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ABSTRACT

Recent research in neuroscience inspires a foundation for a cardinal
utility function that is adaptive and perhaps hedonic. We model ad-
aptation as arising from a limited capacity to make fine distinctions,
where the utility functions adapt in real time. We give the noisy
nature of choice a central role. The mechanism adapts to an arbit-
rary distribution in a way that is approximately optimal, in terms
of minimizing the probability of error. The model predicts the so-
called “hedonic treadmill” and sheds light on national happiness
measures.
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1. INTRODUCTION

Jeremy Bentham is famous for, among other things, the dictum “the
greatest happiness for the greatest number”. The happiness that
Bentham described was hedonic—derived from pleasure, that is—
cardinal, and capable of being summed across individuals to obtain
a basic welfare criterion. Conventional welfare economics remains
needful of some degree of cardinality. However, in the context of
individual decisions, of consumer theory, in particular, economics
has completely repudiated any need for cardinality, on the basis of
“Occam’s Razor,” a theme that culminates in the theory of revealed
preference.

What does modern neuroscience establish about the hedonic or car-
dinal nature of utility, as used in economic decisions? What is relev-
ant are three aspects of an economic choice—utility in the revealed
preference behavioral sense; neural firing rates in the brain that cap-
ture the attractiveness of each option as it is considered as a potential
selection; and the hedonic neural reward of actually obtaining an op-
tion. Although neuroscience has made significant progress, which
is briefly outlined in the next subsection, there remain gaps in the
account that rigorously and precisely ties revealed preference to he-
donic reward.

There are nevertheless fundamental well-established properties of
all neural systems that are relevant to economic decisions. In the first
place, neural systems are generally adaptive, and can react rapidly
to changes in the environment. Adaptation is a characteristic of any
form of perception. For example, if the variance of visual stimuli
increases, the sensitivity of relevant visual neurons are reduced.

Two additional interrelated properties of neural systems are impre-
cision of perception and noisiness. If two sounds are close enough
in loudness, for example, an individual may be unable to perceive
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which is louder.2 Imprecision provides a clear rationale for adapta-
tion. That is, if the ability to make sharp distinctions is limited, the
ability should be shifted to where it is most likely to be needed.

The noisiness of neural systems is pervasive. The firing of a partic-
ular neuron is random, but stochasticity does not vanish in larger
systems. Choices that are finally made by animals or humans are
noisy. Given a particular precisely specified binary choice, an indi-
vidual will sometimes choose one thing, sometimes another.

We build a model of adaptive economic choice based on these key
features of neural systems. The model readily accounts for a num-
ber of behavioral anomalies. For example, it accounts directly for a
preference for rising reward schedules. Although the model has pre-
dictive power, it is not intended in a normative sense. The adapta-
tion that is induced makes the normative interpretation of happiness
surveys difficult, for example.

1.1. Psychology and Neuroscience Background. A useful frame-
work for considering the background literature involves distinguish-
ing between ‘liking’, ‘wanting’ and learning. (See Berridge, Robin-
son, and Aldredge, 2009, for example.) In the first place, liking refers
to the hedonic experience of final consumption. Secondly, wanting
refers to the processes that incentivize an individual to seek such
consumption experiences. Although liking and wanting clearly ought
to be closely related in a well-functioning organism, they can be
shown to be independent—it is possible, that is, to want something
one does not like, or to like something one does not want. The third
relevant process is learning—that is, how an individual can come to
predict outcomes. Again, although learning and wanting ought to
be closely related, they are dissociable. From the point of view of
modelling choice, liking and wanting are the central phenomena.

2The study of the limits to perceptual precision is a major concern of psychology. Foley and Matlin

(2009) is a textbook treatment.
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Two papers by neuroscientists that are apparently motivated by eco-
nomic theory are Lak, Stauffer, and Schultz (2014) and Stauffer, Lak
and Schultz (2014). These focus on dopamine neuron firing rates,
and fall directly under the rubric of learning. That is, a well-established
empirical regularity is that dopamine neurons fire in response to “re-
ward prediction error”—unexpected reward, or one that is larger
than expected. This is not directly the anticipated experience of con-
suming each option in a choice situation, or the experience of actual
consumption. Nevertheless, the fit with economic theory is notable.
That is, dopamine neuron firing rates, as induced by reward pre-
diction error, and relevant in learning, directly reflect the economic
utility of a gamble, and are predictive of stochastic choice. Stauffer,
Lak and Schultz (2014) show dopamine activity reflects the behavior-
ally established von Neumann Morgenstern utility of a gamble. Lak,
Stauffer, and Schultz (2014) show that this analysis can be extended
to multi-attribute bundles.

Similarly, Glimcher (2004) is a systematic account of neuroeconomics
by a pioneer, demonstrating how economics can motivate neuros-
cience. For example, he describes evidence that neurons in the “lat-
eral intraparietal” (LIP) area of the brain encode prior probabilities,
posterior probabilities, and value, as are needed to generate expec-
ted utility. Finally, there is a large literature on neural adaptation,
in an economic choice context, in particular. For example, Louie,
Glimcher, and Webb (2015) is one of several papers arguing for a a
particular form of adaptation—divisive normalization. A simple ra-
tio formula resolves various apparent choice anomalies, such as a
dependence on irrelevant alternatives.

1.2. Sketch of the Paper. We first consider a stylized model of how
a neuronal network makes a binary economic choice. The options
have been drawn iid according to a cdf F, say, and each is processed
by such a network. The mapping from actual value to the value
used in the choice has two components. The first component is a
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deterministic step function which generates adaptation by means of
endogenously setting the location of the steps, the thresholds. The
second component is noise, so the model is then essentially one of
quantized random utility.

Our key new contribution is to model rapid and automatic adapt-
ation, and to discuss how such adaptation is reflected in economic
choices. Such automatic adaptation might also characterize neural
processes for perception, for example. When an outcome arrives
between two thresholds, the thresholds move closer together, each
by a given increment. An irreducible Markov chain with a unique
invariant distribution describes the dynamics of the thresholds. As
the increment is made smaller, the invariant distribution puts full
weight on the thresholds being at the quantiles of the distribution
F. Thus, the thresholds adapt to the distribution. Crucially, such
adaptation is approximately optimal.

We next derive some formal properties of the model in Section 3.
We show it generates an observable cardinal utility function that re-
flects F, under the probability of error criterion. The cardinality de-
rives from the probabilities arising in noisy choice. This utility can
be empirically identified from noisy choice data, as can the noise, so
adaptation has observable choice consequences. It would be of sub-
stantial interest to investigate how the cardinal utility here relates
to neural firing rates—both those reflecting the contemplation of an
option and those deriving from its consumption.

A difficulty in identifying cardinal utility from noisy choice is the
endogeneity of utility—set at F in the simplest case. That is, if the
sequence of observations from F were not typical, utility would shift
away from F. Indeed, there is a fundamental trade-off between speed
of adjustment and the precision of adjustment.

Our model accounts immediately for the “hedonic treadmill”—that
is, the reversion of average utility to its original level despite a vast
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shift in the distribution of rewards. The adaptation of utility, as re-
flected in the hedonic treadmill, suggests a reconsideration of the
use of national happiness measures, as has been recently advocated.
The discussion suggests the importance of distinguishing between
positive and normative views. A positive interpretation is all that is
needed here and this interpretation already raises issues. A norm-
ative interpretation of a criterion that is adaptive raises still further
issues. For example, doubling all rewards leads to complete hedonic
reversion, which seems questionable as a normative property. It is
noted, however, how this depends on the probability of error cri-
terion used here. Under the expected fitness criterion, average utility
may depend on the distribution F. This may offer positive insights
into surveys of national happiness, but is hardly a firm normative
basis for them.

1.3. A Few Related Papers in Economics. There are a handful of
related papers in economics. Robson (2001) provides the basis on
which the current paper is constructed. There are thresholds, but no
noise. In order to minimize the probability of error, the thresholds
should be at the quantiles of the distribution F, but there is no pro-
cess for ensuring this allocation.

