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THE EVOLUTIONARY BASIS OF TIME PREFERENCE:
INTERGENERATIONAL TRANSFERS AND SEX

ABSTRACT

We consider the evolutionary basis of intertemporal choice and time discounting, in partic-

ular, when there are intergenerational transfers. We show that the notion of “reproductive

value” from biology provides the utility criterion for a parent to optimize the allocation

of resources between transfers to offspring and for promoting her own survival to the next

period. This optimization has a natural dynamic programming formulation. We show that

younger individuals may well be “too impatient” but older individuals “too patient,” in a

sense that agrees with observations. We compare the allocation of resources under sexual

reproduction to that where there is asexual reproduction. Sex distorts time discounting,

but there is no general bias towards greater impatience; under plausible conditions, sex

may well imply greater patience.
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1 Introduction

Most models in economics take preferences as given and then derive the choices induced by

these preferences. In the tradition of a small but, by now, well-established literature, we

turn this around, first characterizing the choice behavior that would result from biological

evolution, and then supporting this choice behavior with preferences. That is, we identify

the preferences that induce evolutionarily optimal choices.

We make the stark assumption that each choice behavior derives from a particular

genetic type. Hence, the choices an individual makes during her lifetime are a characteristic

that is inherited from her parents. In the simplest case, without sexual reproduction, this

inheritance is without modification, so populations can be defined as a group of individuals

having the same genes. Populations with different genetic types may grow at different

long run rates. Only those types inducing the highest asymptotic population growth rate

survive evolution.

We consider here the biological basis of intertemporal utility and time preferences,

in particular. Why do we discount the future at all? What accounts for how much we

discount the future and for the age profile of discount rates?

Perhaps the most basic biological model suggests that we should discount the future

at the sum of the rate of population growth and the rate of mortality. (See Robson and

Samuelson [?], for example.) To set the stage for the present paper, we present an example

to exhibit this basic result. To simplify matters, we consider here a direct tradeoff between

current and future offspring. In the main model of the paper with transfers, we consider

a tradeoff between the survival probabilities of newborns and the survival probability of

the parent to the next period. However, the fundamental considerations are the same.

Example 1. Suppose that an individual survives for sure from age zero to age one,

and survives with probability p from age one to age two, but then dies. She has a resource

endowment of I which she can split between ages one and two. In each of these periods,

if she is alive, she transforms her endowment into offspring according to a non-negative,

continuously differentiable, strictly increasing and strictly concave reproduction function

u. Assume that u′(x)→∞ as x→ 0. A gene is identified with a choice rule x ∈ [0, I], the

use of the endowment in the first period, so the endowment available in the second period

is I − x. Offspring use the same rule as their parent.

Fix a choice, x, and denote the number of individuals who are one year old at time t
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by yt. The following equation recursively defines the law of motion of yt:

yt+1 = u (x) yt + pu (I − x) yt−1.

Indeed, the number of one year old individuals at time t+ 1 who had one year old parents

at birth is u (x) yt. Similarly, pu (I − x) yt−1 is the number of one year old individuals at

time t+ 1 whose parents were two years old when they were born.

Dividing both sides by yt yields

yt+1

yt
= u (x) + pu (I − x)

yt−1

yt
.

It is not hard to show that there exists a value of λ > 0 such that yt+1/yt → λ as t→∞,

no matter what the initial proportions of one-year-old and two-year-old individuals might

be in the population. In the limit, therefore, the previous equation can be rewritten as

λ2 = λu (x) + pu (I − x) .

Let λ (x) denote the unique positive solution of this equation for λ, that is,

λ(x)2 = λ(x)u(x) + pu(I − x).

Let x∗ denote the choice generating the largest possible growth rate and set λ∗ = λ (x∗).

There exists a solution for x, which is unique and interior.1 Hence, x∗ satisfies the first-

order condition λ′ (x∗) = 0. Differentiating the previous displayed equation and rearrang-

ing, we obtain

u′ (x∗) = pu′ (I − x∗) /λ∗.

This equation implies that the optimal decision x∗ must be the unique solution of2

max
x

u (x) +
pu (I − x)

λ∗
. (1)

Expression (1) means that the resource allocation that maximizes the population

growth factor, which is the basic biological problem, must also be the allocation that

maximizes the expected discounted number of offspring, with the discount factor equal to

1This is not hard to show, but formal proofs are omitted for brevity. Rigorous proofs of all the necessary

formal properties are provided for the general models with transfers, with or without sex.
2Given this uniqueness, the solution here will be supported by other criteria. We address this issue in

Example 2 below.
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the probability of survival divided by the maximal population growth factor.3 This latter

problem is closely related to the simplest conventional criterion for intertemporal choice,

expected discounted utility, where utility is identified with fertility, and where future fer-

tility is deflated by the growth rate divided by the probability of survival. Equivalently, we

have found that the pure rate of time preference is equal to the rate of mortality plus the

rate of population growth.4 The intuition behind the contribution of population growth

is the following. If the population is in steady state growth, with growth factor λ, the

value of an expected offspring tomorrow is less, by this factor of λ, than the value of an

expected offspring today.5 This is because one offspring today can herself have λ offspring

tomorrow, so that λ offspring produced tomorrow is equivalent to just 1 today.

Many nonhuman species seem to be shaped by a discount rate, one of whose compo-

nents is mortality. For example, birds typically suffer lower rates of predation than do

comparably-sized ground-dwelling mammalian species. As an apparent consequence, they

invest more in somatic maintenance and may live even longer than implied directly by

the lower predation. Perhaps also as a consequence, birds invest heavily in the rearing of

offspring, with the involvement not merely of the female, but also of the male, whereas

male involvement is rare in ground-dwelling mammals.6

It is hardly surprising that mortality would also influence time discounting in humans,

and well-known (see Irving Fisher [?], for example). The effect of population growth

on discounting is a recent insight provided by a biological approach. This component

of discounting should be constant across all ages, thus providing some support for the

simplest of all economic criteria for evaluating intertemporal consumption, namely the

sum of discounted utility, where the discount factor is constant.

However, this basic result is not readily squared with observations on rates of time

discounting. That is, the average rate of human population growth during the 1.8 million

3What is the implied attitude to risk in this example? Individuals are risk-neutral in offspring, since the

fertility function here is best interpreted as expected offspring. However, it follows readily that Expression

(1) is strictly concave in the total endowment, I, so individuals are strictly risk-averse in resources. The

Bernoulli utility function here is a biological production function. These observations generalize straight-

forwardly to the models in the present paper, given all risk is idiosyncratic.
4If, that is, p = e−δ, where δ is the implied continuous-time mortality rate, and λ = eg, where g is the

implied continuous-time population growth rate, then the pure rate of time preference is lnλ− ln p = g+δ.
5For the purpose of this explanation, mortality is included in the calculation of expected offspring.
6Even closer to home is that arboreal mammals live longer than do comparable ground dwelling mam-

mals. Arboreality reduces predation, and has been proposed as the original circumstance leading to greater

longevity in primates. See Shattuck and Williams [?].
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years of our evolutionary history must have been, as a matter of arithmetic necessity,

only imperceptibly greater than 0. Plausible estimates of hunter-gatherer mortality rates

range from 1% for 10 year olds to 4% for 60 year olds; but these seem rather lower than

plausible estimates of the pure rate of time discount. (See Gurven and Kaplan [?] for

these mortality estimates; see Anderson, Harrison, Lau and Rutström [?] for experimental

estimates of the pure rate of time preference.)

One of the contributions of the current paper is to evaluate a candidate for closing

this gap that was proposed in a seminal paper by Rogers [?]. This candidate is sexual

reproduction in the context of intergenerational transfers. Rogers argued as follows. Con-

sider a 25 year old woman who can invest resources to benefit her current newborn. For

simplicity, suppose the return from the investment is received 25 years from now, when

her newborn will also be 25. Rogers further supposes that this investment problem has

an interior solution. The marginal value of resources will be the same to her offspring 25

years from now as it is to the mother now. However, from the current mother’s point of

view, sex deflates the importance of her offspring by a factor of 1/2. In the simplest case

of “haploid” sex, this is because this offspring will be a carbon copy of her mother with

probability 1/2, but will be a carbon copy of her father otherwise. Given zero population

growth, and apparently abstracting from mortality, a unit of resources 25 years from now

will be worth 1/2 as much to the mother as it is worth today, and Rogers uses that as the

basis for calculating a plausible rate of time preference of around 2%.

