
The Evolution of Strategic Sophistication

By Nikolaus Robalino and Arthur Robson ∗

This paper investigates the evolutionary foundation for our abil-
ity to attribute preferences to others, an ability that is central to
conventional game theory. We argue here that learning others’
preferences allows individuals to efficiently modify their behavior in
strategic environments with a persistent element of novelty. Agents
with the ability to learn have a sharp, unambiguous advantage over
those who are less sophisticated because the former agents extrap-
olate to novel circumstances information about opponents’ prefer-
ences that was learned previously. This advantage holds even with
a suitably small cost to reflect the additional cognitive complexity
involved.

Conventional game theory relies on agents correctly ascribing preferences to the
other agents. Unless an agent has a dominant strategy, that is, her optimal choice
depends on the choices of others and therefore indirectly on their preferences.
We consider here the genesis of the strategic sophistication necessary to acquire
others’ preferences.

We address the questions: Why and how might this ability to impute prefer-
ences to others have evolved? In what types of environments would this abil-
ity yield a distinct advantage over alternative, less sophisticated, approaches to
strategic interaction? In general terms, the answer we propose is that this ability
is an evolutionary adaptation for dealing with strategic environments that have
a persistent element of novelty.

Our interpretation of strategic sophistication is dynamic in that it entails learn-
ing other agents’ preferences from their observed behavior. It also extends the
theory of revealed preference in that knowing others’ preferences has consequences
for one’s own actions. Throughout the paper, we refer to such strategic sophisti-
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cation, for simplicity, as ToP, for “theory of preferences”.1

The argument made here in favor of such strategic sophistication is a substantial
generalization and reformulation of the argument in Robson (2001) concerning the
advantage of having an own utility function in a non-strategic setting. In that
paper, an own utility function permits an optimal response to novelty. Suppose
an agent has experienced all of the possible outcomes, but has not experienced
the particular gamble in question and so does not know the probabilities with
which these are combined. This latter element introduces the requisite novelty.
If the agent has the biologically appropriate utility function, she can learn the
correct gamble to take; conversely, if she acts correctly over a sufficiently rich set
of gambles, she must possess, at least implicitly, the appropriate utility function.

We consider here a dynamic model in which players repeatedly interact. Al-
though the perfect information game tree is fixed, with fixed terminal nodes,
there are various physical outcomes that are assigned to these terminal nodes in
a flexible fashion. More particularly, the outcomes are randomly drawn in each
iteration of the game from a finite outcome set, where this outcome set grows
over time, thus introducing suitable novelty.

Individuals know how their own utility functions are defined on all these physical
outcomes, but do not know the preferences of their opponents. There will be an
advantage to an agent of sophistication—of effectively understanding that her
opponents act optimally in the light of their preferences. Such a sophisticated
agent can then learn opponents’ preferences in order to exploit this information.

The sophisticated players are contrasted with naive players who are reinforce-
ment learners, viewing each subgame they initiate as a distinct indivisible cir-
cumstance. Naive players condition in an arbitrary fashion on their own payoffs
in each novel subgame. That is, their reinforcement learning is initialized in a
general way.

Sophistication enables players to better deal with the innovation that arises
from new outcomes than can such “naive” players that adapt to each subgame
as a distinct circumstance.2 The edge to sophistication derives from a capacity
to extrapolate to novel circumstances information that was learned about others’
preferences in a previous situation.3

1Our “theory of preferences” is an aspect of “theory of mind”, as in psychology. An individual with
theory of mind has the ability to conceive of herself, and of others, as having agency, and so to attribute
to herself and others mental states such as belief, desire, knowledge, and intent. It is generally accepted
in psychology that human beings beyond infancy possess theory of mind. The classic experiment that
suggests children have theory of mind is the “Sally-Ann” test described in Baron-Cohen, Leslie, and Frith
(1985). According to this test, young children begin to realize that others may have beliefs they know
to be false shortly after age four. This test relies on children’s verbal facility. Onishi and Baillargeon
(2005) push the age back to 15 months using a non-verbal technique. Infants are taken to express that
their expectations have been violated by lengthening the duration of their gaze. The presence of this
capacity in such young individuals increases the likelihood that it is, to some degree at least, innate.

2The novelty here is circumscribed, but it is clear that evolution would be unable to deal with
completely unrestricted novelty.

3The distinction between the ToP and naive players might be illustrated with reference to the fol-
lowing observations of vervet monkeys (Cheney and Seyfarth 1990, p. 213). If two groups are involved
in a skirmish, sometimes a member of the losing side is observed to make a warning cry used by vervets
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Consider now our strategic environment in greater detail. We view the particu-
lar environment here as a convenient test-bed on which we can derive the speeds
with which the various players can learn. The basic results do not seem likely to
be specific to this particular environment, so these differences in relative learning
speeds would be manifested in many alternative models.

We begin by fixing a game tree with perfect information, with I stages, say.
There are I equally large populations, one for each of the stages or the associated
“player roles.” In each iteration of the game, a large number of random matches
are made, with each match having one player in each role. The physical outcomes
assigned to the terminal nodes are drawn randomly and uniformly in each iteration
from the finite outcome set that is available then.

Players have preference orderings over the set of outcomes that are ever possible,
and so preferences over the finite subset of these that is actually available in each
period. Each player is fully aware of her own utility function but does not directly
know the preference ordering of his opponents.

At each date, at the start of each period, a new outcome is added to the set
of potential outcomes, where each new outcome is drawn independently from a
given distribution. The number of times the game is played within each period
grows at a parametric rate, potentially allowing the preferences of other players
to be learned.4

All players see the history of the games played—the outcomes that were chosen
to attach to the terminal nodes in each iteration of the game, and the choices
that were made by all player roles (but not, directly, the preferences of others).
Players here differ with respect to the extent and the manner of utilization of this
information.

All strategies use a dominant action in any subgame they face, if such an action
is available. This is for simplicity, in the spirit of focussing on the implications
of others’s preferences, while presuming full utilization of one’s own preferences.
However, the current set up would permit such sequentially rational behavior to
be obtained as a result rather than as an assumption.

Although the naive strategies can condition in an arbitrary way on their own
observed payoffs in a novel subgame, it is crucial that they condition only on these
payoffs. The other details of these naive strategies are not relevant to the main
result. Indeed, even if the naive players apply a fully Bayesian rational strategy
the second time a subgame is played, they will still lose the evolutionary race

to signal the approach of a leopard. All the vervets will then urgently disperse, saving the day for the
losing combatants. The issue is: What is the genesis of this deceptive behavior? One possibility, corre-
sponding to our ToP strategy, is that the deceptive vervet effectively appreciates what the effect of such
a cry would be on the others, acts as if, that is, he understands that they are averse to a leopard attack
and exploits this aversion deliberately. The other polar extreme corresponds to our naive reinforcement
learners. Such a type has no model whatever of the other monkeys’ preferences and beliefs. His alarm
cry behavior conditions simply on the circumstance that he is losing a fight. By accident perhaps, he
once made the leopard warning cry in such a circumstance, and it had a favorable outcome. Subsequent
reapplication of this strategem continued to be met with success, reinforcing the behavior.

4When there are more outcomes already present, there is more that needs to be learned concerning
where a new outcome ranks.
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here to the ToP players. A slower and therefore more reasonable rate of learning
for the naive players would only strengthen our results.

Once history has revealed the ordinal preferences of all subsequent players in
any subgame to the ToP players, they choose a strategy that is a function of
these ordinal preferences and their own. Furthermore, there is a particular ToP
strategy, the SR-ToP strategy, say, that not only observes subsequent preferences
but is sequentially rational, using a subgame perfect strategy associated with
these preferences and their own.

The ToP players know enough about the game that they can learn the prefer-
ences of other player roles, in the first place. In particular, it is common knowledge
among all the ToP players that there is a positive fraction of SR-ToP players in
every role.

It is not crucial otherwise how the ToP players behave—they could even mini-
mize their payoffs according to a fully accurate posterior distribution over all the
relevant aspects of the game, when the preferences of all subsequent players are
not known.

We do not assume that the ToP players use the transitivity of opponents’
preferences. The ToP players build up a description of others’ preferences only
by observing all the pairwise choices. Generalizing this assumption could only
strengthen our results by increasing ToP players’ learning speed.

Between each iteration of the game, the fraction of each role that plays each
strategy is updated to reflect the payoffs that this strategy obtains. This updating
rule is subject to standard weak assumptions. In particular, the strategy that
performs the best must increase at the expense of other strategies.

Theorem 2 is the main result here—for an intermediate range of values for a
parameter governing the rate of innovation, a unique subgame perfect equilibrium
is attained, with the SR-ToP strategy ultimately taking over the population in
each role, at the expense of all other strategies—naive or ToP.

Moreover, our results hold if the ToP incur a fixed per game cost. This is
a key finding of the present paper since the previous literature has tended to
find an advantage to (lucky and) less smart players over smarter players—see,
for example, Stahl (1993). The underlying reasons for the reverse (and more
plausible) result here are that, in the limit considered in Theorem 2, i) the naive
players do not know the game they face while, at the same time, ii) the SR-ToP
players do know all the relevant preferences and, furthermore, have adapted to
play the subgame perfect equilibrium strategy.