Netzer (2009) investigates the Robson model using the expected fit-
ness criterion instead of the probability of error. He shows that,
whereas the Robson approach generates a limiting density of thresholds
given by f , where f is the pdf associated with F, the expected fitness
approach generates a limiting density of thresholds proportional to
f 2/3. This again puts fewer thresholds where f is low, but to a less
dramatic extent. Intuitively, the expected fitness criterion is more
concerned with low f than is the probability of error criterion, since,
although the probability of error is small if f is small, the size of the
error is large.
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Rayo and Becker (2007) address the issue of adaptation using an al-
ternative model of bounded rationality. Individuals cannot maxim-
ize expected utility precisely, but all choices that come within some
band are considered equivalent. The problem is to construct the op-
timal utility function. Under simplifying and limiting assumptions,
optimal utility is a step function, jumping from 0 to 1 at maxim-
ized expected income, so concentrating all incentives at the point
of greatest interest, and adapting to the distribution.

Woodford (2012) adopts an approach based on informational trans-
fer and rational inattention. Rather than the constraint being the
number of thresholds, the constraint is the informational transmis-
sion capacity of the channel. Adaptation arises to use the available
resources to make the most accurate distinctions possible and the
key predictions arise from this adaptation.

All of these previous papers describe how adaptation would be ad-
vantageous and make predictions presuming this has occurred; the
contribution of the present paper is to show how—to provide an ex-
plicit real-time low-rationality adjustment mechanism.

2. THE MODEL

Consider the following abstract view of how a decision is orches-
trated in the brain. We will concentrate, for simplicity, on the case of
two options. Each option provides a stimulus y ∈ [0, 1]. This is inter-
preted as a sensory cue—a visual one, for example. This stimulus is
processed by a neural network in the brain, generating firing of de-
cision neurons given by z = h̃(y) ∈ [0, 1]. These neurons anticipate
the hedonic consequences of potential consumption of each of the
options. This function h̃ involves noise, and is necessarily inaccur-
ate. The inaccuracy reflects a limited ability to make fine perceptual
distinctions. This, in turn, produces a benefit from adaptation.

Suppose, in particular, that h̃(y) = h(y) + d̃δ. The function h :
[0, 1] → {0, δ, 2δ, 3δ, ..., Nδ = 1}, is a non-decreasing step function
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characterized by thresholds xn, at which a jump is made from one
level (n − 1)δ to the next higher level nδ, for n = 1, ..., N. We have
0 ≤ x1 ≤ .... ≤ xN ≤ 1 where we set x0 = 0 and xN+1 = 1. Adapt-
ation is captured within the deterministic component function h by
means of shifts in the thresholds xn, n = 1, ..., N.

The random variable d̃ that represents noise has a symmetric distri-
bution on {−D, ..., D}. If n ∈ {D, ...N−D}, away from the ends, that
is, then d̃ = 0 with probability π0, and d̃ = d or − d with probability
πd, for d = 1, ..., D. We assume that 2D < N, so that such thresholds
exist. Of course, π0 + 2 ∑D

1 πd = 1. In addition, it assumed that these
probabilities form a decreasing convex sequence so that

(2.1) π0 − π1 > π1 − π2 > .... > πD−1 − πD > πD > 0.

These noise probabilities need to be specified differently near the
ends, if n < D or if n > N − D, that is, since otherwise the dis-
tribution specified above would go beyond the bounds. The prob-
abilities of outcomes of d̃ that would put h̃(y) beyond the ends are
re-assigned to the originating outcome.3 That is, if n < D—

Pr{d̃ = m} = πm, m = 1, ..., D

Pr{d̃ = −m} = πm, m = 1, ..., n

Pr{d̃ = 0} = π0 + πn+1 + ... + πD.

An analogous treatment applies if n > N − D—

Pr{d̃ = −m} = πm, m = 1, ..., D

Pr{d̃ = m} = πm, m = 1, ..., N − n

Pr{d̃ = 0} = π0 + πN−n+1 + ... + πD.

This issue might be finessed by allowing the function h̃ to go outside
[0, 1]. However, the bounded range of neural activity, which is as-
sumed to limit the range of h should apply equally to limit the range
of h̃.

3This treatment has the desirable technical feature that the matrix governing the evolution of an

approximating differential equation system is symmetric and negative definite.



9

There are two options, y1 and y2, say, generating neural activity in
decision neurons h̃(yi), i = 1, 2. If h̃(yi) > h̃(yj), i is chosen, as is
clearly optimal. That is, the probability that yi > yj is then neces-
sarily greater than 1/2. If h̃(y1) = h̃(y2), each option is chosen with
probability 1/2.

It is without much loss of generality to suppose that y represents
fitness. That is, if y instead represents money, for example, which
generates fitness according to an increasing concave function, only
minor notational changes need to be made. The yi, i = 1, 2, are as-
sumed to be independent, distributed according to the same con-
tinuous cumulative distribution function, F, with probability dens-
ity function, f . Although the realizations are random ex ante, they
are realized prior to choice. The distribution F nevertheless plays an
important role because the thresholds are assumed to be set in the
light only of F rather than the realizations.

The simplest special case of this model is when there is no noise,
so that π0 = 1 (as in Robson, 2001). Now errors arise only when
both yi, i = 1, 2 lie in the same interval [xn, xn+1). Minimizing the
probability of error implies that that the thresholds should be equally
spaced in terms of probabilities; should be then at the quantiles of
the distribution.4 The thresholds should adapt to the distribution
F. The present approach, involving explicit noise, smooths over the
just noticeable differences. The thresholds are retained purely as a

4An attractive alternative criterion is maximization of expected fitness or, equivalently, minimiza-

tion of the expected fitness loss. It can be shown, however, that the analysis is more complex in this

case. Each threshold now ought to be at the mean of the distribution conditional on being between the

two neighboring thresholds. It is then not possible to use purely qualitative observations to estimate

the mean, as was true for the median. Nevertheless, approximately optimal rules can be derived that

use the distances to the two neighboring thresholds. Analyzing the expected fitness criterion in the

presence of noise is cumbersome so the present paper plumps for investigating the implications of

noise under the simpler probability of error criterion.
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technical device to render the adjustment process tractable, since it
involves adjusting a finite number of parameters.5

In this model with noise, it remains true that the thresholds should
be denser where f is higher. Concentrating the the thresholds like
this concentrates the distribution of each noisy signal h̃(yi) around
the true value h(yi) and so reduces the probability of error. In the
limit when the number of thresholds tends to infinity, and the noise
distribution is scaled in proportion, the adjustment process becomes
slow. However, the limit yields basically a standard continuous model
of noisy utility, with the important novelty that utility is endogen-
ous.

The key contribution here is then to address the questions: How
could the thresholds here adjust to a novel distribution, F? What
implications are there of the adaptation process? We now formulate
and address these questions.

In modelling how the thresholds adjust, we make the the simplifying
assumption that there is a single stream of outcomes, represented as
y, and abstract from the choices made. Alternatively, we could inter-
pret the analysis as supposing that y1 and y2 arrive in alternate peri-
ods, with the system adapting to each of them, and a choice between
them being made in every even period.

Suppose then, for simplicity, are confined to a finite grid G = {0, ε, 2ε, ..., (G−
1)ε, 1}, for an integer G such that Gε = 1. The thresholds are time
dependent, given as xt

n ∈ G , where 0 ≤ xt
1 ≤ .... ≤ xt

N ≤ 1, at time
t = 1, 2, .... Consider the rule of thumb for adjusting the thresholds—

(2.2) xt+1
n =


xt

n + ε with probability ξ if h(y) + d̃δ = nδ

xt
n − ε with probability ξ if h(y) + d̃δ = (n− 1)δ

xt
n otherwise

,

5The threshold model without noise has the conceptual drawback that, despite being a model of

imperfect discrimination, the edges of intervals are sharply discerned. The model with explicit noise

suffers less from the criticism in the sense that errors depend largely on the noise.
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for n = 1, ..., N where ξ ∈ (0, 1).

3. RESULTS

3.1. Convergence. For general N, we have

Theorem 3.1. Consider the model with or without noise, so that D ≥ 0.
In the limit as ε → 0, the invariant joint distribution of the thresholds
xt

n converges to a point mass at the vector x∗n, where F(x∗n) = n
N+1 , n =

1, ..., N.6

Proof. See Appendix.