There are a number of difficulties with the Rogers analysis that are discussed by

Robson and Szentes [?]. One that is easy to outline is that it cannot be true that all

these “same age transfers” involve interior solutions. After all, the same argument as

above but now applied to a 30 year old mother contemplating an investment to favor

her newborn 30 years from now would imply a lower rate of time preference. In order

to address directly the difficulties with Rogers model, Robson and Szentes developed an

example that permitted same age transfers. However, this requirement made the example

awkward enough that it could not shed light on the core claim of Rogers—that sex is a key

factor leading to impatience. The present paper develops a model that is more tractable

and therefore illuminating by not being required to allow same age transfers. Although

the model is then no longer directly comparable to Rogers, it is an inherently plausible

view of transfers and sex. In our model, however, sex may well reduce impatience. Thus

sexual reproduction does not seem a plausible way of closing the gap between typical rates

of time preference and typical mortality rates.
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On the other hand, the current paper provides another way of closing this puzzling

gap. Indeed, we address a more refined view of the puzzle. In this more refined view, it is

largely children and younger adults who are too impatient relative to mortality rates and

the population growth rate. Younger adults, are too impatient in this sense because rising

resources with age are likely to decrease the marginal productivity of resources transferred

to offspring. For children, the model disconnects their time discounting from the mortality

rate or the growth rate, so they also may be too impatient.

This more refined view of the puzzle also involves a reversal of the typical gap. That

is, older adults are, at the same time, too patient, with moderate rates of time discounting

that are too low relative to their increasingly high mortality rates and the population

growth rate. The model gives an explanation of this that is the flip side of the explanation

for younger adults. That is, since older adults experience decreasing output, this would

likely reduce transfers to offspring, and so increase the marginal productivity of such

transferred resources.

The above scenario involves time discounting that is is denominated in resource terms,

rather than in terms of utility. That is, our measure of time discounting corresponds to the

marginal rate of intertemporal substitution in consumption in a conventional model rather

than be the usual “pure” rate of time preference, denominated in utility terms. Our model

would apply directly to a foraging society in which there were limited opportunities for

intertemporal substitution. Time discounting denominated in resource terms would have

been shaped by the age profile of energetic income. However, this analysis might continue

to apply in a modern setting in which capital markets exist, as long as they remain rather

imperfect. Consumption would then continue to track income, as indeed is observed. (See

Browning and Lusardi [?], for example.) In such a modern setting, it might well then

remain the case that younger adults are “too impatient” and older adults “too patient,”

in the above sense.

Finally, our analysis provides formal insights. We first derive the appropriate notion

of “reproductive value” for our model of transfers. This represents a generalization of

the simple notion of this, originally due to RA Fisher [?], which latter is the expected

discounted value of offspring from each age forwards, conditional on survival to that age,

where the population growth factor is used to discount the future. This simple notion of

reproductive value is only appropriate in contexts in which offspring are homogeneous.7

7A technical flaw in the Rogers model was the application of this simple notion of reproductive value

in a context with heterogeneous offspring.
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The most general notion of reproductive value stems from the relative contribution of

each type of offspring to the population in the distant future. In our case, even with

heterogeneous offspring, the generalized reproductive value remains an appropriate eigen-

vector. This approach lends itself to further generalization. A key formal result of the

paper is to illuminate a close connection between utility functions and this appropriate

notion of reproductive value. The utility function at each adult age is again the expected

discounted sum of the value of descendants. Although this results in a substantially dif-

ferent expression from that of RA Fisher, the population growth factor still discounts the

future.8 Optimal choice at each age still involves maximizing current reproductive value.

Since current reproductive value derives from the reproductive value of offspring and the

reproductive value of the parent, both one period ahead, lifetime optimal choice solves a

simple dynamic programming problem.

1.1 A Map of the Paper

Section 2 of presents a benchmark model that is a stepping stone for our model of transfers.

There is an asexual species in which individuals live an arbitrary number of periods. In

this benchmark model, we obtain the appropriate reproductive values, which arise as an

eigenvector, in a fashion reminiscent of shadow prices in the von Neumann growth model.

These values are the expected discounted value of future fertility, conditional on each age,

where the discount factor is the population growth factor. How these reproductive values

work as utility functions is illustrated by considering a basic biological tradeoff between the

number of offspring and survival to the next period. The simplification that all offspring are

identical is the crucial simplifying feature of this benchmark model. We conclude Section

2 with an example that considers the circumstances under which the utility criterion is

essentially uniquely determined. This involves introducing suitable idiosyncratic random

shocks.

In Section 3, we develop a model of transfers in which offspring cannot be identical,

but vary in quality. We then examine the optimal choice of such quality by the parent or

parents of each age. In Section 3.1, there is an asexual species in which parents tradeoff

their own survival to the next period against the survival of their newborns. The differen-

tial survival of offspring across parental ages means that newborns are heterogeneous. In

8Reproductive value could indeed still expressed in terms of the expected discounted sum of the value

of newborns. Since newborns are heterogeneous, however, this is not equivalent to the expected discounted

sum of the number of newborns, as in RA Fisher.
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the presence of such intergenerational transfers, with differential offspring quality, it is not

appropriate to maximize the discounted sum of expected offspring. However, reproductive

value again arises in the same general way as in the benchmark model as an eigenvector.

In addition, we retain the intuitively pleasing result that optimal choice by an individual

of each age maximizes this reproductive value.

In Section 3, we also derive the implications of intergenerational transfers for discount-

ing. We show that the marginal rate of intertemporal substitution for prereproductive

individuals is dissociated from the sum of the mortality rate and the population growth

rate. For reproductive adults, the marginal rate of intertemporal substitution reflects,

as one of its components, this sum. The other component reflects the motive to make

transfers to newborns, and this is likely to increase time discounting for younger adults,

but decrease it for older adults, in rough agreement with observations.

We introduce sexual reproduction into our model in Section 3.2. Sexual reproduction

implies that the choices made by the two parents interact, so that the situation is now a

game. This has substantial implications for predicted behavior. The reproductive values

derive from the pattern of fertility and survival in the same way as for the asexual species.

An individual of each age still maximizes a utility function that derives from reproductive

value, with the key difference from the asexual case that sexual individuals deflate the

importance of the survival of their offspring by a factor of 1/2. This is because if the gene

has frequency zero in the population, then the probability of the other parent having the

same gene is zero, so the probability an offspring has the same gene is 1/2. This is true

even though, in the evolutionary equilibrium, all individuals have the same gene.

The following results are established. Every adult systematically skews her allocation

of resources to favor her own survival at the expense of her offspring’s survival. This is

true in a myopic sense, that is, holding constant the reproductive value of the adult in

the next period. This distortion will inevitably affect these reproductive values. However,

even when the implications of sex for reproductive values are appropriately allowed for,

the sexual type increases all adult survival rates at the expense of all newborn survival

rates. Sex then unambiguously reduces the quality of offspring in this sense. However,

this distortion does not entail greater impatience. Rather, sex may well imply too much

patience, since greater adult survival militates in this direction.

Section 4 concludes by discussing issues of interpretation, extensions that would be

of definite interest, despite varying degrees of feasibility, and an application to the global

warming debate.
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2 A Benchmark Model without Transfers

Consider an asexual species in which each individual lives to a maximum age of T periods.

At age τ = 0, ...,m − 1, she has uτ = 0 offspring; at age τ = m, ..., T , she has uτ > 0

expected offspring. In this benchmark model, but not subsequently, the offspring produced

by parents of differing ages are identical. Finally, each individual survives from age τ to

age τ + 1 with probability pτ ∈ (0, 1), for τ = 0, ..., T − 1.

The parameters just described in general will eventually be taken to depend on the

choice made by the individuals, so the issue is to derive the optimal choice. We consider a

simple explicit choice problem below. As a necessary building block, we first consider the

implications of a particular fixed set of parameters for the growth rate of population.

The population then evolves as

nt+1 = ntL,

where nt is row-vector describing the population at date t so that nt = (nt1, ...n
t
T ) where

ntτ is the number of individuals of age τ = 1, ..., T at date t.9 Also L is the Leslie matrix

L =



p0u1 p1 0 . . 0

p0u2 0 p2 0 .. 0

p0u3 0 0 p3 .. .

... .. . . . 0

p0uT−1 0 . . 0 pT−1

p0uT 0 . . . 0


.

All of these columns except the first simply describe how the number of individuals of age

τ = 2, ..., T at date t is the number of individuals of age τ − 1 at date t− 1, allowing for

survival, pτ−1. The first column describes how the number of age 1 individuals is the total

number of newborns one period ago,
∑T

τ=1 uτn
t−1
τ , allowing for survival, p0.

The Perron-Frobenius Theorem implies that the system settles into steady state growth

with the growth factor λ > 0 being the unique dominant eigenvalue.10 Furthermore, the

left eigenvector q >> 0 (taken as a row vector) gives the limiting population proportions

9It is convenient to consider newborns, with τ = 0, only implicitly here. This asymmetric reduction in

the number of age classes generates the need for a little algebra here and there, but saves a lot elsewhere,

and is especially helpful in the following sections that treat transfers.
10See Seneta [?]. It is enough that there exist two ages τ and τ ′ = τ +1 such that uτ and uτ ′ are strictly

positive.
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and the right eigenvector v >> 0 (so vT denotes the associated column vector) gives the

relative values of each age class. That is, we have

qL = λq, LvT = λvT and |L− λI| = 0.

