 2

Let X be the mean Leslie matrix and let N(t) be the associated population process. Let

X̃(t) be the period-t matrix under aggregate uncertainty, drawn independently across

periods and satisfying −∞ < E lnu′X̃v <∞, with

E{X̃(t)} = X.

Let Ñ ′(t) be a random vector describing the size of each age class in the population at time

t under aggregate uncertainty and N ′(t) its counterpart under the mean Leslie matrix X.

Our first observation is that

E{Ñ(t)} = N(t).

To see this, notice first that we have

E{Ñ ′(1)} = E{N ′(0)X̃(1)} = N ′(0)X = N ′(1),

with the penultimate inequality following from the fact that each element of X is the

expected value of the corresponding element in X̃. Now we construct an argument by

induction. Suppose E{N ′(0)X̃(1) · · · X̃(t− 1)} = N ′(0)X t−1. Then

E{Ñ ′(t)} = E{N ′(0)X̃(1) · · · X̃(t)} = E{N ′(0)X t−1X̃(t)} = N ′(0)X t = N ′(t),

where the second equality follows from the induction hypothesis and the fact that every

random variable in the period-t Leslie matrix X̃ is independent of the random variable in

the Leslie matrices for periods 1, . . . , t − 1, and the next equality again follows from the

fact that each term in X is the expected value of the corresponding term in X̃.

This gives E{Ñ(t)} = N(t) and hence E{Ñ ′(t)v} = N ′(t)v, where v is the right

eigenvector of X. We can then apply Jensen’s inequality to show that this expectation

is never higher under aggregate uncertainty than under the corresponding deterministic

process:
lnN ′(t)v

t
=

lnE{Ñ ′(t)v}
t

≥ E{ln Ñ ′(t)v}
t

.
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The inequality is strict if the distribution of Ñ(t) is nondegenerate.38 The argument is

completed by noting that the long-run average growth rate under the mean matrix is

limt→∞
lnN ′(t)v

t
and under aggregate uncertainty is limt→∞{ln Ñ ′(t)v}/t, and that almost

surely limt→∞
ln Ñ ′(t)v

t
= limt→∞

E ln Ñ ′(t)v
t

(cf. Patrick Billingsley (1986, Theorem 25.12,

p. 348)).

4.2 Proof of Proposition 4

A key observation throughout the remaining proofs is that the growth rate

lim
t→∞

1

t
ln
[
u′Z̃(1) . . . Z̃(t)v

]
= lim

t→∞

1

t
E ln

[
u′Z̃(1) . . . Z̃(t)v

]
≡ Λ(ε)

is jointly analytic in the matrix elements and the perturbation parameter ε.39

Taylor’s theorem allows us to write

Λ(ε) = Λ(0) + ε
dΛ(0)

dε
+
ε2

2

d2Λ(0)

dε2
+
ε3

6

d3Λ(ε′)

dε3

for some ε′ ∈ [0, ε]. Define now the analytic function

F (t, ε) = E ln
[
u′(X̃(1) + εH̃(1))...(X̃(t) + εH̃(t))v

]
,

so that

Λ(ε) = lim
t→∞

1

t
F (t, ε)

= lim
t→∞

1

t
F (t, 0) + ε lim

t→∞

1

t

dF (t, 0)

dε
+
ε2

2
lim
t→∞

1

t

d2F (t, 0)

dε2
+
ε3

6

d3Λ(ε′)

dε3
.

38Example 1 shows that weak equality can obtain if the that different realizations of X̃ have different

identical eigenvectors and different eigenvalues.
39The first inequality, which holds almost surely, follows from Billingsley (1986, Theorem 25.12, p.

348). Analyticity is shown by David Ruelle (1979, Theorem 3.1). Note that our assumptions imply there

is an integer k > 0 such that any k-fold product of realized Leslie matrices is strictly positive. We can

then represent our population process as an infinite product of randomly chosen strictly positive k-fold

products of Leslie matrices. Taking C (in Ruelle’s notation) to be the nonnegative orthant then ensures

that Ruelle’s sufficient condition is satisfied (Ruelle (1979, p. 69).
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The second inequality follows from the analyticity of F (t, ε) and Λ(ε), which implies any

that derivative of 1
t
F (t, ε) converges to the corresponding derivative of Λ(ε).40

We now note that

dF (t, ε)

dε
= E

 ∑t
i=1 u

′
[
...H̃(i)...