It is unambiguously better then to be “smart”—in the sense of ToP—than it
is to be naive, no matter how lucky—even for the relatively mild form of naivete
here.

We first present a treatment of the simple case in which there are only two
stages, two moves at each decision node, and two strategies—one naive and one
sophisticated—the SR-ToP. The advantage of this is that the argument is simplest
and most intuitively compelling in this case. This treatment is complete and self-
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contained, but it is stripped-down to the bare bones, in the interests of clarity. We
then turn to the general case, with any number of stages, any number of moves at
each decision node and any number of naive and sophisticated strategies for each
stage, one of which is the SR-ToP. The general argument requires more subtle
assumptions, and is more complex. We also defer discussion of many important
but tangential issues to the treatment of the general case.

I. The Two Stage, Two Action Case

A. The Environment

The extensive game form is a fixed tree with perfect information, two stages,
and two actions at each decision node. There are then 4 terminal nodes.

There is one “player role” for each stage, i = 1, 2, in the game. The first player
role to move is 1 and the last to move is 2. Each player role is represented by an
equal-sized “large” population of agents. Independently in each iteration of the
game, all players are randomly and uniformly matched with exactly one player
for each of the two roles.

Each player’s payoff is a scalar, lying in [m,M ] where M > m. A fundamental
novelty is that, although each player role knows her own payoff at each outcome,
she does not know the payoffs for the other player role.

Given a fixed tree structure with 4 terminal nodes, we identify each outcome
with a payoff vector and each game with a particular set of such payoff vectors
assigned to the terminal nodes.

ASSUMPTION 1: The set of all two stage games is represented by Q = [m,M ]8,
for M > m. That is, each outcome is a payoff vector in Z = [m,M ]2, with one
component for each player role, and there are 4 such outcomes comprising each
game.

We assume the game is iterated as described in the following two assumptions.
The first of these describes how the outcome set grows—

ASSUMPTION 2: Let n = 1, 2, . . . , denote successive dates. Within each cor-
responding period, n, there is available a finite subset of outcomes Zn ⊂ Z, as
follows. There is an initial finite set of outcomes Z0 ⊂ Z, of size N , say. At date
n ≥ 1, at the beginning of period n, a new outcome is added to the existing ones
by drawing it independently from Z according to a cdf F , that has a continuous
probability density that is strictly positive on Z.

Within each period, the set of available outcomes is then fixed, and once an
outcome is introduced it is available thereafter. Also, within each period, the
game is iterated an increasing number of times as follows—

ASSUMPTION 3: The number of iterations of the game played in period n is
κ(n) = b(N + n)αc, for some α ≥ 0.5 Each iteration involves an independent and

5Here b·c denotes the floor function.
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uniform random choice of the 4 outcomes, with replacement, from the set Zn.

If the parameter α is low, the rate of arrival of novelty is high in that there are
not many games within each period before the next novel outcome arrives; if α is
high, on the other hand, the rate of arrival of novelty is low.

We turn now to the specification of the strategies.

B. Strategies

In the two stage case, the strategies can be described much more simply than
they can with an arbitrary number of stages. In the general case, we suppose that
players in any role i = 2, . . . , I choose a dominant strategy if this is available. In
the present context, this requirement binds only on players in role 2.

ASSUMPTION 4: Consider the choice of a player in role 2 at a particular deci-
sion node h. If action a at h yields 2 a higher payoff than does the other action,
then 2 takes action a.

This requirement is in the spirit of focussing on the implications for one’s be-
havior of knowing the preferences of others rather than one’s own. Here it is
equivalent to sequential rationality for player role 2.6 There is essentially then no
latitude left in player role 2’s strategy.

Consider then strategies for player role 1. These players, when making a choice
in period n and iteration t, know the history so far and the game, qn,t, drawn for
the current iteration. The history records the outcomes available in the current
period, n, the randomly drawn games and the empirical distributions of choices
made by players in role 2 in all previous periods and iterations.7

Strategies for role 1 then differ only as to how they condition on such histories.

Naive Players

We adopt a definition of naivete that binds only if the subgame is new. This
serves to make the ultimate results stronger, since the naive players can be oth-
erwise rather smart.

DEFINITION 1: There is one naive strategy in role 1. This maps own observed
payoffs to an arbitrary pure choice, whenever the game faced has never arisen
previously.

If any game faced is not new, there is no constraint imposed on a naive strategy.
The following example simplifies the two stage, two action case still further by

describing a particular salient naive strategy. This illuminates the weaknesses of

6Sequential rationality would actually follow from the large number of players in each role. This is
discussed and defended carefully in the next section which contains the general treatment.

7The general more formal treatment in the next section applies, in particular, to the present two
stage case.
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any naive strategy, describing the opportunity that exists for more sophisticated
strategies—
Example 1.— Consider Figure 1. In view of Assumption 4, the 2s always make
the equilibrium choice. The problem for the 1s is to make the appropriate choice
for each of the games they face, but where the outcome for each choice depends
on the unknown preferences of the 2s.

L R

2x 2y 2z 2w
1w1z1y1x

1

2

Figure 1. Example 1: Two Stages, Two Actions.

The key consideration in the long-run concerns how strategies perform when
payoffs are chosen independently according to the cdf F .

A salient naive strategy for 1 is to choose L, for example, if and only if the
50-50 average of the own payoffs after choosing L exceeds the 50-50 average of
the own payoffs after choosing R, in any novel game. That is, choose L if and
only if x1 +y1 > z1 +w1. If either choice is dominant, this simple rule makes that
dominant choice. Moreover, given risk neutrality in the payoffs, and given that F
represents independent choices in the payoffs, this naive strategy is the Bayesian
rational procedure initially when there is no additional information about role 2’s
preferences, since each of 2’s choices are then equally likely given either choice for
role 1.

Whenever there is not a dominant choice for 1, however, it is easy to see that
any naive strategy must make the wrong choice with strictly positive probability,
under any F with full support. This creates an opportunity for a sophisticated
strategy that has the potential to outdo the naive strategy in these cases. These
strategies are described next.

Sophisticated Players

Recall that ToP (for “theory of preferences”) refers to the ability to impute
preferences to others. In the two stage case, ToP strategies for role 1 condition
on knowledge of role 2’s preferences. Using the sequentially rational strategy at
the initial node when the preferences of the role 2s are known characterizes the
SR-ToP (sequentially rational ToP) strategy that will eventually dominate the
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population in role 1. For simplicity, we consider just this SR-ToP strategy in this
section.

DEFINITION 2: Whenever a SR-ToP player in role 1 knows the ordinal pref-
erences of player role 2 over the set Zn, the SR-ToP strategy maps these ordinal
preferences and her own to the subgame perfect equilibrium choice, if this equilib-
rium choice is unique.8

What is meant in Definition 2 by hypothesizing that the SR-ToP strategies
“know” the preferences of subsequent players? We use Example 1 to clarify.
Example 1 Revisited.— In this example with two stages and two choices, the SR-
ToP role 1s learn one of role 2’s binary preferences, whenever the 2s are forced to
make a choice between two outcomes that has not arisen before. This follows since
Assumption 4 implies that the 2s always make the sequentially rational choice.
Indeed, whenever α > 1, so that the rate of introduction of novelty is not too
fast, such learning by the SR-ToP 1s will be shown to be essentially complete in
the limit. If α < 3, on the other hand, it is easily shown that the naive strategy
sees only novel games in the limit. If α ∈ (1, 3), then, the SR-ToP strategy has a
clear knowledge edge over the naive one.

C. Evolutionary Adaptation

The population structure and associated payoffs for the players in role 1 are as
follows—

DEFINITION 3: The total population of both strategies in role 1 is normalized
to 1. The fraction of the population in role 1 that uses the SR-ToP strategy
in period n = 1, 2, . . . , and iteration t = 1, . . . , κ(n) is then denoted fn,t. The
average payoff obtained by the SR-ToP strategy in role 1 in period n and iteration
t is then denoted z̄n,t(1), and the average payoff obtained by the naive strategy is
then z̄n,t(2). We set z̄n,t = (z̄n,t(1), z̄n,t(2)).

The population evolves in a standard adaptive fashion between each iteration
of the game. Apart from minor technicalities, the key assumption is that the
fraction of individuals who play either strategy increases if it does better than
the other strategy—

ASSUMPTION 5: Consider role 1 in period n = 1, 2, . . . and at iteration t =
1, . . . , κ(n). If the fraction of SR-ToP strategies is fn,t and average payoffs are
z̄n,t, the fraction of SR-ToP strategies in the next iteration is given by fn,t+1 =
Ψ(fn,t, z̄n,t).