The basic property that must hold in the limit as ε → 0 is that all
signals h̃(y) = h(y) + r̃δ are equally likely—each threshold must be
equally likely to move left or right, in the limit, under the rule of
thumb. The stated result that F(x∗n) = n/(N + 1), for n = 1, ..., N,
then follows, given the treatment of the noise near the ends.

The basic property implies that the placement of the thresholds max-
imizes the rate of Shannon information transfer, neglecting the dif-
ferential meaning of signals near the extremes, as in Laughlin (1981).
This argument, which is for a single channel and an abstract cri-
terion, contrasts with that for the present binary choice and minim-
ization of the probability of error.

The property that F(x∗n) = n/(N + 1), for n = 1, ..., N is that utility,
U, say, adapts to the distribution, F. Indeed, in the limit as N → ∞,
U = F. If F has a typical unimodal shape, utility has an S-shape
similar to that in Kahneman-Tversky. This suggests an application
to choice under uncertainty.7

Intuition for Proof.

Step 1. It can be shown that an ordinary differential equation sys-
tem (ODE) approximates the Markov chain, when ε is small. This

6For any particular ε > 0, the invariant distribution has full support; only in the limit does this

invariant distribution converge to the x∗n.
7See Netzer (2009), for example.
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approximation is obtained by letting ε → 0 over a fixed interval of
time, but also offsetting this by increasing the number of repetitions.
This compensating increase in the rate of repetition does not affect
the invariant distribution, of course. The differential equation sys-
tem is obtained by shrinking the small interval of time. A complic-
ation is that the increments in the position of the thresholds are not
independent. Nevertheless, each increment has a bounded effect on
subsequent increments and the full effect of the strong law of large
numbers can be shown to still apply.

Step 2. A key step is then to show the ODE system is globally asymp-
totically stable. This follows from the application of a Lyapunov
function. The system converges to the desired vector x∗n, n = 1, ..., N,
as t → ∞, from any initial vector. This follows because the matrix
governing the F(xn) is symmetric, Metzlerian and irreducible. Fur-
ther it has a diagonal that is always weakly dominant and sometimes
is strictly dominant. It follows that the matrix is negative definite,
applying results from McKenzie (1959).

Step 3. Suppose, by way of establishing a contradiction, that some
limit of the invariant distributions of the Markov chain does not put
full weight on x∗n, n = 1, ..., N. The ODE system must lower the ex-
pected value of the Lyapunov function, using this limit of the invari-
ant distributions. Hence the Markov chain also lowers the expected
value of the Lyapunov function, using the invariant distribution of
that Markov chain as the initial distribution, whenever ε is small
enough. This yields the desired contradiction.

The rule of thumb illustrates that there exist low rationality mechan-
isms that can generate fast complete adaptation to an arbitrary distri-
bution. This process is intended to reflect the automatic process that
might take place within neurons. The thresholds are a device that
renders the analysis of adaptation more tractable. They still allow
the step function h to approximate an arbitrary increasing continu-
ous function.
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If the distribution is known to come from a parametric class, then the
rule of thumb described above will be slower than the full Bayesian
approach. If the cdf is known to normal, for example, but with an
unknown mean and variance, then all thresholds should shift in re-
sponse to an observation, to reflect the updated mean and variance.

The rule of thumb is fully non-parametric, capable of adaptation to
an arbitrary cdf. It is, loosely speaking, completely agnostic about
the implications of a local observation for the estimated distribution
far away. Consider the model with no noise, for simplicity, where
there are three pdf’s fi, i = 1, 2, 3, each arising with probability 1/3.
f1 is 2 on [0, 1/3) and 1/2 on [1/3, 1]. f2 is 1/2 on [0, 1/3) and on
(2/3, 1] but 2 on [1/3, 2/3]. f3 is 2 on (2/3, 1] and 1/2 on [0, 2/3].
By symmetry, the probability of each of the three intervals is 1/3, so
x1 = 1/3 and x2 = 2/3 is optimal. How would an observation in
[0, 1/3) change the estimated distribution? The posterior probability
of f1 is now 2/3 and that of f2 and f3 are now each 1/6. It follows
that x1 should move to the left, to move towards the median of the
distribution conditional on being between 0 and 2/3, but x2 is still
at the median between 1/3 and 1, because f2 and f3 remain equally
likely.

If the number of thresholds N were increased, it would be compel-
ling to move not just the thresholds that were immediate neighbors
of an observation, but also those somewhat further away, presum-
ably with a declining probability. If this were not done, adaptation
would be slowed to a standstill with increasing N. Once this is done,
the limiting continuous model could also incorporate adaptation.

3.2. Approximate Optimality. We focus here on the the criterion of
the overall probability of error, P̄, say. Errors arises if yi < yj, so yj

should be chosen, but h̃(yi) > h̃(yj), so yi is actually chosen. If, that
is, h̃(yi) = niδ + d̃iδ, then an error arises if d̃i − d̃j > nj − ni > 0, that
is, if the noise favors the worse option sufficiently. There is also an
error with probability 1/2 whenever h̃(yi) = h̃(yj). The criterion P̄
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is then the expectation of all such errors, making due allowance for
the treatment of noise near the ends.

If D = 0, it is immediate that the equilibrium is exactly optimal, for
all N, in the sense of minimizing P̄. In this case, the only errors have
probability 1/2 and arise whenever h(yi) = h(yj)—that is, if ni = nj.
See Robson (2001).8

If D > 0, however, the end effects imply that the equal spacing of
the thresholds in probability cannot be exactly optimal, as is shown
by the following—

Example 3.1. Suppose N = 2 and D = 1. This example shows
how the treatment at the ends ensures that the thresholds lie at the
quantiles and, at the same time, that such equality cannot be op-
timal. More generally, this example illustrates the arguments (in the
Appendix) concerning the equilibrium, as in Theorem 3.1, and con-
cerning optimality, as in Theorem 3.2 below. Define ∆n = F(xn+1)−
F(xn) ≥ 0, n = 0, 1, 2, where ∑2

n=0 ∆n = 1. Consider first the equilib-
rium. It follows that

Pr{h̃(y) = 0} = (π0 + π1)∆0 + π1∆1.

To see this, note that, if h(y) = 0, which has probability ∆0, there is
a probability of (π0 + π1) that h̃(y) = 0, given how the noise distri-
bution is modified at the ends. If h(y) = 1, on the other hand, which
has probability ∆1, there is probability π1 that h̃(y) = 0.

8It is of interest to reconsider the model when the draws are not independent. Suppose, more

generally, that the two draws have a cdf F(y1, y2), with pdf f (y1, y2), say, which are symmetric in

y1, y2, for simplicity. Consider the case with one threshold at x, say. The probability of error is then

P̄ = (1/2)
∫∫

y1 ,y2≤x
f (y1, y2)dy1dy2 + (1/2)

∫∫
y1 ,y2≥x

f (y1, y2)dy1dy2.

Differentiating with respect to x and using symmetry yields the first-order condition for minimizing

P̄— ∫
y≤x

f (x, y)dy =
∫

y≥x
f (x, y)dy.

That is, the optimal x is such that the probability of y2 exceeding x conditional on y1 = x has to equal

the probability of y2 falling short of x conditional on y1 = x. The need to condition on each x makes this

problem more demanding in terms of data. Since the algorithm faces a harder problem, convergence

will be slower. I thank Jakub Steiner for this observation.
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It follows similarly that

Pr{h̃(y) = 1} = π0∆1 + π1∆0 + π1∆2,

and that
Pr{h̃(y) = 2} = (π0 + π1)∆2 + π1∆1.

The equilibrium is defined by the conditions that

dxn

dt
= ξ[Pr{h̃(y) = nδ} − Pr{h̃(y) = (n− 1)δ}] = 0, n = 1, 2.

It follows from simple algebra that ∆n = 1/3, n = 0, 1, 2.