]
v[

u′(X̃(1) + εH̃(1))...(X̃(t) + εH̃(t))v
]


where u′
[
...H̃(i)...

]
v is given by

u′(X̃(t) + εH̃(1))× . . .× H̃(i)× . . .× (X̃(t) + εH̃(t))v.

That is,
∑t

i=1 u
′
[
...H̃(i)...

]
v is the sum of t terms of the form u′

[
...H̃(i)...

]
v, each of

which is in turn the product of t matrices, the ith of which is the perturbation matrix

H̃(i), and the remainder of which are realized Leslie matrices of the form X̃(j) + εH̃(j)

for j 6= i. Similarly,

d2F (t, ε)

dε2
= 2E

 ∑
j>i u

′
[
...H̃(i)...H̃(j)...

]
v[

u′(X̃(1) + εH̃(1))...(X̃(t) + εH̃(t))v
]


−E


(∑

i u
′
[
...H̃(i)...

]
v
)2

([
u′(X̃(1) + εH̃(1))...(X̃(t) + εH̃(t))v

])2

 ,
with analogous notation.

Then, using the facts that u′X = u′φ, Xv = φv, EH̃(t) = 0, and that X̃(i) and X

differ in that the former involves the realized survival rate S̃(i) and the latter the mean

survival rate S, we have

1

t
F (t, 0) = lnφ+ E ln S̃ − lnS

1

t

dF (t, 0)

dε
= 0

1

t

d2F (t, 0)

dε2
= −E (u′H(1)v)2

φ2 E

(
S̃

S

)2

40See Nelson Dunford and Jacob T. Schwartz (1988, p. 228). Note that any real analytic function

can be extended on a neighborhood to a complex analytic function. This result provides an independent

proof that Λ is analytic.
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for all t, and hence in the limit as t gets arbitrarily large.

Substituting into our Taylor expansion of Λ(ε), we have

Λ(ε) = lnφ+ E ln S̃ − lnS − ε2

2
E

(
S̃

S

)2
E (u′H(1)v)2

φ2 +O(ε3).

4.3 Variances and (Non)Exponential Discounting

Set T = 3 and let S̃ = S ∈ (0, 1) with probability one, so there is no common component to

the aggregate shocks to survival. Assume also that the age-dependent aggregate shocks are

contemporaneously independent with variances V0, V1, and V2. The variance component

{(u′H̃v)} in (13) is then41

u′H̃v = [u1, u2, u3]


Ŝ0x1 Ŝ1 0

Ŝ0x2 0 Ŝ2

Ŝ0x3 0 0



v1

v2

v3


= v1

3∑
τ=1

uτxτ Ŝ0 + v2u1Ŝ1 + v3u2Ŝ2

= v1u1ΦŜ0 + v2u1Ŝ1 + v3u2Ŝ2.

Squaring and taking the expectation, using the independence of the aggregate shocks

across ages, we have42

E(u′H̃v)2 = v2
1u

2
1Φ2V0 + v2

2u
2
1V1 + v2

3u
2
2V2

= u2
1Φ2

[
V0v

2
1 + V1

v2
2

Φ2
+ V2

v2
3

Φ4

]
.(18)

If we convert the reproductive values v2 and v3 to their age-one equivalents, we find43

(19) v2 =
(x2

Φ
+
x3

Φ2

)
v1, v3 =

x3

Φ
v1,

41The last equality uses (4) and uτ = Φuτ+1.
42The second equality uses uτ = Φuτ+1.
43For example, 2-period-olds produce a total of x2 1-period-olds one period later (worth v1/Φ), and x3

1-period-olds two periods later (worth v1/Φ3).
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so that

E(u′H̃v)2 = u2
1v

2
1Φ2

[
V0 +

V1

Φ2

(x2

Φ
+
x3

Φ2

)2

+
V2

Φ4

(x3

Φ

)2
]

and the long run growth rate is given by the following expression (using (13) and the

degeneracy of S̃, and ignoring the O(ε) error term)

Λ = lnλ = lnφ− ε2

2
E
(
u′H̃v

)2

= lnφ− ε2u2
1v

2
1

2S2

[
V0 +

V1

Φ2

(x2

Φ
+
x3

Φ2

)2

+
V2

Φ4

(x3

Φ

)2
]
.