9 This function Ψ : [0, 1] × [m,M ]2 → [0, 1] has the properties i) Ψ
is continuous, ii) Ψ(fn,t, z̄n,t)/fn,t > η for some η > 0, and iii)

8In the limit, the probability of ties is zero.
9If t = κ(n), then Ψ(fn,t, z̄n,t) = fn+1,1.
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Ψ(fn,t, z̄n,t)


> fn,t if z̄n,t(1) > z̄n,t(2)

= fn,t if z̄n,t(1) = z̄n,t(2)

< fn,t if z̄n,t(1) < z̄n,t(2).

D. The Two Stage, Two Action Result

The main result for the two stage case is that, in the limit, the SR-ToP strategy
in role 1 fully learns the preferences of role 2, applies this knowledge to choose
the optimal action, and dominates the population.

THEOREM 1: Suppose Assumptions 1-5 all hold. Suppose that there are two
strategies for role 1—the SR-ToP, as in Definition 2, and a naive strategy, as
in Definition 1. If α ∈ (1, 3), then the proportion of SR-ToP players in role 1,
fn,t, tends to 1 in probability, as n → ∞, for all t = 1, . . . , κ(n). The observed
pattern of play in each realized game converges to a subgame perfect equilibrium,
in probability.

PROOF:
It is straightforward to show that, if α < 3, then the fraction of games that

have arisen previously tends to 0, as n→∞, for all t = 1, . . . , κ(n). To see this,
observe the following. Assumption 3 implies that the total number of iterations
in any period n history is bounded above by n ·(N+n)α < (N+n)α+1 where N is
the initial number of outcomes. Since only one game is played at each iteration,
this provides also an upper bound on the number of distinct games occurring
along any such history. Further, in period n, there are |Zn|4 = (N + n)4 possible
games. If α + 1 < 4, then the fraction of games that are familiar must tend to
zero, surely. That is, if α < 3, then it is mechanically impossible for any naive
player in role 1 to keep up with the rate of arrival of new games. The Appendix
shows that this result, when combined with the observation that it is impossible
for the naive strategy to play optimally in all new games, means that the naive
strategy leaves an opportunity for a more sophisticated strategy.

A key element to complete the proof of Theorem 1 is therefore to show that, if
α > 1, then the SR-ToP role 1s learn the preferences of role 2 completely, in the
limit. This is also relegated to the Appendix. A rough intuition is provided in
the next paragraph.

Assumption 3 implies that the total number of iterations in any period n history
is of order nα+1. Since one game is played at each iteration, with two decision
nodes for role 2, the number of outcome pairs over which 2’s preferences were
exposed in period n, whether for the first time or not, is also of order nα+1. In
period n, there are |Zn|(|Zn| − 1)/2 possible distinct outcome pairs, which is of
order n2. Given that α > 1, if the fraction of role 2 preferences over pairs that
role 1 players knew was, hypothetically, close to zero, these order of magnitude
considerations imply that this fraction would grow rapidly. What complicates
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the general argument is considering what happens when this fraction is strictly
between 0 and 1, so that some outcome pairs are known. When α > 1, it is
nevertheless true that the stochastic process governing this fraction drifts up,
whenever the fraction starts below 1. In the limit, then, this stochastic process
converges to 1, in probability. This result is intuitively appealing, but a rigorous
proof is technically involved, even in this simple two stage, two action case.

The key to the evolutionary success of the SR-ToP strategy, for an intermediate
range of arrival rates of novelty, as in Theorem 1, is that the sophisticated strategy
is able to keep up with such rates, whereas the naive strategy cannot. The
reason for the edge that the sophisticated strategy holds is simple. Sophisticated
players need to learn only pairs of outcomes, the number of which is of order
(N + n)2; whereas the naive players need to learn games, the number of which is
of much greater order—(N + n)4. Although the present model is rather specific,
the simplicity of this argument implies that similar results would hold in variety
of alternative models.

II. The General Case

A. The Environment

We now present suitably generalized versions of the assumptions made in the
two stage, two action case. In some instances, the generalization is direct, but
the sake of clarity, the set of general assumptions is presented in its entirety.

Reconsider first the underlying games. As in the two stage case the extensive
game form is a fixed tree with perfect information and a finite number of stages.
In the general case there are now I ≥ 2 stages, and a fixed finite number of
actions, A ≥ 2, at each decision node.10 There are then AI = T , say, terminal
nodes.

There is one “player role” for each such stage, i = 1, . . . , I, in the game. Again,
as in the two stage case, there is an equal-sized “large” population of agents
representing each role. The agents have various strategies, which are described
precisely below. These are grouped into two categories—sophisticated (ToP) and
naive.

In each iteration of the game, players are uniformly matched with exactly one
player for each role in each of the resulting large number of games.

There is a fixed overall set of physically observable outcomes, each with conse-
quences for the payoffs of the I player roles. Player role i = 1, . . . , I has then a
function mapping all outcomes to payoffs. Again, each player role knows her own
payoff at each outcome, she does not know the payoffs for the other player roles.

For notational simplicity, however, we avoid the explicit construction of out-
comes, with payoff functions defined on these. Given a fixed tree structure with T

10The restriction that each decision node induce the same number of actions, A, can be relaxed.
Indeed, it is possible to allow the game tree to be randomly chosen. This would not fundamentally
change the nature of our results but would considerably add to the notation required.
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terminal nodes, we instead simply identify each outcome with a payoff vector and
each game with a particular set of such payoff vectors assigned to the terminal
nodes.11

We assume that all payoffs are scalars, lying in the compact interval [m,M ],
for M > m, say. It follows that games given in terms of payoffs can be described
as follows—

ASSUMPTION 6: The set of all games is represented by Q = [m,M ]TI , for
M > m. That is, each outcome is a payoff vector in Z = [m,M ]I , with one
component for each player role, and there are T = AI such outcomes comprising
each game.

The outcome set grows as in the two stage case. The following assumption,
describing the growth of the outcome set, is identical to the one made for the
two stage case, except for the definitions of Z and Zn, but is reproduced here for
convenience.

ASSUMPTION 7: Let n = 1, 2, . . . , denote successive dates. Within each cor-
responding period, n, there is available a finite subset of outcomes Zn ⊂ Z, as
follows. There is an initial finite set of outcomes Z0 ⊂ Z, of size N , say. At date
n ≥ 1, at the beginning of period n, a new outcome is added to the existing ones
by drawing it independently from Z according to a cdf F , that has a continuous
probability density that is strictly positive on Z.

Again the set of available outcomes is fixed within each period, with the number
of iterations of the game within each period again given by—

ASSUMPTION 8: The number of iterations of the game played in period n is
κ(n) = b(N + n)αc, for some α ≥ 0.12 Each iteration involves an independent
and uniform random choice of the T = AI outcomes, with replacement, from the
set Zn.

Recall that the rate of arrival of novelty is inversely related to α. If the param-
eter α is low, there are fewer iterations within each period before the next novel
outcome arrives, and thus the rate of arrival of novelty is high; if α is high, the
rate of arrival of novelty is low.

This completes the basic description of the underlying game, rendered schemat-
ically in Figure 2.

11This abbreviated way of modeling outcomes introduces the apparent complication that the same
payoff for role i might be associated with multiple possible payoffs for the remaining players. However,
with the current set-up, with a continuous cdf F , as in Assumption 7 below, the probability of any role’s
payoff arising more than once, but with different payoffs for the other roles, is zero. Each player i can
then safely assume that a given own payoff is associated to a unique (but initially unknown) vector of
other roles’ payoffs. We then adopt this simpler set-up.

12Here again b·c denotes the floor function. It seems more plausible, perhaps, that the number of games
per period would be random. This makes the analysis mathematically more complex, but does not seem
to fundamentally change the results. The present assumption is then in the interests of simplicity.
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A convenient formal description of the set of games available in each period is
as follows—

DEFINITION 4: In period n, the empirical cdf based on sampling, with equal
probabilities, from the outcomes that are actually available, is denoted by the ran-
dom function Fn(z) where z ∈ [m,M ]I . The set of games in period n is the
T -times product of Zn. This is denoted Qn. The empirical cdf of games in period
n derives from T -fold independent sampling of outcomes according to Fn and is
denoted by Gn(q), where q ∈ Q = [m,M ]IT .13

In each iteration, t = 1, . . . , κ(n), of the game in period n, outcomes are drawn
independently from Zn according to the cdf Fn, so the game is chosen indepen-
dently in each iteration according to Gn.

The cdf’s Fn and Gn are well-behaved in the limit. This result is elegant and
informative and so is included here. First note that the distribution of games
implied by the cdf on outcomes, F , is given by G, say, which is the cdf on the
payoff space [m,M ]IT generated by T independent choices of outcomes distributed
according to F . Clearly, G also has a continuous pdf that is strictly positive on
[m,M ]IT . These two later cdf’s are then the limits of the cdf’s Fn and Gn—

LEMMA 1: It follows that Fn(z) → F (z) and Gn(q) → G(q) with probability
one, and uniformly in z ∈ [m,M ]I , or in q ∈ [m,M ]IT , respectively.