The overall probability of error, on the other hand, is

P̄ = (1/2){(∆0)
2 + (∆1)

2 + (∆2)
2}+

{∆0∆1 + ∆1∆2}{(π0 + π1)π1 + π0π1 + 2(π1)
2}+ ∆0∆2(π1)

2.

Consider the middle term in the above expression, which is the most
complex. Suppose that h(y1) = 0 and h(y2) = δ, which has probabil-
ity ∆0∆1. Conditional on this event, there is probability π0 + π1 that
h̃(y1) = 0 and probability π1 that h̃(y2) = 0, in which case there is
then probability 1/2 of an error. Still conditional on this event, there
is probability π0 that h̃(y2) = δ and probability π1 that h̃(y1) = δ,
in which case there is a probability 1/2 of an error. Finally, still con-
ditional on h(y1) = 0 and h(y2) = δ, there is a probability (π1)

2

that h̃(y1) = δ and h̃(y2) = 0, in which case an error has probab-
ility 1. There is a factor of 2 because the roles of y1 and y2 can be
interchanged and a similar argument applies based on ∆1∆2. This
accounts for the middle term in the expression for P̄.

The first-order conditions for minimizing P̄ subject to ∑2
n=0 ∆n = 1

are then
∂P̄
∂∆0

= ∆0 + ∆1T + ∆2(π1)
2 = λ

∂P̄
∂∆1

= ∆1 + (∆0 + ∆2)T = λ

and
∂P̄
∂∆2

= ∆2 + ∆1T + ∆0(π1)
2 = λ
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where λ is a Lagrange multiplier and T = {2π0π1 + 3(π1)
2}.

However, if ∆n = 1/3, n = 0, 1, 2 it is immediate that

∂P̄
∂∆0

=
∂P̄
∂∆2

<
∂P̄
∂∆1

and hence that ∆0 = ∆2 = ∆1 is not optimal.

Nevertheless the relative importance of the end effects vanishes as N
increases, with D fixed, so the equilibrium is approximately optimal—

Theorem 3.2. Consider the model with noise, so that D > 0, and assume
that N > 4D. There exists π̄0 ∈ (0, 1) such that, whenever π0 > π̄0,
then— i) The equilibrium that F(x∗n) = n/(N + 1), for n = 1, ..., N is
“conditionally optimal”. That is, the choice of ∆2D = ...∆N−2D = 1

N+1 is
optimal conditional on fixing ∆0 = ...∆2D−1 = ∆N−2D+1 = ... = ∆N =

1
N+1 . ii) The equilibrium is approximately optimal unconditionally. That
is, suppose the optimal probability of error is given by P∗(N), where all
∆n, n = 0, ..., N are freely chosen, and the equilibrium probability of error
is P̄(N). It follows that limN→∞ NP∗(N) = limN→∞ NP̄(N) > 0.

Proof. See Appendix.

Essentially, the result ii) is that P̄(N) and P∗(N) have the same lead-
ing term if these expressions are expanded in powers of 1/N.

A different treatment at the ends would generally lead to unequal
∆n, n = 0, ..., N. There is no treatment that guarantees full optimality
and, in any case, it is seems conceptually problematic to explicitly
design noise. The treatment of ends here dramatizes how utility ad-
apts to the distribution. But adaptation arises under any treatment,
since the ∆n are always independent how F depends on x. Further-
more, the conclusion in Theorem 3.2 is robust to the end treatment.
That is, a different treatment at the ends would lead a different pre-
cise pattern of ∆n, n = 0, ..., N but these would tend to equality away
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from the ends, as N → ∞, and the approximate optimality result
would still be valid.9

4. CARDINAL UTILITY

The adaptive utility underlying choices here is cardinal, and can be
inferred from data, in principle. This identification is facilitated by
the way the separable error r̃ specified in terms of utility. We invest-
igate this in this section.

The thresholds serve merely as a technical device that facilitates dis-
cussion of adaptation. Apart from this issue, the model can be read-
ily formulated as continuous. It simplifies the discussion to consider
the continuous case. Consider the limit of the model in which N →
∞ but where D/N tends to a positive constant.10 We have essentially
random utility, where yi is chosen if and only U(yi)+ r̃i > U(yj)+ r̃j.
Suppose d̃ has cdf Π with support [−D̄, D̄].

Suppose the data are pairs (y1, y2) with associated observed probab-
ilities that y1 is chosen,

(4.1) J(y1, y2) =
∫ D̄

−D̄
Π(r + U(y1)−U(y2))π(r)dr.

Hence

J1(y, y) = U′(y)
∫ R̄

−R̄
(π(r))2dr.

This identifies U, up to an additive and a positive multiplicative con-
stant. The multiplicative constant cannot be identified in the sense
that scaling utility and the noise together produces indistinguishable
data. Without loss of generality, then,

U(y) =

∫ y
0 J1(z, z)dz∫ 1
0 J1(z, z)dz

, so that U(1) = 1.

9Further remarks on this issue are in Footnote 23 in the Appendix.
10The conditions on the πd as in Eq (2.1) needed for Theorem 3.1 can be extended so they hold

throughout the approximation.
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Debreu (1958) discusses the representation of stochastic choice by
cardinal utility, in such situation. In the present notation, J(y1, y2) is
represented by a utility function U when J(y1, y2) > 1/2 if and only
U(y1) > U(y2), as is clearly true here.11 The novelty here is explicit
endogeneity of the underlying utility.

Given U, the noise cdf Π can then also be obtained from the data.
The function J reflects the difference between two draws from the
noise distribution Π. Given the symmetry of this distribution about
0, J is also the cdf of the sum of two draws from Π, or the two fold
convolution of F with itself given as Π∗, say. The Laplace transform
of Π∗ is the square of the Laplace transform of F. That is, L (Π∗) =
(L (Π))2, where L is the Laplace transform. The Laplace transform
has a unique inverse so it follows that Π = L −1(

√
L (Π∗2)).12

We have thus shown that—

Lemma 4.1. If the probability of choosing y1 over y2 is as in Eq (4.1), then
both utility and the noise distribution can be derived from J(y1, y2). That

is, U(y) =
∫ y

0 J1(z,z)dz∫ 1
0 J1(z,z)dz

and Π = L −1(
√

L (Π∗2)) as discussed above.

The cardinality of utility found here derives its cardinality from prob-
ability, although in a different sense than is true for von Neumann
Morgenstern utility. It is not derived from neural firing rates. Non-
etheless, it would be fascinating to investigate how such cardinal
utility relates to the neural firing rates observed in a choice situation
and to the cardinal hedonic reward from actual consumption of a
chosen option.

The foregoing argument presupposes that the yi are drawn iid from
a given fixed F, when indeed the prediction is that U is F, in this
probability of error case. Reverting to finite threshold model, an

11Note that J(y, y) =
∫ D
−D ΠdΠ = 1/2 and that J1(y1, y2) > 0. Roberts (1971) discusses general

probabilistic choice functions.
12In more detail, the Laplace transform of a cdf Π is given by L (Π)(s) =

∫ ∞
0 e−stdΠ(t), where

s > 0, as in Feller (1971, Ch. XIII). Solving L (Π∗)(s) = (L (Π))2(s) for L (Π)(s) yields two roots, but

the negative root can be discarded.
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econometric complication arises if the underlying h function adapts
rapidly to F, since the mechanism will then be unduly affected by
a run of odd outcomes that are unlikely under F. This issue can-
not be solved satisfactorily by simply making adaptation slow, since
adaptation should be optimally be fast if F changes frequently. Ad-
aptation should be faster for penny-ante poker than for a move to
the West Coast.

In the model, there is a tradeoff between speed and accuracy of ad-
justment which is controlled by the parameter ε—when ε is large,
adaptation is rapid, but imprecise; if ε is small, adaptation is slow
but precise. This property seems bound to be independent of the
precise formulation here.

5. HAPPINESS IN ECONOMICS

The present explicitly dynamic adaptive model generates the “he-
donic treadmill”, as perhaps its most direct implication. That is, if
the distribution of rewards shifts up, there will be corresponding
surge in average utility, but this will be only temporary, with av-
erage utility reverting eventually to the baseline, as shown in Figure
1.