Note that q and v are only determined up to a multiplicative constant. A straightforward

proof by induction shows that the characteristic equation is

1 =
p0u1

λ
+ ...+

p0...pT−1uT
λT

, (2)

which indeed is the Euler-Lotka equation and can be obtained more directly by straight-

forward arguments from the steady state.

The left eigenvector gives the relative proportions of individuals in each age class

in the steady state, as is familiar in demography. It can be taken to be, for example,

q = (p0

λ ,
p0p1

λ2 , ...
p0..pT−1

λT
).11

The right eigenvector satisfies

vτ = uτ +
pτvτ+1

λ
, τ = 1, ..., T − 1, (3)

the solution of which can be taken as

vτ = uτ +
pτuτ+1

λ
+ ...+

pτ ...pT−1uT
λT−τ

, τ = 1, ..., T, (4)

which are the reproductive values as defined by RA Fisher [?]. That is, vτ is the expected

discounted sum of future fertility, conditional on being alive at age τ, where the expectation

includes the probability of survival to each future age, and where the discount factor is

the population growth factor.

How would evolution choose between arbitrary profiles of survival probabilities and

fertilities, with each profile of the form {pτ , uτ+1}T−1
τ=0 ? The theory of evolutionary choice

can be developed in the same way as it is conventional to describe preferences in consumer

theory. That is, evolutionary preferences are independent of the set of options considered.

The most general biological representation of intertemporal preferences is the growth factor

λ. Often, however, a more useful representation from an economic perspective is the

right-hand side of the Euler-Lotka equation, Eq (2). These are connected in that it is

necessary that a growth maximizing profile of demographic characteristics pτ and uτ+1

11This form of q would arise from normalizing q0 = 1 if the newborns were explicitly included.
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for τ = 0, ..., T − 1 also maximize the right-hand side of this equation, given the optimal

growth factor λ.12

To illustrate this approach in a concrete fashion, and one congenial to economists,

since it involves allocating a scarce resource, consider a very basic biological trade-off—

that between the number of offspring and own survival. Considering this tradeoff allows us

to remain within the benchmark model, since all offspring remain identical. (The tradeoff

considered in the model of transfers, on the other hand, forces us to consider heterogeneous

offspring.) Suppose now that each adult individual of some particular age τ ∈ {m, .., T}
has a resource budget or income Iτ > 0. This budget is to be divided between resources

used to produce offspring, rτ ≥ 0, via the function uτ (rτ ), and resources used to promote

survival to the next period, sτ ≥ 0, via the function pτ (sτ ), so that Iτ = rτ + sτ . Suppose

the functions uτ (.), and pτ (.) are non-negative, continuously differentiable, with a strictly

positive derivative everywhere, and strictly concave everywhere.

The reproductive values permit a nice view of optimal choice, as follows. From the

Euler-Lotka equation, Eq (2), and the equation determining vτ , Eq (4), the first-order

condition for the optimal allocation of resources by an individual of age τ must solve the

following problem

max
rτ ,sτ≥0
rτ+sτ=Iτ

vτ (rτ , sτ ) ≡ max
rτ ,sτ≥0
rτ+sτ=Iτ

(
uτ (rτ ) +

pτ (sτ )

λ

[
uτ+1 +

pτ+1uτ+2

λ
+ ...+

pτ+1...pT−1uT
λT−τ−1

])
.

This explicitly spells out the utility criterion relevant to this age τ individual. This can

be more compactly expressed as—

max
rτ ,sτ≥0
rτ+sτ=Iτ

vτ (rτ , sτ ) ≡ max
rτ ,sτ≥0
rτ+sτ=Iτ

uτ (rτ ) +
pτ (sτ )

λ
vτ+1.

In either case, this age τ individual solves the problem of maximizing her reproductive

value vτ (rτ , sτ ) which is then interpreted as her utility function.

This model could be generalized to consider optimal choices like this by individuals

of all ages, making the choice then of whether fertility is zero or strictly positive fully

endogenous. Such a model could then endogenize the transition from childhood, with

zero fertility, to adulthood, with positive fertility. This would not be a derivation from

first principles, however, since it would be predicated on age-varying income and the

age-varying survival functions. (See Kaplan and Robson [?], for a model that generates

12For suppose Eq (2) holds, thus determining the value of λ. but that there exists a demographic profile

that raises the right-hand side of Eq (2). It follows that λ can then be raised above its original value.
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all of our key demographic characteristics without relying on time-varying parameters or

functions.)

One natural question concerning this model and the subsequent ones is: Given that

the earth is of a limited size, surely it is not possible that the maximal λ is greater than 1?

That is, surely finite land, for example, forces the maximal λ to be no greater than 1? One

way that the model can be adapted to this observation is to suppose that survival rates pτ

are decreasing functions of total population N , say. This dependence might plausibly be

such that growth factors greater than 1 are possible at low values of N , but that growth

is inevitably choked off as N grows. In the limit then a growth factor of exactly 1 will

emerge in an endogenous fashion. We will return to this issue when comparing the models

of transfers with and without sex.

Another natural question that arises with respect to the above model and more gen-

erally is: Since there is only one optimal choice, surely the given criterion is not the only

one that supports it? We use the following example to sketch the intuition that the ad-

dition of suitable noise means that the criterion is essentially uniquely determined. This

example is a simplification of the benchmark model described above, except for the source

of idiosyncratic noise.

Example 2. Suppose then that T = 2 and that fertility at age 1 is a non-negative, con-

tinuously differentiable, strictly increasing, and strictly concave function of the resources

allocated for that purpose, r, say, so that fertility is given by u1(r). If the resources used

to promote survival from age 1 to age 2 is s, then this survival probability is p(s), where

p(·) is assumed to be continuously differentiable, strictly increasing and strictly concave.

Suppose survival from age 0 to age 1 is certain, and that fertility at age 2 is u2.13

Suppose now that the resource endowment is a random variable, given by Ĩ, which has

support [0,∞). Furthermore, the effectiveness of resources in promoting the survival of

offspring is also a random variable given by α̃ also with full support [0,∞). These random

variables are independent of each other, and also independent across individuals.14 The

budget constraint then has the form r + α̃s = Ĩ.

13This specification is consistent with the example of choice considered above. An alternative specifica-

tion that would agree more closely with Example 1 would suppose that the survival probability, p, is fixed

but that fertility at age 2 is endogenous, given by u2(s), say. This makes only notational differences to the

argument here.
14The two random variables do not need to be independent of each other; it is enough that they have full

support, namely [0,∞)2. However, see Robson and Samuelson [?] for an investigation of the substantial

consequences of relaxing the requirement of independence across individuals.
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The individual is taken to be aware of the joint realization (α, I) of the random variable

pair (α̃, Ĩ) and to then choose the resource allocation (r(α, I), s(α, I)), where r(α, I) +

αs(α, I) = I.

The basic question then is: To what extent are the functions u1(.) and p(.) uniquely

determined by the need to account for the evolutionarily optimal choices to be made here

by the individual?

It is first necessary to address the question: In the presence of this random variable,

and given a large population, what is the growth rate of a type that follows an arbitrary

allocation rule (r(., .), s(., .))? Expected offspring of an age 1 individual is Eα̃,Ĩ [u1(r(α̃, Ĩ))];

that of all age 2 individuals is Eα̃,Ĩ [p(s(α̃, Ĩ))]u2, where this expectation is formed from

a point of view at age 0, and so includes the survival probability from age 1 to age 2 in

particular. Since all the risk here is idiosyncratic and the population is assumed to be

large, the long run growth factor λ satisfies Eq (2) so that

1 = Eα̃,Ĩ

[
u1(r(α̃, Ĩ)) +

p(s(α̃, Ĩ))u2

λ

]
.

The best allocation rule maximizes λ in this version of the Euler-Lotka equation. It is

then clear that the optimal allocation rule solves

max
r,s≥0
r+αs=I

u1(r) +
p(s)u2

λ
, (5)

for each pair of realizations (α, I) of the random variables (α̃, Ĩ).

This is now entirely analogous to a familiar problem from consumer theory. Problem

(5) gives rise to fully specified “demand functions” r(α, I) and s(α, I) that represent the

behavior that must be generated for evolutionary optimality. Using this demand analogy,

it follows that these functions can be “integrated” to obtain a utility function that is

unique up to an arbitrary monotonic transformation. That is, the only overall criteria

that generates the same required behavior must be of the form ψ
[
u1(r)+ p(s)u2

λ

]
, for some

strictly increasing function ψ. If ψ is twice continuously differentiable, and the overall

criterion is required to remain additively separable, the only flexibility left is to multiply

both r(α, I) and s(α, I) by a common positive constant, and to add possibly different

arbitrary constants to these functions. In this straightforward sense, the functions r(α, I)

and s(α, I) are essentially uniquely identified.

Note how the population growth factor λ that should be applied in Eq (5) is derived

from average population-wide fertilities and is not customized to the particular individual.
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That is, an individual who obtains high realizations of α̃ and Ĩ, for example, should

use the same factor λ in her calculations as should an individual with low realizations.

Idiosyncratic risk then does not cause varying impatience.