PROOF:
This follows directly from the Glivenko-Cantelli Theorem. (See Billingsley 1986,

p. 275, and Elker, Pollard and Stute 1979, p. 825, for its extension to many
dimensions.)

We turn now to the specification of the strategies for each player role.

B. Strategies

When making a choice in period n and iteration t, every player, whether naive or
ToP, knows the history so far, Hn,t, say, and the game, qn,t, drawn for the current
iteration. Recall that history records the outcomes available in the current period,
n, the randomly drawn games and the empirical distributions of choices made in
all previous iterations. Although each player observes the outcome assigned to
each terminal node, as revealed by the payoff she is assigned at that node, it
should be emphasized that she does not observe other roles’ payoffs directly.

More precisely, for each player role i, given that decision-node h is reached
by a positive fraction of players in period n and iteration t, let πn,t(h) ∈ ∆(A)

13Note that Fn and Gn are random variables measurable with respect to the information available in
period n, in particular the set of available outcomes Zn.
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Figure 2. A Schematic Representation of the Key Elements of the Model.

then record the aggregate behavior of i player role at h. It follows that Hn,t =
{Zn, (q1,1, π1,1), . . . , (qn,t−1, πn,t−1)}.14 Let Hn,t be the set of period n and itera-
tion t histories, and let H =

⋃
n,tHn,t.

Strategies can be formally described as follows. Let Σi denote the one-shot
strategies available to players in role i. That is, each element of Σi specifies one
of the A choices for each of the decision nodes of players in role i. A strategy is
then a function σ : H ×Q −→ Σi (recall that Q is the set of all possible games,
[m,M ]IT ).15 An individual in period n at iteration t with strategy σ uses the
one-shot strategy σ(Hn,t,qn,t) in game qn,t, σ(Hn,t+1,qn,t+1) in qn,t+1, and so
on.

As part of the specification of the map σ, we assume that all strategies choose a
strictly dominant action in any subgame they initiate, whenever such an action is
available. For example, the player at the last stage of the game always chooses the
outcome that she strictly prefers. As in the two stage case, this assumption is in
the spirit of focussing upon the implications of other players’ payoffs rather than
the implications of one’s own payoffs. Indeed, if players are to learn other players’
preferences from observing their choices, other players cannot be completely free
to act contrary to their own preferences.

More importantly, in the present model, using any such dominant choice could
be made a result rather than an assumption.16 The key part of this assumption
is sequential rationality, since such a dominant choice is optimal conditional upon
having reached the node in question.

It is the large population in each role that is crucial in this connection. With

14If n > 1 but t = 1, then Hn,t = {Zn, (q1,1, π1,1), . . . , (qn−1,κ(n−1), πn−1,κ(n−1))}. If n = t = 1,

then Hn,t = ∅.
15It will not be required that ToP players remember the entire history. All that is needed is that

they make and retain certain exact inferences about other roles’ binary preferences that are possible
from observing the aggregate choices made in each period. It is not important whether naive players
remember the entire history or not, in familiar subgames.

16This could be proved using an argument similar to that used to establish that a subgame perfect
equilibrium is ultimately obtained. See Section II.D.



14 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

only a single player in each role, for example, the player in role i > 1 might
well prefer to not choose such a dominant action in order to misrepresent her
preferences to some player j < i, so inducing j to choose in a way that is beneficial
to i. However, when there is a large number of players in every role, who are
randomly matched in each iteration of the game, each role i player has no effect
on the distribution of role i’s choices that is observed by any role j < i and thus
no effect on the future behavior of the js. In these circumstances, not only is
the best choice by each i myopic, in the sense of neglecting the future, but it
is also sequentially rational. Strategies that failed to use such dominant choices
would eventually be pushed to an arbitrarily low level. Once this was so, we
would approximate the current model. There is no reason then to be suspicious
of the current assumption, but the approximation would make the proofs more
complicated, so we do not pursue this option.

Accordingly, we have—

ASSUMPTION 9: Consider any i = 1, . . . , I player role, and any i player role
subgame q. The action a at q is dominant for i if for every action a′ 6= a, for
every outcome z available in the continuation game after i’s choice of a in q, and
every outcome z′ available in the continuation game after i’s choice of a′ in q,
zi > z′i. For each i = 2, . . . , I, every strategy always chooses any such dominant
action.17

Is this assumption reasonable, however, in the light of the putative small size of
hunter-gatherer groups? If the current model were modified so there were a small
number of players in each role, an optimal strategy would allow for dissembling,
but would be complicated. It would require a prior distribution over the unknown
payoffs of others, with Bayesian updating of this distribution in the light of ob-
served play, which would be an onerous task. In this connection, it is of interest
that Kimbrough, Robalino and Robson (2014) carried out related experiments
with, usually, 12 subjects. These were randomly and anonymously matched into
6 pairs in each repetition to play a simplified two stage version of the game. A
few subjects in stage 2 did describe themselves as indulging in non-myopic be-
havior, attempting, for example, to mislead, reward or punish the player in stage
1. It did not seem that such behavior was very successful. Further, such behavior
was rare, in that 90 percent of stage 2 subjects made the optimal myopic choice.
This all suggests that myopic behavior with a small number of players in each
role could be viewed as a rule of thumb that does reasonably well in a variety of
complex settings, even if it is not fully optimal.

Naive Players

Again, our definition of naivete binds only when the subgame is new. When
the subgame is new, and there is no dominant choice, naive players condition in

17It is not necessary to make this assumption for role 1, but it will satisfy it in the end.
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an arbitrary fashion on their own payoffs, but act in ignorance of other players’
preferences.

DEFINITION 5: All naive strategies for i = 2, . . . , I satisfy Assumption 9 in all
subgames. There is a finite number of naive strategies for any role i = 1, ..., I that
map their own observed payoffs to an arbitrary pure choice, whenever any of the
subgames faced has never arisen previously, and a dominant choice is lacking.

As in the two stage case our relaxed definition of naivete strengthens our results.
If any subgame faced is not new, and there is no dominant choice, the naive player
can be rather smart. Although it makes an implausible combination, the naive
players could then be fully Bayesian rational with respect to all of the relevant
characteristics of the game—updating the distribution of opponents’ payoffs, for
example.

Sophisticated Players

There are two aspects to the ToP strategies. The first of these, given as part
i) of Definition 6 below, concerns the utilization of the knowledge of others’ pref-
erences. The SR-ToP strategy, which will eventually dominate the population,
makes the sequentially rational choice at each node when the preferences of subse-
quent players are known. The second aspect, given as ii) of Definition 6, concerns
how such knowledge of the preferences of others could be acquired from observing
their behavior.

DEFINITION 6: All ToP strategies in role i = 1, . . . , I satisfy Assumption 9 in
all subgames. It is convenient to describe the remaining requirements on the ToP
strategies in any role i = 1, . . . , I in the reverse order to the temporal order in
which they apply. i) If a ToP player in role i knows the ordinal preferences of
all subsequent players over the set Zn, each such ToP player maps the array of
own preferences plus those of subsequent players to a pure action at each decision
node (still subject to Assumption 9). A particular ToP strategy, the SR-ToP
strategy, maps all of these preferences to the subgame perfect equilibrium choice
at each node, if this equilibrium choice is unique. Other ToP strategies make a
non-equilibrium choice in at least one subgame defined by the ordinal preferences
of others and of the role in question.18 ii) It is common knowledge among all ToP
players in roles i = 1, . . . , I − 1 that there exists a positive fraction of SR-ToP
players in every role.

The appeal to common knowledge to describe the ToP strategies is merely for
conciseness. We come back to this issue after presenting Example 2 in Section
II.D.

18This requirement is merely to avoid triviality. It has the following implication. Since the preferences
involved are ordinal, the probability of such a subgame is positive under F . Indeed, the probability of
a game that repeats this subgame for every decision node of the role in question is also positive. Such
games will then give the SR-ToP strategy a strict advantage over any other ToP strategy.
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C. Evolutionary Adaptation

The population structure and associated payoffs are as follows—

DEFINITION 7: The total population of all strategies is normalized to 1 for
every role i. The sophisticated (ToP) strategies are labelled as r = 1, . . . , R, for
R ≥ 1, say where r = 1 is the SR-ToP strategy. The naive strategies are labelled
as r = R + 1, . . . , R̄, where R̄ > R.19 The fraction of the total population in role
i = 1, . . . , I that uses strategy r = 1, . . . , R̄ in period n = 1, 2, . . . and iteration
t = 1, . . . , κ(n) is then denoted f in,t(r), where f in,t = (f in,t(1), . . . , f in,t(R̄)). The
average payoff obtained by such a strategy r in role i in period n and iteration t
is then denoted z̄in,t(r), where z̄in,t = (z̄in,t(1), . . . , z̄in,t(R̄)).

The distribution of strategies within each role evolves in an adaptive fashion,
as in the two stage case. This has the property, in particular, that the fraction
of individuals who use a strategy that is best increases, given only that there is
some suboptimal strategy—

ASSUMPTION 10: Consider role i = 1, . . . , I in period n = 1, 2, . . . and at iter-
ation t = 1, . . . , κ(n). If the population structure is f in,t with average payoffs z̄in,t,

the population structure in the next iteration is given by f in,t+1 = Ψ(f in,t, z̄
i
n,t).