In order to find complete expressions for the derivatives of Λ with respect to x1 x2 and x3,

we must account for the dependence of the endogenous variables Φ, u1, and v1 on x1 x2

and x3. However, upon taking the derivatives, we find that only the explicit dependence

of Λ on x2 and x3 introduces a distortion away from exponential discounting.

Letting Φ = 1 is innocuous and simplifies the notation. Now, if only Ŝ2 were nonde-

generate, we would have

Λ = lnφ− ε2V2u
2
1v

2
1

2S2

[
(x3)2] ,

depressing only the partial derivative with respect to x3 and giving

−dx3

dx2

> −dx2

dx1

= Φ = 1,

so that the rate of discount increases on this account alone. Alternatively, if only Ŝ1 were

nondegenerate, we would have

Λ = lnφ− ε2V1u
2
1v

2
1

2S2

[
(x2 + x3)2] ,

depressing the partial derivatives with respect to both x2 and x3. This increases −dx2

dx1
but

can be shown to leave −dx3

dx2
constant. That is,

1 = Φ = −dx3

dx2

< −dx2

dx1

.

In the case that V0 = V1 = V2 = V , we have

Λ = lnφ− ε2u2
1v

2
1V

2S2

[
1 + (x2 + x3)2 + (x3)2] .

We have a present bias if and only if (letting dΛ/dxτ = Λτ )

Λ1

Λ2

>
Λ2

Λ3

or Λ2
2 < Λ1Λ3.
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Using the fact that the explicit dependence of Λ on x2 and x3 affects only the term of

order ε2, we can calculate that we obtain a present bias if and only if

d

dx2

[
1 + (x2 + x3)2 + (x3)2] > 1

2

d

dx3

[
1 + (x2 + x3)2 + (x3)2]

From (19), this condition is equivalent to v2 > v3, which holds as long as x2 > 0 (and

thus the condition xτ+1 > 0 in the statement of Proposition 5). Hence, when Φ = 1, the

presence of a present bias is equivalent to the condition that reproductive values decline

with age. This decline in turn reflects the fertility x2 available to a two-period-old agent

that is lost to a three-period-old agent. An analogous but slightly more complex argument

yields the same unambiguous result when Φ 6= 1.

4.4 Proof of Propositions 5 and 6

We begin with a general structure that provides the foundation for the proof of Proposi-

tions 5 and 6. Let the perturbation matrix H(t) be given by

x1Ŝ1(t) Ŝ1 0 . . . 0

x2Ŝ2(t) 0 Ŝ2 . . . 0
...

...
...

...

xT−1ŜT−1(t) 0 0 . . . ŜT−1

xT ŜT (t) 0 0 . . . 0


.

The random variables S̃(t), Ŝτ ′(t′) and Ŝτ ′′(t′′) are all independent, except that Ŝτ (t),

Ŝτ ′(t), Ŝτ ′′(t) and Ŝτ ′′′(t) need not be independent for a given t. Let Cττ ′ denote the

contemporaneous covariance between Ŝτ and Ŝτ ′ , let Cττ ′ denote the contemporaneous

covariance between Ŝτ and Ŝτ ′ , and let Cττ ′ denote the contemporaneous covariance be-

tween Ŝτ and Ŝτ ′ . To make the notation more compact, let

xτ Ŝτ ≡ Ẑτ

Ŝτ = Ẑτ .

Expanding on our previous notation, let Λ(x, ε) = limt→∞
1
t

lnu′Z(1) . . . Z(t)v. From
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Proposition 4, we can write

Λ(x, ε) = Λ(x, 0) +
ε2

2
Λεε(x, 0) +O(ε3)

Since Λ(x, ε) is analytic in (x, ε) it follows readily that the Taylor series for dΛ/dxτ (x, ε)

for each τ is of the form

dΛ

dxτ
(x, ε) =

dΛ

dxτ
(x, 0) +

ε2

2

d3Λ

dε2dxτ
(x, 0) +O(ε3)

This allows us to examine marginal rates of substitution by examining derivatives, with

respect to the xτ , of the second-order Taylor expansion of Λ(x, ε).