A widely cited paper on the “hedonic treadmill” is Schkade and
Kahneman (1998), who argue that the utility used in making a de-
cision to move to California, for example, disagrees with the utility
actually experienced after such a move. This experienced utility ex-
hibits a hedonic treadmill effect.13

The explanation the current model provides for the hedonic tread-
mill can be applied to the criterion of average national happiness,
as has been recently suggested as an alternative to GNP. And no

13Schkade and Kahneman also argue that decision utility is “wrong” and that such decisions ought

to be made of the basis of correctly anticipated experienced utility. Robson and Samuelson (2011) use

an alternative model due to Rayo and Becker (2007) to analyze this, generating distinct utilities, but

finding no error.
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doubt GNP has defects—it is incomplete, in particular. Clark et al.
(2018) go beyond the present positive approach to hedonic utility to
embrace a normative view. Adaptation raises various issues for the
positive view that is adopted here, but it is more problematic as a
normative approach. If the distribution of outcomes is scaled up,
for example, average utility is eventually unaffected. This does not
seem a desirable normative property of a welfare criterion.

In the probability of error case, there is complete adaptation, in gen-
eral, because

∫
F(x)dF(x) = 1/2 for all cdf’s F. This argument holds

for the limiting model, whether or not noise is assumed to remain
in the limit. This is because the mechanism described here generates
purely relative valuations. This was done in the interests of simpli-
city to highlight what is novel here, although it seems a priori that
some element of absolute valuation should remain.14 Nevertheless
the issues raised here with complete adaptation will still arise, but to
a lesser extent, given some relative adaptation.

Further, although we have largely confined attention here to the prob-
ability of error criterion, to facilitate the analysis of adjustment dy-
namics in the presence of noise, it is worth pointing out that the ex-
pected fitness criterion differs on this score. That is, if the criterion
is expected fitness and there is no noise, it follows that U′(x) =

k f (x)2/3 where k is such that U(1) = 1 (as in Netzer, 2009). Al-
though it is still true that

∫
U(x)dF(x) is fully invariant to rescaling

the cdf F, it depends on the scale-invariant properties of the distribu-
tion. Indeed, average utility can be made arbitrarily close to 1—the
absolute maximum value—by taking distributions converging to a
point mass at 1 in a particular fashion.

The problem is to maximize
∫ 1

0 U(x) f (x)dx subject to F′(x) = f (x)
U′(x) = k f (x)2/3, where F(0) = U(0) = 0 and F(1) = 1, and where
k is such that U(1) = 1.

14Conceivably, an effectively absolute quality to valuations could be introduced if the distribution

F were forced to retain a full range of possibilities.
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This can be translated to the equivalent problem

max
f

V(1)
W(1)

subject to

F′(x) = f (x); W ′(x) = f (x)2/3; V′(x) = W(x) f (x),

where F(0) = W(0) = V(0) = 0, and F(1) = 1. This “Problem of
Mayer” is awkward in the sense that, although first-order necessary
conditions are straightforward, it is difficult to obtain local or global
sufficient conditions. (See Hestenes, 1966, Ch. 7. ) This issue can be
finessed here since it can be shown directly that an unbeatable payoff
can be obtained in a limiting sense. It must be that V(1)/W(1) ≤ 1,
since V(1) is the expectation of W(x) which has maximum value 1.
Moreover—

Lemma 5.1. There is a sequence of fn, tending to a point mass at 1, such
that Vn(1)/Wn(1)→ 1.

Proof. See Appendix.

Surveys of happiness vary to a remarkably small extent with such
obvious factors as income. Although Denmark is much richer than
Bhutan, for example, it is only somewhat happier. This approximate
constancy may reflect adaptation. It would be interesting to explain
the variation that is left in terms of such a scale-invariant effect of the
distribution.

6. CONCLUSIONS

A key motivation here was to develop a model based on neuros-
cientific evidence about how decisions are orchestrated in the brain.
There is evidence that economic decisions are made by an adaptive
neural mechanism that may have hedonic underpinnings.

We present a simple model where utility shifts in response to chan-
ging circumstances. This adaptation acts to reduce the error caused
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by a limited ability to make fine distinctions, and is evolutionarily
optimal.

This model sheds light on the hedonic treadmill, and related phe-
nomena in economics. A related model, that considers choice between
gambles, promises to illuminate Kahneman and Tversky (1979), and
the substantial risk-aversion and risk-preference observed in experi-
ments, to an extent that is inconsistent with attitudes in contexts with
higher stakes (Rabin, 2000).

7. APPENDIX—PROOFS

Proof of Theorem 3.1.

Suppose that the (finite) Markov chain described by Equation (2.2)
is represented by the matrix AG.15 This is defined on the state space
SG = G N, describing the position of the N thresholds, so AG is a
|SG| by |SG| matrix. It is irreducible, so that there exists a integer P
such that (AG)

P has only strictly positive entries.16 Finally, define
the overall state space as S = [0, 1]N.

Consider an initial state xt
G ∈ SG where 0 ≤ xt

1,G ≤ xt
2,G ≤ ... ≤

xt
N,G ≤ 1. Let xt

G = (xt
1,G, ...xt

N,G). Consider then the random vari-
able xt+∆

G that represents the state of the chain at t + ∆, where ∆ > 0
is assumed divisible by ε, and is fixed, for the moment. Suppose
there are R iterations of the chain, where R = ∆/ε = G∆. These
iterations arise at times t + rε for r = 1, ..., R. Suppose the process is
constant between iterations, so it is defined for all t′ ∈ [t, t + ∆].

We consider the limit as R→ ∞ (so it is always implicit that G → ∞
as well). Taking this limit implies ε → 0, but also speeds up the

15See Mathematical Society of Japan (1987, 260, p. 963), for example.
16Consider any initial configuration, x0, say, and any desired final configuration, xT , say. The

simplest argument to this effect relies on ξ < 1. First move x0
1 to xT

1 by means of outcomes just to

the right or left, as required, that do not affect any other thresholds. This might entail x1 crossing

the position of other thresholds, but temporarily suspend the usual convention of renumbering the

thresholds, if so. This will take at most G periods. Then move x0
2 to xT

2 in an analogous way. And so

on. There is a finite time, GN, such that the probability of all this is positive.
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process in a compensatory way, making the limit non-trivial. This
speeding up is only a technical device and has no effect on the in-
variant distribution, in particular.

We adopt the notational simplification that

(7.1) Hn(x) = ξ Pr{h(y) + d̃δ = nδ}, n = 0, ..., N.

Given that N > 2D, it follows that, if n ≥ D and n ≤ N − D, so the
end effects do not arise, then

(7.2) Pr{h(y) + d̃δ = nδ} = π0∆n +
D

∑
s=1

πs∆n+s +
D

∑
s=1

πs∆n−s,

where ∆n = Pr{h(y) = nδ} = F(xn+1)− F(xn), n = 0, ....N.

However, if, for example n < D, then
(7.3)

Pr{h(y)+ d̃δ = nδ} =
(

π0 +
D

∑
s=n+1

πs

)
∆n +

D

∑
s=1

πs∆n+s +
n

∑
s=1

πs∆n−s.

An analogous expression holds if n > N − D.

We have then that xt+∆
n,G = xt

n,G + ∑R
r=1 εr where

εr =


ε with probability Hn(xt+rε

G )

−ε with probability Hn−1(xt+rε
G )

0 otherwise
.

It follows that
xt+∆

n,G − xt
n,G

∆
=

∑R
r=1 εr/ε

R
.

We will apply a version of the strong law of large numbers to this
expression to obtain the limiting ODE system. A complication is that
the increments εr are not independent because previous draws of εr

r < s affect the current value of xt+sε
G and hence the distribution

of εs. However, the strong law still holds because the effect of an
earlier outcome falling in [xn, xn+1) is to reduce the probability of a
subsequent outcome doing so.
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We consider a limit where the system starts at an arbitrary x̄ ∈ S. To
allow for this, let x̄G be any of the points in SG that are closest to x̄.
Of course, x̄G → x̄, as R, G → ∞.