There is no reason to doubt that an analogous argument can also be applied in the

model of the next section. That is, not only would the argument generalize to allow for the

tradeoff there between survival of newborns and survival of the adult to the next period,

but to allow an arbitrary number of ages as well.

3 The Model of Transfers

The point of the Rogers [?] approach was to examine how sexual reproduction was a source

of impatience when transfers can be made from parents to offspring. Particular problems

with Rogers’ formulation were examined by Robson and Szentes [?]. In this section we

reexamine this issue in a more natural model that is not constrained by the need to allow

for “same-age” transfers as in Rogers. Indeed, we consider here the simplest kind of

transfer—one from a parent to a newborn that increases the probability of that newborn

surviving to the next period. The opportunity cost to the parent of this transfer is a

reduction in the probability of the parent surviving to the next period. Resources cannot

be explicitly saved or carried forward at all, also in contrast to Rogers. This is defensible

on the grounds of realism, since there were no obvious direct ways of making commodity

tradeoffs across widely separated dates in hunter-gatherer societies prior to agriculture.

At the same time, it is crucial that we ultimately consider how such individuals might once

have made such tradeoffs implicitly, and would make explicit commodity tradeoffs once

they became available. We show that these implicit tradeoffs may well mean that children

and younger adults have rates of time preference that exceed the sum of the mortality rate

and the population growth rate; but older adults have rates that are less than this sum.

3.1 Transfers Without Sex

Consider again an asexual species. Suppose now that individuals of ages τ = 1, ..., T have

incomes Iτ > 0. Newborns of age 0 have income 0. Each adult individual of age τ = m, ..., T

transfers an amount rτ ≥ 0 to each of her uτ > 0 newborn offspring, keeping sτ ≥ 0 to

promote her own survival to age τ + 1. It is now generally inescapable that offspring from

parents of different ages will be different. An offspring who is the beneficiary of a larger

transfer and so survives with higher probability has higher “quality” in that sense than one
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with a lower transfer. This heterogeneity must be taken into account in the appropriate

notion of reproductive value. The budget constraint is sτ + uτrτ = Iτ for τ = 1, ..., T.

Children of age τ = 1, ...,m− 1 have no offspring so that uτ = 0 and they set rτ = 0 and

sτ = Iτ . In addition, sT = 0 so that rT = IT /uT .
15

The effect of the transfers is to promote the survival of newborns for one period. That

is, this survival probability is endogenous, and given by p0(rτ ), for each offspring of an age

τ = 1, .., T parent. Survival of each age τ parent to the next period is given by pτ (sτ ). The

functions pτ (·), τ = 0, ..., T are non-negative, continuously differentiable, strictly concave,

with a strictly positive derivative everywhere, and where this derivative tends to infinity

at 0. In this formulation, we assume for simplicity that the fertilities uτ for τ = 1, ...T are

fixed, in contrast to the choice considered in the context of the benchmark model.

Again we have

nt+1 = ntL,

where nt is row-vector describing the adult population at date t so that nt = (nt1, ...n
t
T ),

and where the Leslie matrix is now16

L =



p0(r1)u1 p1(s1) 0 . .. 0

p0(r2)u2 0 p2(s2) 0 .. 0

p0(r3)u3 0 0 p3(s3) .. .

... . . . .. 0

p0(rT−1)uT−1 0 . . 0 pT−1(sT−1)

p0(rT )uT 0 . . . 0


.

All the columns except the first have a similar simple interpretation to that for the bench-

mark model. The first column describes how the number of individuals of age 1 at date

t arises from the newborns of all individuals of age τ = 1, ..., T at date t − 1 as the sum∑T
τ=1 p0(rτ )uτn

t−1
τ .

The Euler-Lotka equation, or, equivalently, the characteristic equation for L, namely

|L− λI| = 0, is now

1 =
p0(r1)u1

λ
+
p0(r2)p1(s1)u2

λ2
...+

p0(rT )p1(s1)...pT−1(sT−1)uT
λT

. (6)

15For simplicity, this model does not consider transfers from parents who are no longer fertile to their

older children or grandchildren. This interesting issue is taken up in the Conclusion.
16The advantage of suppressing explicit treatment of newborns is now significant. If newborns were

included explicitly, that is, there would be T different types of them, one for each possible parental age.
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The most basic view of preferences here, as before, is λ, but a useful representation is

often the right-hand side of this equation. That is, maximizing this expression, taking

the optimal value of the growth factor, λ, as parametric, is a necessary condition for

maximizing this growth factor.17

The limiting population proportions, q, can be taken to be q = (1, p1(s1)
λ , ...,

p1(s1)...pT−1

λT−1 ),

with the normalization that q1 = 1. The reproductive values again satisfy LvT = λvT .

That is, with the normalization that v1 = 1,18

vτ =
p0(rτ )uτ

λ
+
pτ (sτ )vτ+1

λ
for τ = 1, ..., T − 1, with vT =

p0(IT /uT )uT
λ

. (7)

These equations straightforwardly relate the value of an individual of age τ to the value of

her offspring, derived as the expected value of these one period ahead, plus the expected

value of the individual herself one period ahead. It is easy to solve these equations by

backwards recursion to obtain each vτ as follows

vτ =
1

λ

{
p0(rτ )uτ +

p0(rτ+1)pτ (sτ )uτ+1

λ
+ ...+

p0(rT )pτ (sτ )...pT−1(sT−1)uT
λT−τ

}
, (8)

for τ = 1, ..., T .19

The expression in Eq (8) in particular details the reproductive value of an age τ =

m, ..., T − 1 adult individual. These individuals face nontrivial choice problem since they

have both newborn offspring and an endogenous probability of survival to the next period.

Each adult individual of age τ = m, ..., T − 1 maximizes her reproductive value which we

then interpret as her utility function.

This utility function has some rather familiar properties—additive separability and the

appearance of a constant discount factor, λ, for example. In addition, the term p0(rτ ) is

analogous to a age-invariant felicity function. The less familiar properties of this expression

derive from the interpretation of the pτ (sτ ) for τ = 1, ..., T , as survival probabilities. In

the first place, these probabilities are taken to be subject to choice here. Further, it is the

17For suppose that the allocation {sτ , rτ}T−1
τ=m does not maximize the right-hand side of Eq (6), where

Eq (6) is itself satisfied, thus determining λ. There must then exist an alternative allocation that raises

the right-hand side of Eq (6) above 1. This implies that λ can be increased to restore equality, and that

the original value could not have been optimal.
18For expositional economy, children, who have uτ = 0, for τ = 1, ...m− 1, are included in this formula-

tion.
19By suppressing explicit treatment of newborns, we finesse the issue of their heterogeneity. If they were

not suppressed, that is, we would need T additional reproductive values.
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product of these probabilities between the current age and any future age that enters the

above criterion.

The recursive relationship in Eq (7) permits a simple dynamic programming view of

these values that is tailored to the current model by highlighting the consequences of the

current choice.20

Theorem 1 In the present model of transfers without sex, the unique optimal allocation

of resources by adults of age τ = m, ..., T − 1 is the unique solution to the dynamic pro-

gramming problem

max
rτ ,sτ≥0

uτ rτ+sτ=Iτ

p0(rτ )uτ
λ

+
pτ (sτ )vτ+1

λ
≡ max

rτ ,sτ≥0
uτ rτ+sτ=Iτ

vτ (rτ , sτ ), (9)

where Eq (7) yields the vτ , and where Euler-Lotka equation, Eq (6), yields λ.

Proof. Dynamic programming implies that the unique choices of age τ = m, ..., T − 1

adults described in Eq (9) and Eq (7) maximize the RHS of the Euler-Lotka equation,

Eq (6), for an arbitrary λ > 0. If V (λ) denotes this maximized value of the RHS of Eq

(6), then it follows readily that (i) V (.) is continuously differentiable, with V ′(λ) < 0,

for all λ > 0; that (ii) V (λ) → ∞, as λ → 0; and that (iii) V (λ) → 0, as λ → ∞.

(i) Using the envelope theorem, where {sτ , rτ}T−1
τ=m is the optimal profile, it follows that

V ′(λ) = −p0(r1)u1/λ
2− 2p0(r2)p1(s1)u2/λ

3− .... < 0. (ii) Since V (·) is bounded below by

the value the right-hand side of Eq (6) has for an arbitrary allocation, it also follows that

V (λ) ≥ p0(Im)p1(I1)...pm−1(Im−1)um/λ
m → ∞, λ → 0. (iii) Let ū = maxτ{uτ}. Since

p0(·), pτ (·) ≤ 1, it follows that V (λ) ≤ ū/λ{1 + 1/λ + 1/λ2 + ...} = ū/(λ − 1), assuming

λ > 1. That is, V (λ)→ 0 as λ→∞.