Expanding (13), we have

Λ = lnφ+ E ln S̃ − lnS − ε2

2φ2E

(
S

S̃

)2

E


([

T∑
i=1

uiẐi, u1Ẑ1, u2Ẑ2, . . . , uT−1ẐT−1

]
v

)2
+O(ε3)

= lnφ+ E ln S̃ − lnS − ε2

2φ2E

(
S

S̃

)2

E


(
v1

T∑
i=1

uiẐi +
T−1∑
i=1

vi+1uiẐi

)2
+O(ε3)

= lnφ+ E ln S̃ − lnS

− ε2

2φ2E

(
S

S̃

)2
v2

1

T∑
i=1

T∑
j=1

uiujxixjCij +
T−1∑
i=1

T−1∑
j=1

vi+1vj+1uiujCij + v1

T∑
i=1

T−1∑
j=1

xiuiujvj+1Cij


+O(ε3).(20)

4.4.1 Proof of Proposition 6

The proof of Proposition 6 is notationally less involved, and so we present this argument

first. From (20), we have

Λ = lnφ+ E ln S̃ − lnS − ε2

2φ2E

(
S

S̃

)2
(
v2

1

T∑
i=1

T∑
j=1

uiujxixjCij

)
+O(ε3)

= lnφ+ E ln S̃ − lnS − ε2u
2
Tv

2
1

2φ2 E

(
S

S̃

)2
[

T∑
i=1

T∑
j=1

Φ2T−i−jxixjCij

]
+O(ε3),
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where the final equality uses the fact that

u1 =
ΦT−1

ΦT−1 + . . .+ Φ + 1

u2 =
ΦT−2

ΦT−1 + . . .+ Φ + 1
...

uT =
1

ΦT−1 + . . .+ Φ + 1

Now let (again ignoring the O(ε3) error term)

DΛ

Dφ
=

1

φ
− ε2E

(
S

S̃

)2 [
uTv

2
1

φ2

duT
dφ

+
u2
Tv1

φ2

dv1

dφ
− u2

Tv
2
1

φ3

][ T∑
i=1

T∑
j=1

Φ2T−i−jxixjCij

]

− ε2 u
2
Tv

2
1

2φ2S
E

(
S

S̃

)2
[

T∑
i=1

T∑
j=1

(2T − i− j)Φ2T−i−j−1xixjCij

]
.(21)

Then we can take the derivatives

(22)
dΛ

dxτ
=
DΛ

Dφ

dφ

dxτ
+
dΛ

dv1

dv1

dxτ
+
dΛ

dxτ
.

Note that uT depends only on φ, while v1 is given by,

(23) v1 =

∑T
τ=1 Φτ

ΦT +
∑T

τ=2(τ − 1)xτΦT−τ
.

This expression for v1 follows from

v2 =
(x2

Φ
+
x3

Φ2
+ . . .+

xT−1

ΦT−2
+

xT
ΦT−1

)
v1

...

vT−1 =
(xT−1

Φ
+
xT
Φ2

)
v1

vT =
(xT

Φ

)
v1(24)

and v′u = 1.44 Hence, v1 depends both on φ and (x1, . . . , xT ). We can calculate:

44The expressions for v2, . . . , vT in terms of v1 follow from the fact that v is a right eigenvector of the

Leslie matrix. Note that v1 =
(
x1
Φ + x2

Φ2 + x3
Φ3 . . .+

xT−1
ΦT−1 + xT

ΦT

)
v1.
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dΛ

dxτ
=

DΛ

Dφ
ΦT−τ dφ

dxT
− ε2

(
dΛ

dv1

1

ε2

)
(τ − 1)ΦT−τ∑T

τ=1 Φτ

[ΦT +
∑T

τ=2(τ − 1)xτΦT−τ ]2

− ε2u
2
Tv

2
1

2φ2 E

(
S

S̃

)2
(

2
T∑
j=1

Φ2T−τ−jxjCτj

)
+O(ε3)

where we note that
(
dΛ
dv1

1
ε2

)
is of order zero. Let us now suppose x1 = x2 = . . . = xT ≡ x,

and let

α =
DΛ

Dφ

dφ

dxT
> 0.