20

This function Ψ : ∆R̄−1× [m,M ]R̄ → ∆R̄−1, where ∆R̄−1 is the unit simplex in

RR̄, has the properties i) Ψ is continuous, ii) Ψr(f
i
n,t, z̄

i
n,t)/f

i
n,t(r) > η for some

η > 0, and for r = 1, . . . , R̄21 , iii) if z̄in,t(r
∗) = maxr=1,...,R̄ z̄

i
n,t(r) > z̄in,t(r

′), for

some r′ ∈ {1, . . . , R̄}, then Ψr∗(f
i
n,t, z̄

i
n,t) > f in,t(r

∗) and iv) if z̄in,t(r) = z̄in,t(r
′),

for all r, r′ ∈ {1, . . . , R̄}, then Ψ(f in,t, z̄
i
n,t) = f in,t.

22

Recall that Figure 2 gives a schematic representation of the model.

D. The Main Result

To gain an intuitive understanding how the generalized assumptions will gen-
erate the desired result, consider a three stage case—
Example 2.— Suppose the game has three stages, given by i = 1, 2, 3. The
assumptions made in the two stage case have been now strengthened in two key
ways. (a) Not only must all role 3 players choose a dominant strategy, but so
must all role 2 players. (b) The ToP players in role 1 know that there are at least
some SR-ToP players in role 2.23 How does this enable ToP players in role 1 to
learn the preferences of both subsequent roles?

19Of course, strategy r is quite different for different roles i and i′.
20If t = κ(n), then Ψ(f in,t, z̄

i
n,t) = f in+1,1.

21This condition ensures that the SR-ToP strategy cannot become extinct in the short run when it
could have lower payoffs than other strategies.

22Ψr denotes the rth component of the vector Ψ, r = 1, . . . , R̄.
23As is true in general, common knowledge is a stronger assumption than this requirement.
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Learning about i = 3’s preferences, whenever α > 1, proceeds as shown for
the two stage case above, only now this learning applies to the ToP players in
both roles 1 and 2. Furthermore, 3’s preferences become then common knowledge
among all ToP players in role 1 and 2. The new issue that arises with three stages
is: How do ToP players in role 1 learn role 2’s preferences?

Suppose that a subgame is drawn in which role 2 players actually have a dom-
inant choice, say a. (It can be shown that a strictly positive fraction of role 2
subgames have this property.) The ToP players in role 1 do not know that such
a dominant choice exists for 2, even after observing that they all choose a, as
they must. These ToPs in role 1 do know, however, that the ToP 2s also know
3’s preferences. Hence, whether such a dominant choice exists or not, whatever
other strategies might do, the SR-ToPs in role 2 must now be making an subgame
perfect choice. Hence they have unequivocally demonstrated to all the ToP in
role 1 that they prefer the outcome induced by a to any outcome they might have
induced instead.

The assumption that α > 1, is still enough to ensure that the ToP players in role
1 can keep up with the rate of innovation, and then build up a complete picture
of the preferences of role 2, to add to the complete picture already obtained of
those of role 3.

Once the SR-ToP in role 2 knows the preferences of role 3, it will clearly outdo
any other strategy and come to dominate the population in role 2. Once this is
so, and the SR-ToP in role 1 has learnt the preferences of both subsequent roles,
this strategy will, in turn, dominate the population in role 1.

Example 2 also illustrates that the common knowledge assumption for the ToP
players, as described in Definition 6 ii), can be stripped to its bare revealed
preference essentials. It is unimportant, that is, what or whether the ToP players
think, in any literal sense. All that matters, in the case that I = 3, is that it is as
if the ToPs in roles 1 add to their knowledge of role 2’s preferences as described
above. Once a ToP player in role 1 has seen histories in which all of 2’s binary
choices have been put to the test like this, given that this is already true for role
3, the role 1 ToP players effectively know all that is relevant about the ordinal
preferences of subsequent players and can act on this basis. This is essentially
purely a mechanical property of the map, σ, used by the ToP players. That is,
not merely can the naive players be “zombies”, in the philosophical sense, but so
too can the ToP players.24

The main result for the general case, is analogous to the main result for the two
stage case. In the limit, the SR-ToP strategy in every role i = 1, . . . , I − 1 learns
the preferences of others, and uses what is learnt to choose optimally, ultimately
dominating the population in role i.

THEOREM 2: Suppose Assumptions 6-10 all hold. Suppose that there are a
finite number of ToP strategies, including SR-ToP in particular, as in Definition

24That is, the revealed preference approach adopted here is agnostic about internal mental processes.
For a philosophical treatment of “zombies”, see Kirk (2014).
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6, and a finite number of naive strategies, as in Definition 5. If α ∈ (1, A2 − 1),
then the proportion of SR-ToP players in role i, f in,t(1), tends to 1 in probability,
as n → ∞, for all t = 1, . . . , κ(n), and for all i = 1, . . . , I − 1. The observed
pattern of play in each realized game converges to a subgame perfect equilibrium,
in probability.

PROOF:
This is relegated to the online Appendix.
The proof derives from the result that all of the ToP strategies learn all the

other roles’ preferences if α > 1, but all naive strategies see only new subgames,
if α < A2 − 1, in the long run. If both inequalities hold, as above, there is an
opportunity for the ToP strategies to outdo the naive strategies, one that the
SR-ToP fully exploits.

The bounds that α ∈ (1, A2 − 1) are tight in the sense that, if α < 1 then
it is mechanically impossible for the ToP players to learn rapidly enough the
preferences of opponents from their binary choices. Similarly, if α > A2− 1, then
naive players in role I − 1 see only familiar subgames in the limit. The condition
for naive players in role i to see only familiar games becomes more stringent with
lower i. That is, earlier stages generate a higher critical value of α because they
face more possible subgames. The theorem then gives a sufficient condition for
all naive players in roles i = 1, . . . , I − 1 to face only unfamiliar subgames.25

An interesting aspect of the general result is that the advantage of the ToP
strategies over the naive strategies is more pronounced in more complicated
games.

On the one hand, α > 1 implies that the ToP players in role i learn all of
the subsequent roles’ binary preferences in the limit, despite their being many of
these subsequent roles, and regardless of the number of actions A. It is certainly
true that the learning involved with many subsequent roles is more onerous. Nev-
ertheless, this increased difficulty is not reflected in a higher critical value of α.
As long α > 1, ToP player in roles i < I can first learn the preferences of role
I, for exactly the same reason that this is possible with just two stages. Having
established these, as common knowledge, these ToP players can then deduce the
preferences of role I − 1, applying the argument sketched in Example 2. This
second step relies on there being a positive fraction of games with strictly domi-
nant choices for role I − 1. Intuitively, since there are order n2 outcome pairs for
role I − 1, this second step still only requires that α > 1. This argument can be
extended, by backwards induction, to any number of subsequent roles, all under
the condition that α > 1. The proof of this with a general number of stages is
more complex than in the two stage case, since sequentially rational behavior by
stages i < I has to be established by backwards induction, and only holds in the
limit, so there are more sources of “noise”. This is the heart of the general proof.

25If it were assumed that naive players need to have experienced the entire game, and not just a
subgame they initiate, before they can learn it, the upper bound for α would be AI − 1, uniformly in
i = 1, . . . , I − 1.
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On the other hand, the naive players have a harder task to learn all the sub-
games they initiate, if they are at an earlier stage, or if A is larger, simply because
there then more such subgames. In the role i, that is, the cutoff value for a naive
strategy is α = AI−i+1 − 1, below which learning is mechanically impossible in
the long run, and this decreases with i, and increases with A. Stage I−1 is where
the naive players face the smallest number of possible subgames, but the critical
value for these naive players, A2 − 1, in particular, is increasing in A.26

What happens outside the range α ∈ (1, A2 − 1)?

If α < 1, so that all the ToP players are overwhelmed with novelty, as are
the naive players, the outcome of the evolutionary contest hinges on the default
behavior of the naive and ToP strategies when these face their respective novel
circumstances. As long as the naive players are not given a more sophisticated
default strategy than the SR-ToP players, the naive players will, at best, match
the SR-ToPs.

If α > A2 − 1, naive players in at least role I − 1 have seen essentially all
subgames previously, in the long run. The relative performance of the SR-ToP
and the naive players then depends on the detailed long run behavior of the naive
players. If the naive players play a Bayesian rational strategy the second time
they encounter a given subgame, they might tie the SR-ToP players. It is, in any
case, not intuitively surprising that a clear advantage to the SR-ToP strategy
relies upon there being at least a minimum rate of introduction of novelty.

Why is a subgame perfect equilibrium obtained here? Why could players in
some intermediate stage not gain from misrepresenting their preferences to earlier
stages?