Hence there exists a unique λ∗ > 0 satisfying V (λ∗) = 1. This is the maximum feasible

growth factor, since if λ > λ∗, so that V (λ) < 1, then there is no resource allocation profile

such that λ satisfies Eq (6).21

Given the properties of the survival functions pτ (.), for τ = 0, ..., T , there must be a

unique interior solution to the problem of maximizing the right-hand side of Eq (6)—that

20See Houston and McNamara [?] for an excellent treatment of such dynamic programming results from

a biological point of view. See, in particular, McNamara, Houston and Webb [?] for an application to kin

selection.
21That is, under the hypotheses of the Theorem, it is not only necessary for a profile to be optimal that

it maximize the right-hand side of Eq (6) and that Eq (6) hold, but sufficient as well.

18



is, with rτ > 0 and sτ > 0, for τ = m, ..., T − 1. The first-order conditions, which are then

necessary and sufficient, are—

p′0(rτ ) = p′τ (sτ )vτ+1, τ = m, ..., T − 1,

which, together with Eq (6) itself and Eq (7), characterize the optimal lifetime allocations

of individuals for whom this decision is nontrivial.22

The marginal rate of (intertemporal) substitution between adjacent resource income

levels Iτ and Iτ+1 is given by

MRSτ =
∂λ
∂Iτ
∂λ

∂Iτ+1

, τ = 1, ..., T − 1.

In the present case, it follows from the Euler-Lotka equation, Eq (6), that, for adults of

age τ = m, ..., T − 1, for whom there are transfers to newborns,23

MRSτ =
λp′0(rτ )

pτ (sτ )p′0(rτ+1)
.

This expression for MRS yields a rate of time preference denominated in resource

terms. The MRS is the applicable bottom-line exchange rate that would be used by an

individual considering the effect of a small intertemporal rearrangement of resources and

so is the rate that would be most easily observed in practice.

There is a familiar component of this expression given as λ
pτ (sτ ) , which corresponds to

the “pure rate of time preference.” This component is the prediction of the basic model

as sketched in Example 1. Lower survival to the next period, as reflected in a higher rate

of mortality, is a familiar reason for impatience (since Irving Fisher [?], at least). There

is also a biological cause of impatience (which has also become more familiar recently)—

population growth, as reflected in λ.

Additionally, this expression for the MRS accounts for the effect of variation in the

marginal product of resources used to promote the survival of newborns. This effect is

22That is, these individuals have both newborn offspring and an endogenous probability of survival

themselves.
23To show this, apply the envelope theorem to Eq (6). First note that ∂λ/∂Iτ = ∂λ/∂sτ =

(∂λ/∂rτ )/(1/uτ ). Now we obtain

(∂λ/∂Iτ ){p0(r1)u1/λ
2 + 2p0(r2)p1(s1)u2/λ

3 + ...} = p′0(rτ )p1(s1)...pt−1(sτ−1)/λτ .

Since the coefficient of (∂λ/∂Iτ ) is independent of τ , the desired expression follows.
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analogous to how different marginal utilities of consumption affect the MRS in a simple

standard model of intertemporal choice.

Consider now why younger individuals might be “too impatient ” and older individuals

“too patient,” in terms of the MRS. First: Why do younger individuals seem more

impatient than implied by the sum of the rate of mortality and the population growth

rate? Second: Why, on the other hand, do older individuals seem more patient than

this?24 It is convenient to start with adults.

The component of the MRS that goes beyond mortality and population growth is
p′0(rτ )
p′0(rτ+1)

. If the transfers rτ increase with age, this term would increase impatience since

p′0(rτ )

p′0(rτ+1)
> 1. (10)

It is relevant here that average productivity for hunter-gatherers increases until age 45 or

so.25 We then hypothesize that productivity and transfers are correlated. With a repro-

ductive career that starts at 15, say, the model accordingly predicts greater impatience,

in terms of the MRS, for the age range 15-45, than implied by mortality and population

growth.26

Once the transfers rτ decrease with age, on the other hand, this term would then

reduce impatience, as in MRS, since

p′0(rτ )

p′0(rτ+1)
< 1. (11)

The flip side of the prediction for younger adults is then that the model predicts that older

individuals, whose output is declining, would be “too patient.” From the hunter-gatherer

data, this prediction would apply to those over 45 years old.27

24See Anderson, Harrison, Lau and Rutström, [?], and Bishai, [?], for example, for evidence on these

two assertions.
25See Figure 3 in Kaplan and Robson [?], for example.
26The correlation of productivity and transfers concerns the endogenous variable rτ and it may not hold

for all possible specifications. It is important then to verify that there are assumptions on the primitives

that ensure this property holds. Suppose, for example, that uτ = u, a constant, for all τ = m, ..., T and

that the own survival rates are also independent of age, given by pτ (s) = p(s) = βsγ , where β, γ > 0, and

γ is small. In this case, it follows that sτ must be small (but positive), so that variation in the rτ must

account for most of the variation in the Iτ .
27A more general model than that here would allow for transfers to more than one age of offspring, or

to grandchildren. This would mean that individuals who were beyond reproductive age would still value

the resources they could use to make these transfers. This issue is taken up in the Conclusion.
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We now complete the picture for younger individuals by considering the impatience of

children. For children of age τ = 1, ...,m− 2, we have

MRSτ =
λp′τ (Iτ )vτ+1

pτ (Iτ )p′τ+1(Iτ+1)vτ+2
.

However, since uτ = 0 for τ = 0, ...,m− 1 it follows that

vτ =
pτ (Iτ )vτ+1

λ
, τ = 1, ...,m− 1,

so that

MRSτ =
p′τ (Iτ )pτ+1(Iτ+1)

p′τ+1(Iτ+1)pτ (Iτ )
, τ = 1, ...,m− 2.

This expression for the impatience of children is not directly connected to the survival

rate or to the rate of population growth, in contrast to the analogous expression for the

impatience of adults.

At the transition from childhood to adulthood, at age τ = m− 1, we have the special

case that

MRSm−1 =
λp′m−1(Im−1)vm

pm−1(Im−1)p′0(rm)
.

How impatient then are children? It is helpful here to define δτ (sτ ) = − ln(pτ (sτ ))

as the continuous time mortality rate implied by pτ (sτ ), so δ′τ (sτ ) < 0. It follows that

the impatience of children derives from the change in the derivative of this mortality rate.

That is, MRSτ > 1 for τ = 1, ...,m− 2 if and only if—

δ′τ (Iτ ) < δ′τ+1(Iτ+1) < 0. (12)

This condition requires that the marginal benefit of resources that decrease the mortality

rate is higher for younger ages, and we assume that it is satisfied.

The impatience of children, as in the MRS, does not depend directly on mortality

rate or population growth, and may then be excessive, complementing the results above

for younger adults.28

How does the impatience of children depend on age? For τ = 2, ...,m − 2, it follows

readily that MRSτ−1 > MRSτ > 1 if and only if√
δ′τ−1(Iτ−1)δ′τ+1(Iτ+1) > −δ′τ (Iτ ) > 0. (13)

28It plausible but not certain that this is true for infants, since they have extremely high but hard to

measure rates of time preference but mortality rates that are high even now, but were still higher in our

evolutionary past. The model need not take a stance on this.
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We assume this condition holds in order to generate the decreasing pattern of time pref-

erence usually ascribed to children. (See Bettinger and Slonim [?].)29

To sum up the expressions obtained here for the rate of time discounting—

Theorem 2 In the current model of transfers without sex, the marginal rate of intertem-

poral substitution for children, those of age τ = 1, ...,m− 2 is given by

MRSτ =
p′τ (Iτ )pτ+1(Iτ+1)

p′τ+1(Iτ+1)pτ (Iτ )
.

Under Eqs (12) and (13), children exhibit a rate of time discounting, from their MRS,

that is positive, but decreasing with age. At the transitional age of τ = m− 1, a child has

MRSm−1 =
λp′m−1(Im−1)vm

pm−1(Im−1)p′0(rm)
.

On the other hand, the marginal rate of intertemporal substitution for adults, those of age

τ = m, ..., T − 1, is given by

MRSτ =
λp′0(rτ )

pτ (sτ )p′0(rτ+1)
.

Adults exhibit impatience, as derived from their MRS, that is at first excessive relative

to the mortality and population growth, but then too small, assuming that transfers to

newborns track output, as in the discussion of Eqs (10) and (11).

The predictions obtained here apply literally to a hunter-gatherer society. In particular,

it is plausible that individuals in such a society would be more impatient than dictated

by mortality and population growth when younger, but less impatient when older. How

might these predictions translate to a modern setting?

Suppose that what was hard-wired was not the specific fashion that the various func-

tions here depend on their arguments, nor even these arguments themselves necessarily,

but just their interpretation as the production and survival of offspring and own survival.

29An apparently significant omission from the above model concerns the growth of children. That is,

children allocate significant resources to somatic growth as well as to survival. Explicit treatment of this

is omitted for simplicity and since the focus here is rather on adults. However, including this application

for resources may not make a huge qualitative difference. That is, the high marginal product of resources

in promoting growth early in life would tend to reduce the resources available for survival. This would

reinforce the above observations, since the rate of time preference denominated in resources could still be

taken in the form given above, except only that the resource argument would now refer to the resources

devoted to survival rather than the total resources available.
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These arguments are evolutionarily proximate inputs for the production and nurturing

of offspring. The relevance of some of these inputs, such as sex, might have been rather

constant over time, only to change rather recently. The relevance of particular commodi-

ties, on the other hand, might have changed dramatically. Suppose individuals flexibly

and perhaps consciously accounted for how the values of these functions are influenced by

their choices.