β = −
(
dΛ

dv1

1

ε2

) ∑T
τ=1 Φτ

[ΦT +
∑T

τ=2(τ − 1)xτΦT−τ ]2
> 0

γ = x
u2
Tv

2
1

2φ2 E

(
S

S̃

)2

> 0.

Then each of these terms is of order ε0. Let

Kτ = 2
T∑
j=1

Φ2T−τ−jCτj.

We then have

dΛ

dxτ
= αΦT−τ + ε2β(τ − 1)ΦT−τ − ε2γKτ +O(ε3)

and hence, for τ ∈ 2, . . . , T − 1,

−dxτ+1

dxτ
=

dΛ
dxτ

dΛ
dxτ+1

=
αΦT−τ + ε2β(τ − 1)ΦT−τ − ε2γKτ +O(ε3)

αΦT−τ−1 + ε2βτΦT−τ−1 − ε2γKτ+1 +O(ε3)
.(25)

We have increasing marginal rates of substitution if, for τ = 2, . . . , T − 2

(26) −dxτ+1

dxτ
< −dxτ+2

dxτ+1

,

which can be verified by a straightforward but tedious calculation (details available in the

technical appendix).
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4.4.2 Proof of Proposition 5

From (20), using (23)–(24), we now have (hereafter omitting the O(ε3) term)

Λ = lnφ+ E ln S̃ − lnS

−ε
2u2
T v

2
1

2φ2 E

(
S

S̃

)2
 T∑
i=1

T∑
j=1

Φ2T−i−jxixjCij +
T−1∑
i=1

T−1∑
j=1

Φ2T−i−jkikjCij +
T∑
i=1

T−1∑
j=1

Φ2T−i−jxikjCij

 ,
where

(27) ki =
xi+1

Φ
+
xi+2

Φ2
+
xi+3

Φ3
+ . . .+

xT

φT−i
.

We conserve on notation by letting K denote the term in square brackets and hence

writing Λ as

(28) Λ = lnφ+ ES̃ − lnS − ε2u2
Tv

2
1

2φ2 E

(
S

S̃

)2

K.

The derivation of decreasing marginal rates of substitution then follows lines similar to

the proof of Proposition 6, revolving around a straightforward but tedious calculation and

comparisons of the derivatives of Λ, presented in the technical appendix.
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THE EVOLUTION OF TIME PREFERENCE

WITH AGGREGATE UNCERTAINTY

Technical Appendix: Details of Proofs

Not for publication

Equation numbers such as (17) refer to equations in the paper, while (A1) denotes

an equation in the technical appendix.

Proof of Proposition 6

We begin the argument with equations (25)–(26) of the paper. These indicate that we

have increasing impatience if, for τ = 2, . . . , T − 2,

−dxτ+1

dxτ
< −dxτ+2

dxτ+1

or

dΛ
dxτ

dΛ
dxτ+1

=
αΦT−τ + ε2β(τ − 1)ΦT−τ − ε2γKτ +O(ε3)

αΦT−τ−1 + ε2βτΦT−τ−1 − ε2γKτ+1 +O(ε3)

<
αΦT−τ−1 + ε2βτΦT−τ−1 − ε2γKτ+1 +O(ε3)

αΦT−τ−2 + ε2β(τ + 1)ΦT−τ−2 − ε2γKτ+2 +O(ε3)
=

dΛ
dxτ+1

dΛ
dxτ+2

.

For ε sufficiently small, this inequality is implied by45

ε2αΦT−τβ(τ + 1)ΦT−τ−2 − ε2αΦT−τγKτ+2

ε2αΦT−τ−2β(τ − 1)ΦT−τ − ε2αΦT−τ−2γKτ

< 2ε2αΦT−τ−1βτΦT−τ−1 − 2ε2αΦT−τ−1γKτ+1.

The terms involving β cancel one another. Then dividing by −ε2αγ, it suffices that

(A3) ΦT−τKτ+2 + ΦT−τ−2Kτ > 2ΦT−τ−1Kτ+1.