Lemma 7.1. Define pr = Hn(xt+rε
G )−Hn−1(xt+rε

G ) as the expected value
of εr/ε. It follows that

∑R
r=1(ε

r/ε− pr)

R
→ 0,

with probability 1 for r = 1, ..., R as R→ ∞.

Proof. We apply Theorem 1 of Etemadi (1983). Define wr = ε+r /ε = 1,
if an outcome lies in [xn, xn+1), wr = ε+r /ε = 0, otherwise. It follows
that E(wr) = p+r ≤ 1, say, satisfying (a) for Theorem 1. To consider
the nature of the correlations consider draws r and s where r < s.
Define p+s (1) = Pr {ws = 1|wr = 1} and p+s (0) = Pr {ws = 1|wr = 0} .
It follows that

E(wrws) = E(wrws|wr = 1)Pr {wr = 1}+E(wrws|wr = 0)Pr {wr = 0} ,

so that
E(wrws) = p+r p+s (1) ≤ p+r p+s ,

satisfying (b) of Theorem 1. That is, the effect of ε+r /ε = 1 is to
increase xn, decrease xn+1, and hence to reduce p+s , so that there is
non-positive covariance between the increments. Finally, var(wr) =

(1 − p+r )p+r ≤ 1/4 so that ∑∞
r=1 var(wr)/r2 < ∞, satisfying (c) of

Theorem 1. Hence all the conditions of Theorem 1 of Etemadi are
satisfied.

Hence
∑R

r=1 ε+r /ε− p+r
R

→ 0,

with probability 1, for r = 1, ..., R as R→ ∞.

A similar analysis clearly holds for ε−r /ε, where ε−r /ε = 1, if an out-
come lies in [xn−1, xn), and ε−r /ε = 0, otherwise. Let p−r = Pr {ε−r /ε = 1}
and pr = p+r − p−r . Since εr = ε+r − ε−r , the result follows.17

17Etemadi implicitly assumes that the distributions of the initial random variables do not change

as further variables are added. Although these distributions do change here, inspection of his proof
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�

Any realized trajectory of the entire system of xt+rε
G must be continu-

ous, so all the Riemann integrals exist, and it follows that, where xs

is any realized trajectory over time s,

xt+∆
n,G − x̄t

n,G

∆
→
∫ t+∆

s=t [Hn(xs)− Hn−1(xs)] ds
∆

, n = 1, ..., N,

with probability 1, as R→ ∞. Taking the limit as ∆→ 0 yields—

(7.4)
dxn

dt
= Hn(x)− Hn−1(x), n = 1, ...N.18

shows it remains valid. An alternative perhaps more general proof relies on the property that all the

covariances tend to zero as R → ∞. This also makes clear that it is irrelevant that the distribution

of initial random variables changes with R. To see that the weak law follows under this approach,

redefine the binary random variables wr = ε+r /ε − p+r , where p+r = Pr {wr = 1} , for r = 1, ..., R.

Of course, E(wr) = 0 and it follows readily that E((wr)2) = p+r (1 − p+r ) ≤ 1/4. The wr are not

independent. Consider wr and ws, for example, where r < s. The problem is that the outcome of wr

affects p+s . Define p+s (1) = Pr {ws = 1|wr = 1} and p+s (0) = Pr {ws = 1|wr = 0} . It follows that

E(wrws) = E(wrws|ws = 1)Pr {ws = 1}+ E(wrws|ws = 0)Pr {ws = 0} .

This expression reduces to

E(wrws) = p+r (1− p+r )(p+s (1)− p+s (0))(1− 2(p+s (0) + p+s (1))

Hence |E(wrws)| ≤ (3/4)|p+s (1) − p+s (0)|. The effect of wr on p+s arises from the effect of a shift in

xn of at most ∆/R in absolute value on Hn(x). Since Hn(x) is continuously differentiable, there exists

K such that |p+s (1)− p+s (0)| ≤ K/R. Let SR = ∑R
r=0 wr . Chebyshev’s inequality (Feller, 1971, p. 151)

applied to the random variable SR/R is then

Pr
{
|SR|

R
≥ δ

}
≤ E(|SR|2)

R2δ2 .

Since E(|SR|2) ≤ R
4 + R23K

4R it follows that

Pr
{
|SR|

R
≥ δ

}
≤ 1 + 3K

4Rδ2 ,

for all δ > 0. Hence

Pr

{
|∑R

r=1 ε+r /ε− p+r |
R

≥ δ

}
→ 0,

for r = 1, ..., R as R → ∞. This is the weak law of large numbers here for the redefined w+
r . This

argument applies to the analogous w−r , so the weak law holds for the original wr = εr/ε.
18This expression is valid even if there are ties so that xn = xn+1, for example. In this case, xn and

xn+1 immediately split apart, relying on the convention that xn ≤ xn+1.
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Existence and uniqueness of the limiting realized path is then a con-
sequence of existence and uniqueness results for ordinary differen-
tial equations (ODE’s).(See Coddington and Levinson, 1955, The-
orem 1.3.1, and the remarks on p. 19, for example. All the Hn(x), n =

0, ..., N are Lipshitz continuous.)

The ODE system given by Eqs (7.1), (7.2), (7.3), and (7.4) can be sum-
marized as

(7.5)
dx
dt

= ξCz + ξb

where zn = F(xn), n = 1, ..., N, so that ∆n = zn+1 − zn, n = 0, ..., N.
The n× n matrix C and the n× 1 vector b are independent of x.

It follows that the elements of C, Cnm, are given by

(7.6) ξCnm =
dHn

dzm
− dHn−1

dzm
= − dHn

d∆m
+

dHn

d∆m−1
+

dHn−1

d∆m
− dHn−1

d∆m−1
.

Lemma 7.2. The matrix C is symmetric and negative definite.

Proof. Consider first n ≥ D + 1 and n ≤ N − D− 1. It is immediate
that

Cnn = −2(π0 − π1) < 0

and that

Cn,n+s = Cn,n−s = (πs−1 − πs)− (πs − πs+1) > 0, s = 1, ..., D + 1

Hence,
D+1

∑
−(D+1)

Cn,n+s = −2(π0 − π1) + 2(π0 − π1)− 2(π1 − π2)+

... + 2(πD−1 − πD)− 2πD + 2πD = 0,

so that C satisfies weak diagonal dominance for rows n where n ≥
D + 1 and n ≤ N − D− 1.

Consider now n ≤ D. (The case for n ≥ N−D is entirely analogous.)
Using Eq (7.6) it follows that

Cnn = −2(π0 − π1)− πn − 2
D

∑
n+1

πs < 0.
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Adopt the convention throughout that πd = 0 if d > D and sums are
0 if the range described is empty. We also have

Cn,n+1 = (π0 − π1)− (π1 − π2) +
D

∑
n+1

πs > 0.

For s = 2, ..., D + 1, it again follows that

Cn,n+s = (πs−1 − πs)− (πs − πs+1) > 0.

Hence
D+1

∑
0

Cn,n+s = −(π0 − π1)−
D

∑
s=n

πs < 0.

Hence C satisfies strict diagonal dominance in the first row, if n = 1,
that is. In addition, if n > 1 and n ≤ D,

Cn,n−1 = (π0−π1)− (π1−π2)+
D

∑
s=n

πs so
D+1

∑
s=−1

Cn,n+s = −(π1−π2) < 0.

It follows that
D+1

∑
s=−(n−1)

Cn,n+s = −(πn−1 − πn) < 0.

Thus C satisfies strict diagonal dominance for rows 1, ..., D and, ana-
logously, for rows N − D, ..., N.

Altogether, C satisfies weak diagonal dominance for all rows and
strict diagonal dominance for some rows.

We now show that C is symmetric. The above argument shows that

Cn,n+s = Cn,n−s = (πs−1−πs)− (πs−πs+1) > 0, n, n− s, n+ s = 1, ..., N, s ≥ 2.