The attainment of subgame perfection in Theorem 2 relies on the assumption
that there is a large population in each role, with random matching for each
iteration of the game. Even though a non-equilibrium choice by all role i players
might benefit all role i players since it could advantageously influence the choice
of a role j < i, this benefit is analogous to a public good. The choice by just one
role i player has no effect on j’s information bearing on i’s preferences. Thus, the
optimal choice by any particular role i player is sequentially rational. (The large
population in each role, together with random matching, also ensures choices are
myopic, ignoring, that is, future iterations of the game.) This argument that a
subgame perfect equilibrium is attained once the preferences of others are known
is analogous to Hart (2002).27

26The proof of these claims is straightforward, and extends the argument given to prove the corre-
sponding part of Theorem 1. Observe the following. Assumption 8 implies that the total number of
iterations in any period n history is bounded above by n · (N +n)α < (N +n)α+1 where N is the initial
number of outcomes. Since only one game is played at each iteration, this also gives the order of the
maximum number of distinct subgames occurring along any such history. In period n, for stage i, there

are (N+n)A
I−i+1

possible subgames. If α+1 < AI−i+1, then the fraction of subgames that are familiar
must tend to zero, surely.

27Hart considers a finite population in each role, with mutation ensuring all subgames are reached.
His result is that subgame perfection is attained for a large enough common population size and small
enough mutation rate.
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E. Stahl Revisited

The eventual predominance of the SR-ToPs over all the naive strategies resolves
the issue raised by Stahl (1993)—that less smart, but lucky, players can outdo
smarter ones.28 The underlying reason for the reverse result here is that in the
current environment players are repeatedly confronted with novel games. Con-
sider any particular naive strategy that maps own payoffs to an action, where this
choice cannot, of course, condition on the future realization of the sequence of
games. If there is a dominant strategy in any subgame, this naive strategy chooses
that by assumption. Otherwise, although there may be a set of subgames, with
positive probability under F conditional on the observed own payoffs, in which
the naive strategy makes the subgame perfect choice, there must also be a set
of subgames, also with positive conditional probability under F , for which this
is not true. Since any particular naive strategy must therefore, with probabil-
ity one, choose suboptimally in a positive fraction of games, in the limit, it is
outdone, with probability one, by the SR-ToP that is not preprogrammed but
rather adapts to the outcomes and games that are drawn, and ultimately chooses
optimally essentially always.29

That is—

COROLLARY 1: Under the hypotheses of Theorem 2, any particular naive strat-
egy will, with probability one, choose suboptimally in a positive fraction of new
subgames in the limit.

Further, ToP strategies could be extended to deal with occasional shifts in
preferences over outcomes. Such a generalized model would be noisier than the
current model, and therefore harder to analyze, but this potential flexibility of
the ToP strategies would constitute a telling additional argument in their favor.

It follows, significantly, that the evolutionary dominance of the SR-ToP is ro-
bust to the introduction of sufficiently small cost, completing the resolution of the
issue raised by Stahl (1993). Suppose that all ToP strategies entail a per game
cost of ω > 0, to reflect the cognitive cost associated with deriving the preferences
of others from observation. Then we have

COROLLARY 2: Theorem 2 remains valid when all ToP strategies entail a per
game cost ω (where the naive players have zero cost), if ω is small enough.

28In Stahl (1993) a single game is played repeatedly by the agents—lucky in this context is being
preprogrammed with the strategy that happens to be a best response to whatever strategy the opponents
settle on in the long run—smart is being able to deduce this strategy directly.

29This argument has the following subtlety. Consider a particular realized sequence of games. With
probability one, each observed own payoff is associated with a unique vector of payoffs for the other
roles. It follows that, with probability one, there exists a naive strategy that maps own payoffs to an
action that is the subgame perfect choice in every such realized subgame. To choose this naive strategy
in advance is to condition on the future, however, given that there are uncountably many possible naive
strategies.
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If α > A2 − 1, however, then naive players in at least role I − 1 are usually
familiar with the subgame they initiate, in the long run. The presence of a fixed
cost might then tip the balance in favor of the naive players. If α < 1, so all
players, naive or sophisticated, are overwhelmed with novelty, this might also be
true, when the default play of the naive and sophisticated players is comparable.

The presence of such a per game cost, that is independent of the number of
outcomes, is not unreasonable since the ToP strategies would require the mainte-
nance of a brain capable of sophisticated analysis. However, the memory demands
of the naive players here are likely to be greater than the memory demands of
ToP. The naive players need to remember each game; the ToPs need only re-
member preferences over each pairwise choice for opponents, and if memory is
costly then these costs would be lower for the ToPs whenever there are a large
number of outcomes. In this sense, consideration of all costs might well reinforce
the advantage of the ToP players over the naive players.

F. Further Remarks

We close this subsection with several additional remarks.
1) The key issue here is how ToPs deal with novelty—the arrival of new

outcomes—rather than with complexity—the unbounded growth of the outcome
set. Indeed, the model could be recast to display the role of novelty as follows.
Suppose that a randomly chosen outcome is dropped whenever a new outcome
is added, at each date n, so the size of the outcome set is fixed, despite such
updating events. There will then be a critical value such that, if the number of
games played between successive dates is less than this critical value, the naive
players will be mechanically unable to keep up with the flow of new games. There
will also be an analogous but lower critical value for the ToMs. If the fixed in-
terval between updating events is chosen to lie between these two critical values,
the naive players will usually be faced with novel subgames; the ToPs will face
a stochastic but usually positive fraction of subgames in which the preferences
of subsequent player roles are known. This provides a version of the current re-
sults, although one that is noisier and therefore more awkward than the current
approach.30

2) The sophisticated players here do not use the transitivity of others’ prefer-
ences. If they were to do so, this could only extend the range of α over which
complete learning of opponents’ preferences would arise, and therefore the range
over which the sophisticated strategies would outcompete the naive strategies.31

3) Consideration of a long run equilibrium, as in Theorem 2, is simpler an-
alytically than direct consideration of the speed of out-of-equilibrium learning

30The need in the current model for the number of games played between updating events to grow
with time is a reflection of the fact that each new outcome produces a larger number of novel games
when there is already a larger number of outcomes.

31Although they do not apply directly, the results of Kalai (2003) concerning PAC-learning and P-
dimension, Theorem 2.1 and Theorem 3.1, in particular, suggest that the use of transitivity might lower
the critical value of α as far as 0.
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of the various strategies. More importantly, it also permits the use of minimal
restrictions on the naive and ToP strategies, as is desirable in this evolutionary
context.

4) Our results show how an increase in the rate of introduction of novelty might
precipitate a transition from a regime in which there is no advantage to strategic
sophistication to one in which a clear advantage is evident. This is consistent with
theory and evidence from other disciplines concerning the evolution of intelligence.
For example, it is argued that the increase in human intelligence was in part due
to the increasing novelty of the savannah environment into which we were thrust
after we exited our previous arboreal niche. (For a discussion of the intense
demands of a terrestrial hunter-gatherer lifestyle, see, for example, Robson and
Kaplan, 2003.)

G. Related Literature

We outline here a few related theoretical papers in economics. The most ab-
stract and general perspective on strategic sophistication involves a hierarchy of
preferences, beliefs about others’ preferences, beliefs about others’ beliefs about
beliefs about preferences, and so on. (Robalino and Robson (2012) provides a
summary of this approach.) Harsanyi (1967/68) provides the classic solution that
short circuits the full generality of the hierarchical description.

A strand of literature is concerned to model individuals’ beliefs in a more realis-
tic fashion than does the general abstract approach. An early paper in this strand
is Stahl (1993) who considers a hierarchy of more and more sophisticated strate-
gies analogous to iterated rationalizability. A smartn player understands that no
smartn−1 player would use a strategy that is not (n − 1)-level rationalizable. A
key aim of Stahl is to examine the evolution of intelligence in this framework. As
already mentioned above, he obtains negative results—the smart0 players who
are right in their choice of strategy cannot be driven out by smarter players in a
wide variety of plausible circumstances. Our positive results, in Corollary 2, in
particular, stand in sharp contrast to these previous results.

Mohlin (2012) provides a recent substantial generalization of the closely related
level-k approach that allows for multiple games, learning, and partial observability
of type. Nevertheless, it remains true that lower types coexist with higher types
in the long-run. This is not to deny that the level-k approach might work well
in fitting observations. For example, Crawford and Iriberri (2007) provide an
explanation for anomalies in private-value auctions based on this approach.

There is by now a fairly large literature that examines varieties of, and al-
ternatives to, adaptive learning. Camerer, Ho and Chong (2002), for example,
extend a model of adaptive, experience-weighted learning (EWA) to allow for
best-responding to predictions of others’ behavior, and even for farsighted be-
havior that involves teaching other players. They show this generalized model
outperforms the basic EWA model empirically. Bhatt and Camerer (2005) find
neural correlates of choices, beliefs, and 2nd-order beliefs (what you think that
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others think that you will do). These correlates are suggestive of the need to
transcend simple adaptive learning. Finally, Knoepfle, Camerer and Wang (2009)
apply eye-tracking technology to infer what individuals pay attention to before
choosing. Since individuals actually examine others’ payoffs carefully, this too
casts doubt on any simple model of adaptive learning.