45Cross multiplication gives identical terms of order ε0 on both sides. The next largest terms, of order

ε2, are collected below.
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Dividing by ΦT−τ and substituting for K, this is

2
T∑
j=1

Φ2T−(τ+2)−jCτ+2,j + Φ−2

(
2

T∑
j=1

Φ2T−τ−jCτ ,j

)

> Φ−1

(
4

T∑
j=1

Φ2T−(τ+1)−jCτ+1,j

)
.

Recalling our assumption that each covariance is equal to C and each variance equal to

V , we see that the terms in the summation corresponding to values of j other than τ ,

τ + 1 and τ + 2 cancel. Dividing by Φ2T−τ , it suffices that

2Φ−τ−2C + 2Φ−τ−3C + 2Φ−τ−4V

+ 2Φ−τ−2V + 2Φ−τ−3C + 2Φ−τ−4C

> 4Φ−τ−2C + 4Φ−τ−3V + 4Φ−τ−4C.

Dividing by 2Φ−τ , we can rearrange to obtain the sufficient condition

2Φ−3C + Φ−4V + Φ−2V > Φ−2C + Φ−4C + 2Φ−3V.

Multiplying by Φ4, this is equivalent to

2ΦC + V + Φ2V > Φ2C + C + 2ΦV

or

V (Φ− 1)2 > C(Φ− 1)2,

and so the result follows.

Proof of Proposition 5

We begin with equation (28) of the paper, giving

Λ = lnφ+ E ln S̃ − lnS − ε2u2
Tv

2
1

2φ2 E

(
S

S̃

)2

K.

Then, analogously to (22) of the paper, we are interested in derivatives of the form (where

dΛ/dφ is derived analogously to (21)

dΛ

dxτ
=
DΛ

Dφ
ΦT−τ dφ

dxT
+
dΛ

dv1

dv1

dxτ
− ε2u2

Tv
2
1

2φ2 E

(
S

S̃

)2
dK

dxτ
.

2



Then following the reasoning that took us from steps (22) of the paper to (A3), we have

decreasing marginal rates of substitution if46

ΦT−τ dK

dxτ+2

+ ΦT−τ−2 dK

dxτ
< 2ΦT−τ−1 dK

dxτ+1

,

or

(A4) Φ2 dK

dxτ+2

+
dK

dxτ
< 2Φ

dK

dxτ+1

.

To verify (A4), we must first calculate dK/dxτ . This is (see (27) for ki)

dK

dxτ
=

T∑
j=1

Φ2T−τ−jxjCτj +
T∑
i=1

Φ2T−i−τxiCiτ +
T−1∑
i=1

T−1∑
j=1

Φ2T−i−j
(
dki
dxτ

kj +
dkj
dxτ

ki

)
Cij

+
T−1∑
j=1

Φ2T−τ−jkjCτj +
T∑
i=1

T−1∑
j=1

Φ2T−i−jxi
dkj
dxτ

Cij

= Φ2T

(
2

T∑
j=1

Φ−τ−jxjCτj + 2
T−1∑
i=1

T−1∑
j=1

Φ−i−j
dki
dxτ

kjCij

+
T−1∑
j−1

Φ−τ−jkjCτj +
T∑
i=1

T−1∑
j=1

Φ−i−jxi
dkj
dxτ

Cij

)

= Φ2T

(
2

T∑
j=1

Φ−τ−jxjCτj + 2
τ−1∑
i=1

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij

+
T−1∑
j=1

Φ−τ−jkjCτj +
T∑
i=1

τ−1∑
j=1

Φ−i−jxiΦ
−(τ−j)Cij

)
,

where the first equality collects like terms and the second uses (27) to take derivatives of

ki. Inserting in (A4)we then have increasing impatience if

46At this point, we simply write dK/dxτ rather than taking the derivative explicitly; the corresponding

derivative in moving from (20) to (A3) is 2
∑T
j=1 Φ2T−τ−jxjCτj , the notation for which we subsequently

simplify by letting Kτ ≡ 2
∑T
j=1 Φ2T−τ−jCτj when deriving (A3).
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2Φ2