Hence Cn,n+s = C(n+s),n, for all |s| ≥ 2. The only remaining issue is
then to show that Cn,n+1 = C(n+1),n for all n, n + 1 = 1, ..., N. This
is immediate if n ≥ D + 1 and n ≤ N − D − 1. Suppose then n ≤
D. Now Cn,n+1 = (π0 − π1)− (π1 − π2) + ∑D

s=n+1 πs and Cn,n−1 =

(π0 − π1) − (π1 − π2) + ∑D
s=n πs. Hence C(n+1),n = (π0 − π1) −

(π1 − π2) + ∑D
s=n+1 πs = Cn,n+1.

An analogous argument applies for n ≥ N − D
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In addition—i) C is “Metzlerian” since Cmn ≥ 0 for all m 6= n. ii)
Given the above observations, it follows that C has a “quasidomin-
ant diagonal” iii) It follows that C is irreducible since all elements
one off the diagonal on either side are are strictly positive.

It then follows from McKenzie (1959) that C satisfies “negative row
diagonal dominance” and so is negative definite and non-singular.
(See also Giorgi and Zuccotti, 2015, Theorems 1 and 2.) �

Lemma 7.3. The ODE system (7.5) is globally asymptotically stable, with
x(t)→ x∗ for all x(0), where F(x∗n) =

n
N+1 .

Proof. We have, from Eq (7.5),

(7.7)
dz
dt

= E
dx
dt

= ξEC(z + C−1b),

where E = diag(F
′
1, ..., F

′
N). Define then a candidate Lyapounov

function

V = −(z + C−1b)TC(z + C−1b).

Since C is negative definite, V ≥ 0 and V = 0 if and only if z =

−C−1b = z∗. Further

dV
dt

= −2ξ(Cz + b)TE(Cz + b) ≤ 0

for all z, since E is positive definite. Further dV
dt = 0 if and only if

z = z∗. That is, V is a Lyapounov function for the ODE system given
by Eq (7.7).19

Hence if x∗ is the unique solution of F(x∗n) = z∗n, n = 1, ..., N then
x(t) is globally asymptotically stable—that is, x(t)→ x∗ for all x(0).

Consider xn, n = 1, ..., N such that F(xn) = n
N+1 = zn, n = 1, ..., N.

It follows that ∆n = F(xn+1) − F(xn) = 1
N+1 , n = 0, ..., N. From

Eqs (7.2) and (7.3), Hn(x) = ξ
N+1 , n = 0, ..., N and dxn

dt = 0, n =

1, ..., N. Hence it must be that this is the unique rest point so F(x∗n) =
n

N+1 . �

19See Mathematical Society of Japan (1987, 126F, p. 492), for example.
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We can now complete the proof of Theorem 3.1. Suppose that ΩG is
the cdf representing the unique invariant distribution of the Markov
chain with transition matrix AG. Extend ΩG to be defined on the
entire space S = [0, 1]N. By compactness, it follows that there exists
a subsequence of the ΩG that converges weakly to a cdf Ω defined
on S (Billingsley, 1968, Chapter 1). That is, ΩG ⇒ Ω as G → ∞. We
will show that Ω puts full weight on the singleton x∗. Once this is
shown, it follows that the full sequence must also converge to this
Ω.

Suppose, then by way of contradiction, that Ω does not put full
weight on x∗, so that

∫
V(x̄)dΩ(x̄) > 0.

Reconsider then the construction that led to the differential equation
system that approximates the Markov chain, as described from the
beginning of this Appendix. Recall that x̄ ∈ S, is arbitrary, where
x̄ 6= x∗ and 0 ≤ x̄1 < x̄2 < ... < x̄N ≤ 1. Again, let x̄G be any of the
points in SG that are closest to x̄. Let x∆

G(x̄) be the random variable
describing the Markov chain at t = ∆ that starts at x̄G at t = 0.
Consider now the limit as G → ∞, so that the number of repetitions
in the fixed time ∆, given by R = ∆/ε also tends to infinity. Suppose
x∆(x̄) is the solution to Eq (7.5), that is, to ẋ = ξ(Cz + b), at t = ∆,
given it has initial value x̄ at t = 0.

Given that x̄ 6= x∗ and 0 ≤ x̄1 < x̄2 < ... < x̄N ≤ 1, it follows
that V(x∆(x̄)) < V(x̄), since we showed that V̇(x) < 0 on [0, ∆]. By
hypothesis,

∫
V(x̄)dΩ(x̄) > 0. It follows that

(7.8)
∫

V(x∆(x̄))dΩ(x̄) <
∫

V(x̄)dΩ(x̄).

That this inequality holds in the limit implies that it must hold for
large enough R and G, as follows.

First, the derivation of the approximating system ẋ = ξ(Cz + b) im-
plies, in particular, that

(7.9) EV(x∆
G(x̄))→ V(x∆(x̄)) as G → ∞,
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and it can be shown that this convergence is uniform in x̄.20

It now follows that

|
∫

EV(x∆
G(x̄))dΩG(x̄)−

∫
V(x∆(x̄))dΩ(x̄)| ≤

|
∫

EV(x∆
G(x̄))dΩG(x̄)−

∫
V(x∆(x̄))dΩG(x̄)|+

|
∫

V(x∆(x̄))dΩG(x̄)−
∫

V(x∆(x̄))dΩ(x̄)|.

The first term on the right hand side tends to zero, as G → ∞, by
the uniform convergence in Equation (7.9). The second term on the
right hand side also tends to zero as G → ∞ since ΩG ⇒ Ω and the
integrand is continuous. Hence

(7.14)
∫

EV(x∆
G(x̄))dΩG(x̄)→

∫
V(x∆(x̄))dΩ(x̄), as G → ∞.

Secondly, since ΩG ⇒ Ω, as G → ∞, and V is continuous, it follows
that

(7.15)
∫

V(x̄)dΩG(x̄)→
∫

V(x̄)dΩ(x̄).

20If δ(G) = supx̄∈S |EV(x∆
G(x̄))−V(x∆(x̄)|, then it is enough to show δ(G) → 0 as G → ∞. If this

is not true, there exists a δ > 0 and a sequence of x̄G such

(7.10) |EV(x∆
G(x̄G))−V(x∆(x̄G)| ≥ δ.

There must exist a convergent subsequence of x̄G such that x̄G → x̂ ∈ S, say. Since Eq (7.9) holds at x̂,

it follows that, if G is large enough,

(7.11) |EV(x∆
G(x̂))−V(x∆(x̂))| < δ/3,

if G is large enough. The ODE system is continuous in the initial state, given that the Hn(x) are Lipshitz

(Coddington and Levinson, 1955, Theorem 1.7.1, p. 22) so that,

(7.12) |V(x∆(x̄G)−V(x∆(x̂)| < δ/3,

if G is large enough. The Markov chain is continuous in the initial state for the same reason. Also, the

jump in the initial state from finding the closest state in SG to x̄G ∈ S is arbitrarily small if G is large.

Hence

(7.13) |EV(x∆
G(x̄G))− EV(x∆

G(x̂))| < δ/3,

if G is large enough. Now Eqs (7.11), (7.12) and (7.13) contradict Eq (7.10).
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Altogether, then Equations (7.8), (7.14) and (7.15) imply that, whenever
G is sufficiently large

(7.16)
∫

EV(x∆
G(x̄))dΩG(x̄) <

∫
V(x̄)dΩG(x̄),

which will yield a contradiction, since ΩG is the invariant distribu-
tion.

To show this explicitly, we revert to matrix notation given that the
inequality concerns a finite Markov chain. This chain has transition
matrix AG and an invariant distribution ΩG with finite support. Sup-
pose then that ωG is the column vector describing the invariant dis-
tribution, so that ωT

G = ωT
G AG, where T denotes the transpose. As

before, let R = ∆/ε. We have

EV(x∆
G(x̄G)) = ∑

x∈SG

eT(x̄G)(AG)
R(x)V(x),

where eT(x̄G) is the unit row vector that assigns 1 to x̄G ∈ SG and 0
to all other elements of SG.21

It follows that Equation (7.16) is equivalent to

∑
x∈SG

ωT
G(AG)

R(x)V(x) < ∑
x∈SG

ωT
G(x)V(x),

which is a contradiction, since ωT
G(AG)

R = ωT
G. This completes the

proof of Theorem 3.1.

Proof of Theorem 3.2.