That is, what this approach gives us is an evolutionary basis for utility, with a time-

invariant component, as represented in the above model by the function p0(.). Now observe

that the age profile of individual output in modern societies is qualitatively very similar

to that for hunter-gatherers. Moreover, although there is now a market for saving and

borrowing, it remains rather imperfect, perhaps accounting for the observation that con-

sumption still tracks income to a pronounced extent. (See Browning and Lusardi [?].)

The above analysis might then well apply, perhaps in somewhat less dramatic way and

mutatis mutandis, to modern economies.

3.2 Transfers and Sex

Reconsider the model of the previous subsection after the introduction of sexual repro-

duction. We derive the new equilibrium allocation of resources for each adult between

his/her offspring and his/her own survival. We hypothesize that there may be multiple

types, where each type is characterized by a particular age profile of allocations. Mating

pairs must be the same age and mating is random with respect to type. We simplify

the process of sexual reproduction by supposing that each offspring inherits each of the

resource allocation profiles of her parents with probability 1/2. That is, there is so-called

“haploid sex.”30 An equilibrium resource allocation profile will have the property that a

small number of mutants with any alternative allocation profile will do worse. We will

consider then the growth process for a small number of mutants with an arbitrary resource

allocation profile in a population with some given allocation profile.31

30Humans are actually diploid, so having two copies of each gene at each of a large number of “loci.”

At each locus, each offspring gets a randomly chosen gene from mother and a randomly chosen gene from

father. Diploid sex introduces a number of complications that seem largely tangential to the present

purpose.
31This general “non-invadibility by mutants” condition could also be applied to the model of transfers

without sex, and would generate the same results already found more directly for that case. It is needed

here due to the game theoretic nature of the problem with sex; it was not needed without sex, since that

issue is merely decision-theoretic.
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As before, individuals of ages τ = 1, ..., T have incomes Iτ > 0. Newborns have income

zero. Each adult of age τ = m, ..., T now transfers an amount rτ/2 to each of the 2uτ > 0

newborn joint offspring, keeping sτ to promote her own survival to age τ + 1. The budget

constraint is sτ + uτrτ = Iτ for τ = 1, ..., T. As before, children use all their resources on

their own survival, given uτ = 0, so that sτ = Iτ for τ = 0, ...,m− 1. Also sT = 0 so that

rT = IT /uT . The survival functions pτ (·) for τ = 0, ..., T − 1 are as specified for the model

with transfers but without sex in the previous subsection. Thus the model of transfers

with sex has been constructed to be strictly comparable to the model without sex, with

directly comparable notation. The allocation of resources in the model without sex is the

optimal allocation for the model with sex, where the allocation will be distorted by the

free-rider problem.32

Suppose then that the population resource allocation profile is {s̄τ , r̄τ}Tτ=1 and consider

a rare mutant with profile {sτ , rτ}Tτ=1.
33 This mutant is subject to the growth process given

by

nt+1 = ntL,

where nt is row-vector describing the mutant adult population at date t so that nt =

(nt1, ...n
t
T ). The Leslie matrix is now

L =



p0( r̄1+r1
2 )u1 p1(s1) 0 . . 0

p0( r̄2+r2
2 )u2 0 p2(s2) 0 .. 0

... . . . . .

... . . . . 0

p0(
r̄T−1+rT−1

2 )uT−1 0 . . 0 pT−1(sT−1)

p0( r̄T+rT
2 )uT 0 . . . 0


.

With the exception of the first column, this is identical to the Leslie matrix for the case

without sex, and holds for the same reason—each mutant of age τ = 1, ..., T − 1 survives

to age τ + 1 with probability pτ (sτ ). Consider then the first column. Since the mutant

is rare, essentially all the pairings of mutants are with nonmutants. In each such pairing,

each of the 2uτ newborn offspring receive r̄τ+rτ
2 but only uτ of these offspring are also

32There is no advantage to sex in the present context. See Perry, Reny and Robson [?] for a discussion

of the puzzle posed by the need to find the advantage of sex, of biparental sex in particular.
33For expositional simplicity, we restrict attention to pure population allocation profiles. However, even

if there is a mixture of profiles in the population, the best reply by a rare mutant will always be a pure

profile. It follows that the only possible evolutionarily stable equilibria are then pure.
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mutants. The τth term in the first column then reflects the contribution of mutant age τ

parents at date t to mutant one year olds at date t+ 1.

The limiting growth rate of the mutant type under the assumption that the mutant

remains a small fraction of the population is relevant to evaluate whether the original type

is robust to invasion by the mutant. The Euler-Lotka equation becomes

1 =
p0( r̄1+r1

2 )u1

λ
+
p0( r̄2+r2

2 )p1(s1)u2

λ2
...+

p0( r̄T+rT
2 )p1(s1)...pT−1(sT−1)uT

λT
, (14)

where λ is this limiting growth rate. The most basic biological view of preferences here,

as before, is λ, but a useful economically relevant representation is the right-hand side of

this equation. That is, maximizing this expression, given the optimal growth factor, is a

necessary condition for maximizing this growth factor.

The limiting population proportions, q, can again be taken to be q = (1, p1(s1)
λ , ...,

p1(s1)...pT−1

λT−1 ),

with the normalization that q1 = 1. Further, the vector of reproductive values still satisfies

LvT = λvT , and we set v1 = 1. In this case—

vτ =
p0( r̄τ+rτ

2 )uτ

λ
+
pτ (sτ )vτ+1

λ
for τ = 1, ..., T − 1, with vT =

p0( r̄T+rT
2 )uT

λ
. (15)

These equations can again be solved by backwards recursion to obtain each vτ as follows

vτ =
1

λ

{
p0

(
r̄τ + rτ

2

)
uτ +

p0( r̄τ+1+rτ+1

2 )pτ (sτ )uτ+1

λ
+ ...+

p0( r̄T+rT
2 )pτ (sτ )...pT−1(sT−1)uT

λT−τ

}
,

(16)

for τ = 1, ..., T − 1.

This expression fully spells out the reproductive value of an age τ = m, ..., T −1 adult.

However, dynamic programming again provides a more compact and elegant formulation

of the problem. In this formulation, individuals recursively maximize the appropriate

concept of reproductive value, which we then interpret as their utility—

Theorem 3 The unique interior allocations {sτ , rτ}T−1
τ=m that satisfy the dynamic pro-

gramming problem

max
rτ ,sτ≥0

uτ rτ+sτ=Iτ

uτp0( r̄τ+rτ
2 )

λ
+
pτ (sτ )vτ+1

λ
≡ max

rτ ,sτ≥0
uτ rτ+sτ=Iτ

vτ (rτ , sτ ), (17)

along with Eq (15), are the unique solution to the problem of maximizing the limiting

growth rate of a “small” number of mutants with allocations {sτ , rτ}T−1
τ=m embedded in a
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population using an arbitrary allocation {s̄τ , r̄τ}T−1
τ=m. That is, Eqs (15) and (17) charac-

terize the unique “best reply mutant allocation.”34

Proof. Dynamic programming implies that the unique solution to Eqs (15) and (17)

maximizes the RHS of Eq (14), for an arbitrary λ > 0. If W (λ) denotes this maximized

value of the RHS of Eq (14), then it follows readily that (i) W (·) is continuously differ-

entiable, with W ′(λ) < 0, for all λ > 0; that (ii) W (λ) → ∞, as λ → 0; and that (iii)

W (λ) → 0, as λ → ∞. Hence there exists a unique λ̄ satisfying W (λ̄) = 1. This is then

the maximum growth factor, since if λ > λ̄, so that W (λ) < 1, then there is no profile of

resource allocations such that λ satisfies Eq (14).35

Under the conditions imposed on the functions pτ (.), τ = 0,m, ...T − 1, if these best

reply allocations are interior, they must satisfy the first-order conditions—

p′0( r̄τ+rτ
2 )

2
= p′τ (sτ )vτ+1. (18)

Conversely, if these first-order conditions are satisfied for the mutant allocations {sτ , rτ}T−1
τ=m,

then these allocations characterize the mutant best reply to the allocations {s̄τ , r̄τ}T−1
τ=m.

We now characterize the unique evolutionarily stable outcome with transfers and sex.

It is sex, of course, that implies that there are now strategic interactions, in contrast

to the version of this model with no sex. If the resource allocation profile {s̄τ , r̄τ}Tτ=1 is

evolutionarily stable, it is necessary that one best reply choice of mutant profile {sτ , rτ}Tτ=1

against the profile {s̄τ , r̄τ}Tτ=1 is {s̄τ , r̄τ}Tτ=1 itself.