T∑
j=1

Φ−(τ+2)−jxjCτ+2,j + 2Φ2

τ+1∑
i=1

T−1∑
j=1

Φ−i−jΦ−((τ+2)−i)kjCij

+ Φ2

T−1∑
j=1

Φ−(τ+2)−jkjCτ+2,j + Φ2

T∑
i=1

τ+1∑
j=1

Φ−i−jxiΦ
−((τ+2)−j)Cij

+ 2
T∑
j=1

Φ−τ−jxjCτj + 2
τ−1∑
i=1

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij

+
T−1∑
j−1

Φ−τ−jkjCτj +
T∑
i=1

τ−1∑
j=1

Φ−i−jxiΦ
−(τ−j)Cij

< 4Φ
T∑
j=1

Φ−(τ+1)−jxjCτ+1,j + 4Φ
τ∑
i=1

T−1∑
j=1

Φ−i−jΦ(−(τ+1)−i)kjCij

+ 2Φ
T−1∑
j=1

Φ−(τ+1)−jkjCτ+1,j + 2Φ
T∑
i=1

τ∑
j=1

Φ−i−jxiΦ
−((τ+1)−j)Cij.

It is then helpful to tackle this inequality in parts. We begin with the first and fifth terms

on the left, and the first on the right. These are precisely the terms that entered the

calculations in proving Proposition 6, leading to increasing impatience. In this case, given

our assumption that the random variables Ẑτ , for τ = 1, . . . , T , are perfectly correlated,

these terms cancel.

Now we work on the second and sixth terms on the left and the second on the right.

We have

2Φ2

τ+1∑
i=1

T−1∑
j=1

Φ−i−jΦ−((τ+2)−i)kjCij + 2
τ−1∑
i=1

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij

< 4Φ
τ∑
i=1

T−1∑
j=1

Φ−i−jΦ−((τ+1)−i)kjCij

if

2
τ+1∑
i=1

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij + 2
τ−1∑
i=1

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij

< 4
τ∑
i=1

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij
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if

2
τ+1∑
i=τ

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij < 4
τ∑
i=τ

T−1∑
j=1

Φ−i−jΦ−(τ−i)kjCij

if

2
T−1∑
j=1

Φ−τ+−jkjCτ+1,j < 2
T−1∑
j=1

Φ−τ−jkjCτj

if

Φ−τkτC + Φ−(τ+1)kτ+1V < Φ−τkτV + Φ−(τ+1)kτ+1

if

2Φ−2τC

(
kτ −

kτ+1

Φ

)
< 2Φ−2τV

(
kτ −

kτ+1

Φ

)
if

(A5) 2Φ−2τxτ+1C < 2Φ−2τxτ+1V,

which follows from C < V given xτ+1 > 0.

Now we turn to the third and seventh term on the left and the third on the right.

Here we have

Φ2

T−1∑
j=1

Φ−(τ+2)−jkjCτ+2,j +
T−1∑
j=1

Φ−τ−jkjCτj = 2Φ
T−1∑
j=1

Φ−(τ+1)−jkjCτ+1,j.

Taking out a factor Φ−τ , this holds if

T−1∑
j=1

Φ−jkjCτ+2,j +
T−1∑
j=1

Φ−jkjCτj = 2
T−1∑
j=1

Φ−jkjCτ+1,j.

However, each of the terms Cττ ′ represents the common covariance C between one of the

random variables Ẑ1, . . . , Ẑτ−1 and the Ẑ0. Hence, this equality holds.

Finally, we work on the fourth and eighth terms on the left, and the fourth term on

the right. Here, we have

Φ2

T∑
i=1

τ+1∑
j=1

Φ−i−jxiΦ
−((τ+2)−j)Cij+

T∑
i=1

τ−1∑
j=1

Φ−i−jxiΦ
−(τ−j)Cij = 2Φ

T∑
i=1

τ∑
j=1

Φ−i−jxiΦ
(−(τ+1)−j)Cij.

Taking out Φ−τ , this holds if

T∑
i=1

τ+1∑
j=1

xiΦ
−iCij +

T∑
i=1

τ−1∑
j=1

xiΦ
−iCij =

T∑
i=1

τ∑
j=1

xiΦ
−iCij.

5



Once again, each of the terms Cττ ′ represents the common covariance C between one of

the random variables Ẑ1, . . . , Ẑτ−1 and the Ẑ0. These terms are thus constant in j, and

hence the equality can be verified by simply counting the number of terms on each side.

The desired result (A4) then follows from (A5).
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