III. Conclusions

This paper presents a model of the evolution of strategic sophistication. The
model investigates the advantages to learning opponents’ preferences in simple
games of perfect information. An unusual feature is that the outcomes used
in the game are randomly selected from a growing outcome set. We show how
sophisticated individuals who recognize agency in others can build up a picture
of others’ preferences while naive players, who react only to their own observed
payoffs in novel situations, remain in the dark. We impose plausible conditions
under which some sophisticated individuals, who choose the subgame perfect
equilibrium action, dominate all other strategies—naive or sophisticated—in the
long run. That is, we establish a clear sense in which it is best to be smart, in
contrast to previous results.

Kimbrough, Robalino and Robson (2014) presents experiments that measure
the ability of real-world individuals to learn the preferences of others in a strategic
setting. The experiments implement a simplified version of the theoretical model,
using a two stage game where each decision node involves two choices. We find
1) evidence of highly significant learning of opponents’ preferences over time, but
not of complete games, and 2) significant correlations between behavior in these
experiments and responses to two well-known survey instruments from psychology
intended to tentatively diagnose autism, as an aspect of theory of mind.

REFERENCES

Baron-Cohen, Simon, Alan M. Leslie, and Uta Frith. 1985. “Does the
Autistic Child Have a ‘Theory of Mind?’.” Cognition, 21(1): 37–46.
Bhatt, Meghana, and Colin F. Camerer. 2005. “Self-referential Thinking
and Equilibrium as States of Mind in Games: fMRI Evidence.” Games and Eco-
nomic Behavior, 52(2): 424–459.
Billingsley, Patrick. 1986. Probability and Measure. 2nd ed., Chicago:John
Wiley and Sons.
Camerer, Colin F., Teck-Hua Ho, and Juin-Kuan Chong. 2002. “So-
phisticated Experience-Weighted Attraction Learning and Strategic Teaching in
Repeated Games.” Journal of Economic Theory, 104(1): 137–188.
Cheney, Dorothy L., and Robert M. Seyfarth. 1990. How Monkeys See
the World: Inside the Mind of Another Species. Chicago:University of Chicago
Press.
Crawford, Vincent P., and Nagore Iriberri. 2007. “Level-k Auctions: Can



24 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

a Non-Equilibrium Model of Strategic Thinking Explain the Winner’s Curse and
Overbidding in Private-Value Auctions?” Econometrica, 75(6): 1721–1770.
Egghe, Leo. 1984. Stopping Time Techniques for Analysts and Probabilists.
Cambridge, UK:Cambridge University Press.
Elker, Johann, David Pollard, and Winfried Stute. 1979. “Glivenko-
Cantelli Theorems for Classes of Convex Sets.” Advances in Applied Probability,
11(4): 820–833.
Harsanyi, John C. 1967-68. “Games with Incomplete Information Played by
‘Bayesian’ Players, I-III.” Management Science, 14: 159–182, 320–334, 486–502.
Hart, Sergiu. 2002. “Evolutionary Dynamics and Backward Induction.” Games
and Economic Behavior, 41: 227–264.
Kalai, Gil. 2003. “Learnability and Rationality of Choice.” Journal of Eco-
nomic Theory, 113: 104–117.
Kimbrough, Erik, Nikolaus Robalino, and Arthur Robson. 2014. “The
Evolution of Theory of Mind: Theory and Experiments.” Unpublished.
Kirk, Robert. 2014. “Zombies.” In The Stanford Encyclopedia of Philosophy.
, ed. Edward N Zalta. Stanford University.
Knoepfle, Daniel T., Colin F. Camerer, and Joseph T. Wang. 2009.
“Studying Learning in Games Using Eye-tracking.” Journal of the European
Economic Association, 7(2-3): 388–398.
Mohlin, Erik. 2012. “Evolution of Theories of Mind.” Games and Economic
Behavior, 75(1): 299–318.
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Appendix A: Proof of Theorem 1

We establish here our main result for the simple version of the model, Theorem
1. Role 2 makes the sequentially rational choice in every game (Assumption 4),
and thus the results here concern the player 1s. The notation is modified slightly
in the proof. In particular, a single subscript is used to denote the total number of
accumulated iterations, in lieu of subscripting the period n, and iteration t. For
example, Hs is written in place of the history Hn,t, where s is now the number
of accumulated iterations along this history. For each period n = 1, 2, . . . , the
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notation s(n) is used to denote the iteration s =
∑n−1

m=1 κ(m) + 1. Notice, in
particular, that the n-th novel outcome arrives at the beginning of iteration s(n).

Assume throughout the section that Assumptions 1-5 hold.
The first step in the proof of Theorem 1 is to show that if α > 1, the SR-ToPs

learn their opponents’ preferences completely in the limit, and therefore choose
optimally against their opponents with probability tending to one.

In this simple environment with two player roles and two actions, each choice
by the 2s directly reveals a pairwise preference. Specifically, the 2s make the
dominant choice, as in Assumption 4, and every choice by role 2 eliminates all
ambiguity about their preferred option, since there are no remaining players.
One measure of how much has been revealed about 2’s preferences is therefore
the number of distinct 2 role subgames reached along the history. Consider in
particular the following.

DEFINITION 8: Let Ks denote the number of distinct role 2 subgames reached
along Hs. There are |Zn|2 role 2 subgames throughout period n. For each s =
s(n), . . . , s(n+ 1) − 1 write Ls = Ks/|Zn|2 as a measure of how much can be
learned about 2’s preferences from Hs.

Ls is a conservative measure of how much information is conveyed by history
about 2’s preferences, but it suffices for the present purpose.32 Specifically, we
have the key result that Ls converges in probability to one whenever α > 1. The
proof is immediate in the light of the next two results (Lemma 2, and Lemma 3).

LEMMA 2: Suppose that there are two player roles, and two actions available
for each role. Suppose further that Ls converges in probability to some random
variable L. If α > 1, then L = 1 a.e.

PROOF:
With probability (1 − Ls)2 the game at iteration s is such that neither of its

role 2 subgames have occurred along the history. Such a game at s ensures the
1s observe role 2’s choice in a novel subgame. Hence, for every s = 1, 2, . . . ,

E(Ks+1 |Hs)−Ks ≥ (1− Ls)2.(A1)

That is, the smaller is the proportion of role 2 subgames seen along the history,
the more likely it is that an unfamiliar one will arise.

Summing (A1) over s = 1, 2, . . . , τ − 1, and taking the unconditional expecta-
tion of the result yields

E(Kτ )− E(K1) ≥
τ−1∑
s=1

E((1− Ls)2).(A2)

32This ignores the transitivity of 2’s preference ordering. Moreover, the denominator accounts for
all of the available 2 subgames, including trivial ones in which 2s face the same two outcomes. Notice,
however, that the probability of having repeated outcomes in a game tends to zero.
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Let n(τ) denote the period prevailing during iteration τ = 1, 2, .... Notice, in
particular, that Lτ = Kτ/|Zn(τ)|2. Next, observe that K1 = 0 by definition. Di-
viding both sides of equation (A2) by |Zn(τ)|2 therefore gives

E(Lτ ) ≥ τ − 1

|Zn(τ)|2
·
[

1

τ − 1
·
τ−1∑
s=1

E((1− Ls)2)
]
.(A3)

Now suppose α > 1, and consider (A3) as τ tends to infinity. Notice first
that the (τ − 1)/|Zn(τ)|2 term in the expression diverges to infinity. To see this
observe the following. The iteration corresponding to the arrival of the n-th novel
outcome, s(n) =

∑n−1
m=1 κ(m) + 1, is non-decreasing in n, and has order of n1+α.

Since each iteration τ satisfies s(n(τ)) ≤ τ ≤ s(n(τ) + 1) − 1, it follows that

n(τ) has order of τ
1

1+α , and hence that |Zn(τ)|2 = (N + n(τ))2 has order of τ
2

1+α .
Clearly if α > 1, then τ − 1 grows at a faster rate than |Zn(τ)|2. Next, notice
that the quantity on the right hand side of (A3) must surely be bounded above
by one, uniformly in τ (this is because surely Ls ≤ 1). The limit inferior of the
bracketed term in the expression must then be zero, since otherwise the quantity
on the right hand side would diverge to infinity.

Now suppose Ls converges in probability to L as hypothesized in the statement
of Lemma 2. The bracketed term in (A3) will then converge to E((1−L)2). Since
the limit inferior of these means is zero, it follows that E((1−L)2) = 0, and hence
that L = 1 a.e. This completes the proof of Lemma 2.

The next result is that if α > 1, then Ls converges in probability to some random
variable L. Taken together with Lemma A2, this implies that Ls converges in
probability to one, whenever α > 1. The proof of convergence is rather technical
and involved even for the simple version of the model that we focus on here. A
complete proof is given in this section but intuitive arguments are relied upon
whenever these are thoroughly convincing. Consider first some key observations.

