- 37. f(x, y, z) = x/(y + z); f(3, 2, 1)
- 38. $f(u, v, w) = w \tan(uv)$: $f_t(2, 0, 3)$

19-40 III Use the definition of partial derivatives as limits (4) to and $f_v(x, y)$ and $f_v(x, y)$.

39.
$$f(x, y) = x^2 - xy + 2y^2$$
 40. $f(x, y) = \sqrt{3x - y}$

40.
$$f(x, y) = \sqrt{3x - y}$$

11-44 III Use implicit differentiation to find ∂z/∂x and ∂z/∂y.

You can see what these surfaces look like in TEC Visual 14.3.) 41. $x^2 + y^2 + z^2 = 3xyz$

42.
$$yz = \ln(x + z)$$

44.
$$\sin(x vz) = x + 2v + 3z$$

43.
$$x - z = \arctan(yz)$$

45-46 III Find $\partial z/\partial x$ and $\partial z/\partial y$.

45. (a)
$$z = f(x) + a(y)$$

(b)
$$z = f(x + y)$$

46. (a)
$$z = f(x)g(y)$$

(b)
$$z = f(xy)$$

(c)
$$z = f(x/y)$$

47-52 III Find all the second partial derivatives.

47.
$$f(x, y) = x^{x}$$

47.
$$f(x, y) = x^4 - 3x^2y^3$$
 48. $f(x, y) = \ln(3x + 5y)$

49.
$$z = x/(x + y)$$

50.
$$z = y \tan 2x$$

51.
$$u = e^{-s} \sin t$$
 52. $v = \sqrt{x + y^2}$

3-56 III Verify that the conclusion of Clairaut's Theorem holds. that is, $u_{-} = u_{-}$.

$$53. \ u = x \sin(x + 2y)$$

$$54. \ u = x^4 y^2 - 2xy^5$$

55.
$$u = \ln \sqrt{x^2 + y^2}$$

56.
$$u = xye^{y}$$

57-64 III Find the indicated partial derivative.

57.
$$f(x, y) = 3xy^4 + x^3y^2$$
; f_{xxy} , f_{yyy}

58.
$$f(x, t) = x^2 e^{-ct}$$
; f_{cv} , f_{cv}

59.
$$f(x, y, z) = \cos(4x + 3y + 2z)$$
; f_{xy} , f_{yz}

60.
$$f(r, s, t) = r \ln(rs^2t^3)$$
; f_{rss} , f_{rss}

61.
$$u = e^{r\theta} \sin \theta$$
; $\frac{\partial^3 u}{\partial r^2 \partial \theta}$

62.
$$z = u\sqrt{v - w}$$
; $\frac{\partial^3 z}{\partial u \partial v \partial w}$

62.
$$z = u \sqrt{v - w}$$
, $\frac{\partial u}{\partial u} \frac{\partial v}{\partial w}$

63.
$$w = \frac{x}{y + 2z}$$
; $\frac{\partial^3 w}{\partial z \partial y \partial x}$, $\frac{\partial^3 w}{\partial x^2 \partial y}$

64.
$$u = x^a y^b z^c$$
; $\frac{\partial^6 u}{\partial x \partial y^2 \partial z^3}$

65. Use the table of values of f(x, y) to estimate the values of f.(3, 2), f.(3, 2.2), and f., (3, 2).

x y	1.8	2.0	2.2
2.5	12.5	10.2	9.3
3.0	18.1	17.5	15.9
3.5	20.0	22.4	26.1

- 66. Level curves are shown for a function f. Determine whether the following partial derivatives are positive or negative at the point P. (a) f. (b) f. (c) f.,
 - (d) f.,
- (e) f...

- **67.** Verify that the function $u = e^{-a^2k^2t} \sin kx$ is a solution of the heat conduction equation $u_i = \alpha^2 u_{ii}$
- 68. Determine whether each of the following functions is a solution of Laplace's equation $u_{xy} + u_{yy} = 0$.
 - (a) $u = x^2 + y^2$ (b) $u = x^2 - y^2$
 - (c) $u = x^3 + 3xy^2$
 - (d) $u = \ln \sqrt{x^2 + y^2}$
 - (e) $u = \sin x \cosh y + \cos x \sinh y$
- (f) $u = e^{-x} \cos y e^{-y} \cos x$ **69.** Verify that the function $u = 1/\sqrt{x^2 + v^2 + z^2}$ is a solution of
- the three-dimensional Laplace equation $u_{xx} + u_{yx} + u_{zz} = 0$. 70. Show that each of the following functions is a solution of the
- wave equation $u_{ij} = a^2 u_{ij}$. (a) $u = \sin(kx) \sin(akt)$
 - (b) $u = t/(a^2t^2 x^2)$

 - (c) $u = (x at)^6 + (x + at)^6$
- (d) $u = \sin(x at) + \ln(x + at)$
- 71. If f and q are twice differentiable functions of a single variable, show that the function

$$u(x, t) = f(x + at) + g(x - at)$$

- is a solution of the wave equation given in Exercise 70.
- 72. If $u = e^{a_1x_1+a_2x_2+\cdots+a_nx_n}$ where $a_1^2 + a_2^2 + \cdots + a_n^2 = 1$. show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} + \cdots + \frac{\partial^2 u}{\partial x^2} = u$$