Consider then the interior36 allocation for the population given by {s̄τ , r̄τ}T−1
τ=m with

reproductive values v̄τ , uniquely characterized by

p′0(r̄τ )

2
= p′τ (s̄τ )v̄τ+1, τ = 1, ..., T − 1, (19)

and the recursive relationship, Eq (15). Suppose that λ̄ is the implied growth rate from

Eq (14). It is clear from Eq (18) that setting {sτ , rτ}T−1
τ=m = {s̄τ , r̄τ}T−1

τ=m is then the

unique mutant best reply to a population that chooses {s̄τ , r̄τ}T−1
τ=m.37 Hence {s̄τ , r̄τ}T−1

τ=m

34It is not hard to show that this best reply mutant allocation profile would remain unique against an

arbitrary population mixture of types with various allocation profiles. Hence the evolutionarily stable

equilibrium derived below remains unique even if mixtures are permitted.
35More detailed proofs of (i)-(iii) are analogous to those in the proof of Theorem 1.
36Eq (17) implies that the property of being a best reply to itself cannot be satisfied by any corner

solution.
37This holds over all possible {sτ , rτ}T−1

τ=m, whether interior or not.
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is evolutionarily stable. Of course, it also follows that {vτ}Tτ=1 = {v̄τ}Tτ=1 and λ = λ̄.

Altogether, we then have—

Theorem 4 The interior allocations {s̄τ , r̄τ}T−1
τ=m satisfying Eqs (14), (15) and (19), with

{sτ , rτ}T−1
τ=m = {s̄τ , r̄τ}T−1

τ=m characterize the unique evolutionarily stable equilibrium allo-

cation of the present model of transfers and sex.38

Equation (19) implies that the unique equilibrium choice can be characterized as max-

imizing the “wrong” criterion from the point of view of each couple, namely, uτp0(r̄τ )
2 +

pτ (s̄τ )vτ+1. Thus sex leads to an attenuation of the myopic incentive to transfer resources

to newborn offspring.39 In general, with diploid sex, this is because each of these offspring

have only probability 1/2 of sharing a rare mutant gene present in one of the parents. With

haploid sex, the probability of each offspring being a carbon copy of the mutant parent is

1/2. Since the parent is unable to distinguish these copies from the others, transfers can-

not condition on this. This result is familiar in biology as Hamilton’s rule (see Hamilton

[?], but also Bergstrom [?]).40 From an economic point of view, children are a public good

to their parents, and the undercontribution that arises is also to be expected.

Since the effect of sex is as if the true survival function for newborns p0(·) were replaced

by p0(·)/2, it straightforward to see that the result corresponding to Theorem 2 still holds—

Theorem 5 In the model of transfers with sex, the marginal rate of intertemporal substi-

tution for children, those of age τ = 1, ...,m− 2 is given by

MRSτ =
p′τ (Iτ )pτ+1(Iτ+1)

p′τ+1(Iτ+1)pτ (Iτ )
.

Under Eqs (12) and (13), children exhibit a rate of time discounting, from their MRS,

that is positive, but decreasing with age. At the transitional age of τ = m− 1, a child has

MRSm−1 =
2λp′m−1(Im−1)vm

pm−1(Im−1)p′0(r̄m)
.

On the other hand, the marginal rate of intertemporal substitution for adults, those of age

τ = m, ..., T − 1, is given by

MRSτ =
λp′0(r̄τ )

pτ (s̄τ )p′0(r̄τ+1)
.

38This construction restricts attention to symmetric equilibria, as usual.
39This is “myopic” in that it holds for given vτ+1.
40This biological motive for undercontribution arises despite all individuals being genetically identical

in the equilibrium.
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Adults exhibit impatience, as derived from their MRS, that is at first excessive relative

to the mortality and population growth, but then too small, assuming that transfers to

newborns track output, with sex.

Although the myopic bias against transfers to newborns is then clear, the ultimate

effect of such a bias is less clear.41 After all, the underlying rationale for promoting your

own survival instead of that of your newborns can only be future reproduction, and each

of these future offspring will also only be 1/2 relatives. However, it is now shown that the

overall effect may still be that transfers to newborns are reduced by sex.

There is a minor complication that needs to be first addressed. This is that sex will

reduce the growth rate, other things equal.42 Indeed, the “social optimum” for maximizing

λ with sex is the problem as posed without sex.

However, perhaps the most realistic comparison to make is one where both the asexual

and the sexual types have reached saturation, so that the growth factor in either case is

1. Other things cannot then be equal. There must be less selection pressure with sexual

reproduction than without. A plausible possibility is that this appears as a multiplicative

improvement in the survival functions. This improvement will be shown to merely amplify

the effects.

More specifically, suppose that the survival probabilities now have the form B(N)p̂τ (.),

for τ = 1, .., T − 1, where N is total population, and where the functions p̂τ (.) have the

same qualitative properties as pτ (.), for τ = 1, ..., T −1. The function B(.) is continuously

differentiable and strictly decreasing. Further, we assume that B(·) is such that the growth

factor of either the nonsexual or sexual population is greater than 1 for small enough N and

less than 1 for large enough N . It follows that either population will achieve a steady state

with zero growth at uniquely determined population levels, N∗ and N̄ , for the nonsexual

and sexual case, respectively. Since, at a population level of N̄ , the nonsexual population

would grow, it follows that N∗ > N̄ .

The upshot is that, if we denote the survival probabilities with sex by p̄τ (.) and those

without sex by pτ (.), then there exists β > 1 such that43

p̄τ (sτ ) = βpτ (sτ ) ∈ [0, 1] (20)

41That is, the effect of sex on the vτ+1 needs to be accounted for.
42Suppose we take this observation at face value, so that λ̄ < λ∗, say, where λ̄ and λ∗ are the population

growth rates with and without sex, respectively. It then remains true that sex decreases impatience.
43Of course, β = B(N̄)

B(N∗) > 1.
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for all sτ ≥ 0 and for τ = 1, ..., T − 1.44 We assume these shifts do not affect newborns,

so p̄0(r) = p0(r) for all r ≥ 0.

For the case of transfers without sex, we showed that

p′0(r∗τ ) = p′τ (s∗τ )v∗τ+1, τ = m, ..., T − 1,

where these optimal choices are now denoted by r∗τ and s∗τ and the notation v∗τ is introduced

to distinguish the two sets of shadow prices.

With sex, in contrast, we have that

p′0(r̄τ )

2
= βp′τ (s̄τ )v̄τ+1, τ = m, ..., T − 1.

In order to show that r̄τ < r∗τ , and s̄τ > s∗τ , it is then enough to show that v̄τ+1 >
v∗τ+1

2 ,

for τ = m, ..., T−1. Indeed, this claim holds at τ = T−1 because v∗T = v̄T = p0(IT /uT )uT .

Adopt then the inductive hypothesis that v̄τ+1 >
v∗τ+1

2 for some τ + 1 ∈ {m+ 1, ..., T − 1}.
It follows that

v̄τ = p0(r̄τ )uτ + p̄τ (s̄τ )v̄τ+1

>
p0(r̄τ )uτ

2
+ p̄τ (s̄τ )v̄τ+1.

Further, since (r̄τ , s̄τ ) maximizes this last expression,

v̄τ >
p0(r∗τ )uτ

2
+ p̄τ (s∗τ )v̄τ+1

>
p0(r∗τ )uτ

2
+
pτ (s∗τ )v∗τ+1

2
=
v∗τ
2
,

completing the inductive proof. Hence sex unambiguously reduces all flexible transfers,

those at ages τ = m, ..., T − 1, and increases the corresponding amounts used to promote

own survival to the next period.

Sex thus reduces the quality of offspring, in that it involves reduced transfers to new-

borns and hence reduced survival of all of these to age one. The flip side of the coin is

that adult survival rates are increased by sex relative to the model with no sex.

What is the effect of sex on impatience, as in the MRS? It follows readily that there is

no effect of sex on impatience of children of age τ = 1, ...,m− 2. The effect on impatience

44The key results here concern adult impatience. These results hold under considerably weaker conditions

concerning the effect of reduced selection pressure on survival. However, the multiplicative shift of survival

probabilities considered here simplifies the incidental results for children.
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of the transitional child of age τ = m−1 may be ambiguous without further assumptions,

but is of limited interest.

The marginal rate of intertemporal substitution with sex is as described in Theorem

5. Denoting the resource allocation choices made with sex by r̄τ and s̄τ for τ = 1, ..., T ,

the marginal rate of intertemporal substitution for adults, those of age τ = m, ..., T − 1,

is—

MRSsτ =
∂λ
∂Iτ
∂λ

∂Iτ+1

=
p′0(r̄τ )

p′0(r̄τ+1)p̄τ (s̄τ )
=

p′0(r̄τ )

p′0(r̄τ+1)βpτ (s̄τ )
, τ = 1, ..., T − 1, (21)

The derivation of this expression essentially involved canceling a factor of 1/2 from the

numerator and the denominator. That is, since the individual deflates the value of re-

sources transferred to all offspring, there is no direct effect of sex on impatience. There

remains an indirect effect, however, that operates through enhanced survival of the adult

from one age to the next.