Fix ∆0 = ... = ∆2D−1 = ∆N−2D+1 = ... = ∆N = 1
N+1 , as in Theorem

3.2. Consider free choice of the remaining ∆2D = ...∆N−2D. The
terms in P̄(N) that involve ∆n, n = 2D, ..., N − 2D are then

1
2
(∆n)

2 + {∆n−1∆n + ∆n∆n+1}Q1 + ....+ {∆n−2D∆n + ∆n∆n+2D}Q2D

where

Qd = 2 Pr {d1 − d2 > d}+ Pr {d1 − d2 = d} > 0, d = 1, .., 2D.

21That is, eT(x̄G)(AG)
R(x) is the probability that the Markov chain is in state x ∈ SG at ∆ given

that is in state x̄G at time 0.
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It follows then that

(7.17)
∂P̄

∂∆n
= ∆n + {∆n−1 + ∆n+1}Q1 + ....+ {∆n−2D + ∆n+2D}Q2D

and hence that

∂2P̄
∂∆n+s∂∆n

=


1 if s = 0
Qs if s = 1, ..., 2D
Qs if s = −1, ...,−2D

.

In general, P̄(N) is strictly convex in ∆n, n = 2D, ..., N− 2D if it satis-
fies strict diagonal dominance everywhere, that is, if 1 > 2 ∑2D

s=1 Qs.22

If this condition holds, strict diagonal dominance will holds near
the ends, since the effect is to truncate some of the Qs terms. Since
2 ∑2D

s=1 Qs = 0 if π0 = 1 strict convexity holds if π0 > π̄0, for some
π̄0 < 1.23

22Eq (2.1) does not imply this condition.
23This condition provides an argument for the robustness of the results here to the treatment of

noise at the ends. Taking the first difference of the first-order conditions, ∂P̄
∂∆n

= k, n = 0, ...N, from Eq

(7.17), for some Lagrange multiplier k, yields a difference equation in the ∆n of order 4D + 1, without

k. (See Mathematical Society of Japan, 1987, 104, p. 380, for example.) This difference equation has a

simple characteristic root of 1, corresponding to equal ∆n as focussed upon here. The additional roots

satisfy

1 +
2D

∑
s=1

Qs(λ
s + λ−s) = 0.

These other 4D roots occur in complex conjugate pairs and also in reciprocal pairs. (The symmetry

of the Qs accounts for roots arising as reciprocal pairs. If λ is a root going forward, then it must be a

root going backwards, so 1/λ is also a root.) Since the coefficients are real, as is the desired solution,

complex conjugate pairs arise with complex conjugate coefficients. A root with modulus different from

1 has to be given vanishing weight as N → ∞, since ∆n ∈ [0, 1], for all n. That is, if |λ| > 1, then the

corresponding solution explodes away from n = 0; if |λ| < 1 it explodes away from n = N. This

argument holds regardless of the treatment of noise at the ends. The condition that 1 > 2 ∑2D
s=1 Qs

guarantees that there cannot be another (complex) root with modulus 1. Indeed, if λ = eiθ is such a

root, then

1 + 2
2D

∑
s=1

Qs cos(sθ) = 0,

where θ is real. Of course cos(sθ) ≥ −1, so

1 +
2D

∑
s=1

Qs cos(sθ) ≥ 1− 2
2D

∑
s=1

Qs > 0,

ruling out any such additional root. That is, under the condition that 1 > 2 ∑2D
s=1 Qs, it follows that the

∆n robustly become close to equal away from the ends, as N → ∞.
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Conditional optimality entails minimizing P̄ over choice of ∆n, n =

2D, ..., N− 2D subject to ∑N−2D
n=2D ∆n = N−4D+1

N+1 . The first-order condi-
tions for an interior minimum are satisfied by choice of ∆n = 1

N+1 , n =

2D, ..., N − 2D, given ∆0 = ...∆2D−1 = ∆N−2D+1 = ... = ∆N = 1
N+1 ,

since, where λ is a Lagrange multiplier,

∂P̄
∂∆n

=
{1 + 2Q1 + ... + 2Q2D}

N + 1
= λ, n = 2D, ..., N − 2D.

Since P̄(N) is convex these first-order conditions ensure ∆n = 1
N+1 , n =

2D, ..., N − 2D is the global optimum for the constrained problem,
establishing i).

The following expression holds

P̄(N) =
1
2

{
(∆2D)

2 + ... + (∆N−2D)
2
}
+Q1 {∆2D∆2D+1 + ... + ∆N−2D−1∆N−2D}+

... + Q2D {∆2D∆4D + ... + ∆N−4D∆N−2D}+

O(D2) quadratic terms with at least one ∆n for n = 0, ..., 2D, or n = N− 2D+ 1, ..., N.

It follows immediately that, since ∆n = 1
N+1 , n = 0, ..., N, then

lim
N→∞

NP̄(N) =
1
2
+ Q1 + ... + Q2D.

It follows that P∗(N) is given by the same expression as P̄(N), where
all ∆n are freely chosen. Clearly P∗(N) ≤ P̄(N), so

lim inf
N→∞

NP∗(N) ≤ lim sup
N→∞

NP∗(N) ≤ lim
N→∞

NP̄(N).

Suppose, by way of establishing a contradiction, that lim infN→∞ NP∗(N) <

limN→∞ NP̄(N). Hence there exists a sequence of N → ∞ such
that limN→∞ NP∗(N) < limN→∞ NP̄(N). This contradicts the con-
ditional optimality of P̄(N). That is, consider a solution to the con-
strained problem given by ∆̂n = 1

N+1 , n = 0, ..., 2D − 1, N − 2D +

1, ..., N and

∆̂n = k∆∗n, n = 2D, ..., N − 2D,



34

where k satisfies

k

(
1−

2D−1

∑
n=0

∆∗n −
N

∑
n=N−2D+1

∆∗n

)
= 1− 4D

N + 1
.

It is clear that ∆∗n → 0 as N → ∞, so that k → 1 and it follows that,
where P̂(N) is the probability of error generated by the ∆̂n,

lim
N→∞

NP̂(N) = lim
N→∞

NP∗(N) < lim
N→∞

NP̄(N).

Hence the ∆̂n provide a superior solution to the constrained prob-
lem, a contradiction. Hence

lim
N→∞

NP∗(N) = lim
N→∞

NP̄(N) > 0.

This completes the proof of Theorem 3.2.

Proof of Lemma 5.1.

Choose any strictly increasing and continuous f : [0, 1] → (0, ∞)

where f (x) → ∞ as x → 1 and
∫ 1

0 f (x)dx = 1− m for m ∈ (0, 1).

Define h(δ) as the unique strictly decreasing solution of
∫ 1−δ

0 f (x)dx+
h(δ)δ = 1, and consider the pdf given by f on [0, 1− δ) and the con-
stant h(δ) on [1− δ, 1]. It follows that W(x) = W(1− δ) + h2/3(x −
1+ δ) if x > 1− δ so that V(1) =

∫ 1−δ
0 W(x) f (x)dx + h

∫ 1
1−δ W(x)dx.

After some algebra, it follows that V(1) = V(1− δ) + hδW(1− δ) +
h2/3δ2

2 . As δ → 0, have hδ → m so that h2/3δ → 0. It follows that
W(1− δ) → W(1). Hence V(1)

W(1) ≥ hδ
W(1−δ)

W(1) → m, as δ → 0. For any
sequence of fn → 0 such that mn → 1, it follows that the associated
Vn and Wn satisfy

Vn(1)
Wn(1)

→ 1,

since Vn(1)
Wn(1)

≤ 1.24

24The necessary conditions for the problem of Mayer described before Lemma 5.1 are as follows

(Hestenes , 1966, Theorem 4.1, p. 315). It is necessary to impose a finite upper bound, f̄ , say, on the

density f , since otherwise existence may not hold. Define then the Hamiltonian

H = ψVW f + ψF f + ψ̄W f 2/3,
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FIGURE 1. Simulation of Hedonic Treadmill.
F(x) = x for 1− 20, 000 periods; F(x) = x5 for 20, 000− 100, 000.
The probabilities πd for d = 0, 1, 2, 3 are at the top.
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