The crucial factor regarding the convergence of Ls is the behavior of the pro-
cess along the subsequence, s(n), n = 1, 2, . . . , of iterations corresponding to the
arrivals of novel outcomes. In particular, if the process along this subsequence
converges to some limit, then the overall sequence must converge, and moreover,
it must possess the same limit. This is shown formally in the online Appendix.
An intuitive treatment is as follows.

Note that Ls is non-decreasing in between the arrivals of novel outcomes. Specif-
ically, the numerator, Ks, never decreases, and the denominator, |Zn|2, is con-
stant until the next outcome is introduced. However, the Ls process is not a
sub-martingale overall. The introduction of the n+ 1-th new outcome causes the
denominator to increase by a factor of n (i.e., the denominator changes from |Zn|2
to |Zn+1|2), inducing a sudden decrease in Ls.

33 It is important, however, that as
the number of outcomes increases, the drop in Ls due to the arrival of yet another

33If Ls were a sub-martingale, the almost sure convergence of the sequence would follow immediately
from the martingale convergence theorem.
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outcome becomes smaller, tending to zero eventually. To see this note that

Ls(n) ≥ Ks(n)−1/|Zn|2 = (Ks(n)−1/|Zn−1|2) · (|Zn−1|2/|Zn|2)
= Ls(n)−1 · (|Zn−1|2/|Zn|2),

(A4)

and hence that surely lim inf{Ls(n) − Ls(n)−1} ≥ 0, since |Zn−1|2/|Zn|2 surely
converges to one. The above discussion implies that, if the subsequence Ls(n), n =
1, 2, . . . , converges in probability to L, then so must the overall sequence, {Ls},
a result that is used in proving the next result—

LEMMA 3: Suppose that there are two player roles, and two actions available
for each role. If α > 1, then there is a random variable L such that Ls converges
in probability to L.

PROOF:
It suffices therefore to show that if α > 1, then the subsequence {Ls(n)} con-

verges in probability to some random variable L. Since we work exclusively with
this subsequence in the proof, we simplify notation by writing L̄n, K̄n, and H̄n in
place of Ls(n), Ks(n), and Hs(n), respectively, for each n = 1, 2, . . . . To establish

the convergence of L̄n we use the following definition and result (Egghe (1984)
[Definition VIII.1.2, and Theorem VIII.1.22]).
Submil Convergence: The {H̄n} adapted process {L̄n} is a sub-martingale in
the limit (Submil) if for each η > 0 there is almost surely an integer M such that
n > m ≥M implies E(L̄n | H̄m)− L̄m ≥ −η. If L̄n is a Submil, then there exists
a random variable L such that L̄n converges in probability to L.34

Given that Submils converge in probability, we prove Lemma 3 by showing that
if α > 1, then L̄n is a Submil. Toward this end, consider two periods, m, and n,
such that n > m. Given that L̄n = K̄n/|Zn|2 it is straightforward to show that

E(L̄n − L̄n−1 | H̄m) < 0 =⇒ E(K̄n − K̄n−1 | H̄m) < |Zn|2 − |Zn−1|2.(A5)

That is, E(L̄n−1 | H̄m) decreases only if the expected number of new subgames
reached during period n− 1 (the expected increase in the numerator of L̄n−1) is
less than the number of new subgames introduced by the n-th novel outcome.

Next, revisit equation (A1), summing this time over s = s(n), . . . , s(n+ 1)− 1,
to obtain

E(K̄n − K̄n−1 | H̄m) ≥
s(n)−1∑
s=s(n−1)

E((1− Ls)2) | H̄m)

≥ κ(n− 1) · E((1− Ls(n)−1)2 | H̄m).

(A6)

To get the second line here we used the fact that there are κ(n− 1) terms in the

34For guaranteed convergence here the process in question must be uniformly integrable. Ls satisfies
this requirement since |Ls| ≤ 1 surely.
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summation, and that Ls is non-decreasing as s ranges from s(n− 1) to s(n)− 1.
Combining (A6) with (A5) we see that

E(L̄n − L̄n−1 | H̄m) < 0 =⇒
E((1− Ls(n)−1)2 | H̄m) < (|Zn|2 − |Zn−1|2) /κ(n− 1).

(A7)

Now suppose α > 1. In this case the (|Zn|2 − |Zn−1|2)/κ(n− 1) term in equa-
tion (A7) surely converges to zero. The same equation then implies that for
sufficiently large n, E(L̄n − L̄n−1 | H̄m) is negative only if E(Ls(n)−1 | H̄m) is
sufficiently close to one. But as we argued before the statement of Lemma 3,
lim inf{L̄n−Ls(n)−1} = 0 surely (i.e. equation (A4)), and thus it follows that for

sufficiently large n, E(L̄n − L̄n−1 | H̄m) is negative only if E(L̄n | H̄m) is close to
one. More precisely, we have the following. Whenever α > 1, for each η > 0 there
is a finite integer, M(η), such that:

If n > m ≥M(η), then

E(L̄n − L̄n−1 | H̄m) < 0 =⇒ E(L̄n | H̄m) > 1− η.(A8)

It is this property of L̄n that ensures the process has the Submil property. This
will be shown next.

To see that L̄n is a Submil fix η and choose M(η) as in (A8). Consider any
m, and n such that n > m ≥ M(η). Suppose E(L̄n | H̄m) ≤ 1 − η. Then (A8)
implies E(L̄n− L̄n−1 | H̄m) ≥ 0, and therefore that E(L̄n−1 | H̄m) ≤ 1−η. This in
turn implies (using (A8) again) that E(L̄n−1−L̄n−2 | H̄m) ≥ 0, and therefore that
E(L̄n−2 | H̄m) ≤ 1 − η. Proceeding recursively we see that E(L̄n | H̄m) ≤ 1 − η
implies E(L̄k − L̄k−1 | H̄m) ≥ 0, for each k = m + 1, . . . , n, and therefore that
E(L̄n | H̄m)− L̄m ≥ 0. Clearly E(L̄n | H̄m)− L̄m < 0, only if E(L̄n | H̄m) > 1− η.
Since L̄m is surely no greater than one it follows that E(L̄n | H̄m)− L̄m ≥ −η, for
all n > m ≥M(η). Since η is an arbitrary positive number, it follows that L̄n is
a Submil. This completes the proof.

Lemmas 2, and 3 in combination give—

LEMMA 4: Suppose that there are two player roles, and two actions available
for each role. If α > 1, then the history reveals role 2 preferences completely in
the limit, that is, Ls converges in probability to one.

The SR-ToP strategy of role 1 makes the subgame perfect choice whenever the
2s’ choices in the game have been observed previously along Hs (See Definition 6
and the discussion in the example after it). Lemma 4 then sets the stage for the
ultimate dominance of the SR-ToP strategy.

The next result is that the naive strategy makes a suboptimal choice with
positive probability in the long run. Taken together with Lemma 4, the result
implies that the SR-ToP strategy outdoes the naive strategy eventually.

LEMMA 5: Suppose α < 3, and that the fixed game tree has four terminal nodes.
Then the payoff to the 1s from the naive strategy is dominated by the subgame
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perfect equilibrium payoff with probability that is bounded away from zero in the
limit.

PROOF:
Let G denote the distribution of games implied by F (where F is defined in

Assumption 2).
Note that all the games are new in the long run when α < 3, as is proved

after the statement of Theorem 1. We next show that there is a set of games
with positive measure under G for which the initial reaction of the naive strategy
differs from the equilibrium choice. Suppose there is a positive measure subset of
games, say Q′, that lack a dominant action for role 1, and in which role 2’s payoffs
are all distinct. For every game in this subset, if the initial response of the naive
strategy in the game is optimal, then this choice can be rendered suboptimal
by some rearrangement of 2’s payoffs. Therefore, if there is a positive measure
subset of Q′ such that the initial reaction by the naive strategy is optimal, then
there must also be a positive measure subset within Q′ where the initial reaction
is sub-optimal. The Glivenko-Cantelli Lemma (see Lemma 1) implies that these
games, in which the initial naive reaction is suboptimal, come up with positive
probability in the limit. This completes the proof of Lemma 5.

We have now shown that if α ∈ (1, 3), then 1) the SR-ToPs make the subgame
perfect equilibrium choice with probability tending to one (Lemma 4), and 2) the
payoff to the naive strategy is suboptimal with probability bounded away from
zero in the limit (Lemma 5). Since role 2s always make the sequentially rational
choice, the subgame perfect choice is optimal for the 1s. It follows naturally that
the SR-ToP strategy eventually dominates. We therefore end with—

LEMMA 6: Suppose the fraction of role 1s that use the SR-ToP strategy in it-
eration s is fs ∈ [0, 1]. If α ∈ (1, 3), then fs converges in probability to one.

Although the intuition for the result is compelling, a fully rigorous proof involves
rather tedious calculations. We therefore defer the formal proof to the online
Appendix (see Proposition 4 there).