Consider then the effect of sex on the impatience of adults, as in the MRS. Let the

resource allocation choices made by adults in the model without sex be then given by r∗τ

and s∗τ , for τ = m, ..., T . Recall their MRS is then—

MRS∗τ =
∂λ
∂Iτ
∂λ

∂Iτ+1

=
p′0(r∗τ )

p′0(r∗τ+1)pτ (s∗τ )
, τ = m, ..., T − 1. (22)

When we compare the expressions in Eq (21) and Eq (22), there is a clear effect of sex

on one component of the MRS, the term corresponding to the pure rate of time preference.

That is, we have that
1

βpτ (s̄τ )
<

1

pτ (s∗τ )
, τ = m, ..., T − 1,

since sex unambiguously increases adult survival probabilities. The effect of the remaining

component of MRS, which concerns the derivatives of the survival rates of newborns, is

less clear in general, and might sometimes work in the opposite direction. In any case,

one case where this remaining component has no effect is if the survival rate of newborns

is linear in resources. That is, in addition to the hypotheses of Theorem 4, suppose that

p0(rτ ) = αrτ , for some α > 0 and that adults of age τ = m, .., T − 1 have interior optimal

resource allocations, with or without sex. Now, sexual reproduction strictly decreases the

MRS of adults of age τ = m, ..., T − 1, but it has no effect on the MRS of children of age

τ = 1, ...,m− 2.

To sum up—
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Theorem 6 In the model of transfers with sex, suppose that the same growth factor,

λ = 1, is attained as in the model without sex by means of the shift described in Eq (20).

It follows that all adults of age τ = m, ..., T−1 transfer an amount r̄τ , say, to their newborn

offspring which is strictly less than the amount transferred in the model without sex, r∗τ ,

say. Equally, the amount such adults use for their own survival s̄τ , say, strictly exceeds

that in the model without sex, s∗τ , say. As in the discussion of Eq (22), this decreases

the pure rate of time preference, and may decrease the rate of time discounting as in the

MRS.

The central message of Rogers was that sex is a key factor leading to impatience. In

this model, however, this conclusion does not generally hold.

4 Conclusions

The model of transfers adopted here is one of the more tractable possible. Indeed, the

model is mathematically similar to the benchmark model presented in Section 2. It is not

formally very different to suppose that newborns have an endogenous survival rate than

it is to suppose the number of these is endogenous. In both cases, there is an endogenous

number of surviving age one individuals. Indeed, since all individuals who are one or

more are identical, the notion of reproductive value can be straightforwardly applied to

all individuals of age one or more, despite the differences among newborns. However, the

issues here are conceptually important and revealing. It is generally true that differentiated

offspring require a notion of reproductive value that is not the simple expected discounted

value of newborns. Further, it is only when the effect of transfers is confined to newborns

that matters are as straightforward as they are here.45

In terms of accounting for the age profiles of empirically observed rates of time pref-

erence, it might be that the ideal model would combine intergenerational transfers, along

the lines developed here, and aggregate mortality shocks, as in Robson and Samuelson

[?]. The key effect of aggregate uncertainty in Robson and Samuelson [?] was to allow the

pure rate of time preference to exceed the level implied by population growth and mor-

tality, in a observational sense. This should be superimposed on the effects found here. A

further effect of aggregate uncertainty in Robson and Samuelson [?] was that pure rates

of time preference might decline with age and perhaps this effect would also survive in an

45However, a model in which transfers were made at birth, but had effects that lasted more than one

period, would seem likely to remain tractable.
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integrated general model. Such a general model, however, would clearly push the limits

of analytic feasibility.

It would also be of interest to generalize the system of transfers substantially. It is

realistic, after all, to allow these transfers to be made by parents to older children as well

as to newborns. Further, it is also realistic to allow transfers from parents who are beyond

the age of last reproduction, not only to their children but also to their grandchildren.

Such a generalization would form a useful counterpart to the investigations of Kaplan and

Robson [?]. Whereas Kaplan and Robson consider a full model of social intergenerational

transfers with no sex; such a generalization would involve more restricted intra-family

transfers and sex.

Such more general models of transfers often become rapidly intractable. It is not hard

to write an apparently simple model in which the transfer that a parent will make to a

child depends not merely on the age of the parent herself, but on the age of her parent

when she was born, the age of her grandparent when her parent was born, et cetera. Even

if strong simplifying assumptions are made that prevent such snowballing complications,

there remain a huge number of transfers that might be made in principle, not all of which

will have interior solutions, so that the model may be complex to analyze.

In this light, the present model is valuable as illustrating that some central results are

likely to be robust—such as the maximization of the appropriate concept of reproductive

value in a dynamic programming context. More specifically, the model suggests reasons

why children and younger adults may be too impatient and older adults too patient,

relative to the basic model. Finally, it provides a counterexample to any general claim

that sex would generate an inappropriately high rate of time discounting. That is, although

sex distorts the pure rate of time preference, it may well reduce it. Indeed, the reason why

sex fails to sharply increase impatience seems likely to be a feature of many more general

models.

It is important to note that despite varying rates of time discounting, there can be no

preference reversals in a frictionless model like the models used here. In the first place,

time preference is tied here to age, rather than to time into the future, as is conventional

in economics in general and in discussions of hyperbolic discounting in particular. Even

more fundamentally, if a particular choice involving two remote ages were optimal when

considered at some young age, evolved preferences would operate in models like these to

ensure that such a choice would always be made in the same way even when considered

at ages that were closer to the ages in question.
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Another issue that arises with respect to this model is as follows. There is here a

unique evolutionarily stable outcome. What then accounts for the heterogeneity in time

preference actually observed? Most basically, such questions trouble biologists also. That

is, why do we typically observe substantially dispersed phenotypes? One intriguing answer

is provided by models of aggregate uncertainty in which the optimal genotype involves

idiosyncratic randomization.46 Another answer that might be especially relevant here is:

Time preference is not entirely genetically controlled but is influenced by experience as well.

That is, for example, individuals who survive traumatic adverse economic outcomes might

well become more risk-averse and more patient. Observed heterogeneity of preferences

simply then reflects heterogeneity in personal economic histories. However, this approach

takes us even further from conventional economics and is left for future research.

The model of transfers with sex raises the following interesting issue. The game be-

tween the two parents is one where offspring survival is a public good. The undercontri-

bution that results is not surprising in that economic light and it is in complete agreement

with the biological perspective as in “Hamilton’s rule.” However, this prediction does not

seem iron-clad here. It would be more convincing in a model where the male contributes

nothing to raising offspring, as is typical of most mammalian species other than our own.

That is, suppose that the resources are contributed to offspring only by the female, in the

complete absence of the male. Although this absence would induce her to contribute more,

she would still have a marginal incentive to make transfers that was reduced on account

of sex by 1/2. When both parents are present and contribute, on the other hand, there

is an opportunity to find ways around this undercontribution problem. These range from

the biological at one end—endocrinology forging a pair bond between parents (“falling in

love”), for example—to selfishly rational behavior at the other—as in the familiar ways of

inducing cooperation in repeated games.

Time discounting is perhaps the key element in the debate over global warming. Most

famously, Stern et al. [?] generates a vastly more aggressive approach to the issue than

does Nordhaus [?]. This derives largely from Stern’s application of a much smaller pure

rate of time preference. (See Nordhaus [?] and Dasgupta [?].) Indeed, Stern’s use of

pure rate of time preference near zero has attracted criticism from economists as not

being realistic. Although Stern’s position was intended as ethical rather than realistic, a

theme in the subsequent literature on global warming has been to obtain results similar to

Stern’s without direct appeal to low pure rates of time preference. Gollier [?], for example,

46See Bergstrom [?] for example.
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considers a model with two goods—economic and ecological. Under some assumptions, it

follows that the ecological rate of discount derives from the ecological growth rate which

might then fall short of the economic discount rate similarly derived from the economic

growth rate. As another example, Weitzman [?] considers a model in which the marginal

product of capital is taken to be exogenous and uncertain at the start, although it is fixed

in the long run. In this model, a higher coefficient of relative risk-aversion lowers the rate

of discount below the risk-free rate.

How might the current analysis bear on the global warming debate? A basic issue

concerns the meaning of ethical judgments. Binmore [?], for example, argues cogently

that our actual ethical judgments have an evolutionary basis. This position would not

seem to limit the freedom of participants in the global warming debate to propose any

ethical position, but rather constitutes a prediction about the guideline that is ultimately

implemented. What does the present analysis predict under such a positive interpretation

of ethics? It could be that the divergence between the individual and social rates of

time discounting was closed as discussed in the penultimate paragraph above. This would

reinforce the Nordhaus position in the sense that the actually implemented social discount

rate would equal the private discount rate. More interestingly, if this divergence were

not closed, the present model demonstrates a contrarian possibility—that the actually

implemented social discount rate would exceed the individual discount rate.47
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