14.5 Exercises

1-6 III Use the Chain Rule to find d2/dt or dw/dt.

1. $z = x^2y + xy^2$, $x = 2 + t^4$, $y = 1 - t^3$

2. $z = \sqrt{x^2 + y^2}$, $x = e^{2t}$, $y = e^{-2t}$

3. $z = \sin x \cos y$, $x = \pi t$, $y = \sqrt{t}$

4. $z = x \ln(x + 2y)$, $x = \sin t$, $y = \cos t$

5. $w = xe^{y/t}$, $x = t^2$, y = 1 - t, z = 1 + 2t6. $w = xy + yz^2$, x = e', $y = e'\sin t$, $z = e'\cos t$

7–12 III Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$.

7. $z = x^2 + xy + y^2$, x = s + t, y = st

7. $z = x^2 + xy + y^2$, x = s + t, y = st8. z = x/y, x = se', $y = 1 + se^{-t}$

9. $z = \arctan(2x + y)$, $x = s^2t$, $y = s \ln t$

10. $z = e^{xy} \tan y$, x = s + 2t, y = s/t

11. $z = e' \cos \theta$ r = st $\theta = \sqrt{s^2 + t^2}$

12. $z = \sin \alpha \tan \beta$. $\alpha = 3s + t$, $\beta = s - t$

10 TC (()) C (100 C)

- 13. If z = f(x, y), where f is differentiable, x = g(t), y = h(t), g(3) = 2, g'(3) = 5, h(3) = 7, h'(3) = -4, $f_*(2, 7) = 6$, and $f_{\frac{1}{2}}(2, 7) = -8$, find dz/dt when t = 3.
- 14. Let W(s, t) = F(u(s, t), v(s, t)), where F, u, and v are differentiable, u(1, 0) = 2, u(1, 0) = −2, u(1, 0) = 6, v(1, 0) = 3, v(1, 0) = 5, v(1, 0) = 4, v(1, 0) = -1, and F_v(2, 3) = 10. Find W_v(1, 0) and W_v(1, 0).
- 15. Suppose f is a differentiable function of x and y, and $g(u, v) = f(e^u + \sin v, e^u + \cos v)$. Use the table of values to calculate $g_v(0, 0)$ and $g_v(0, 0)$.

	f	g	f_{κ}	f,
(0, 0)	3	6	4	- 8
(1, 2)	- 6	3	2	5

16. Suppose f is a differentiable function of x and y, and $g(r, s) = f(2r - s, s^2 - 4r)$. Use the table of values in Exercise 15 to calculate $g_t(1, 2)$ and $g_t(1, 2)$.

17-20 III Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.

17. u = f(x, y), where x = x(r, s, t), y = y(r, s, t)

18. w = f(x, y, z), where x = x(t, u), y = y(t, u), z = z(t, u)**19.** v = f(p, q, r),

where p = p(x, y, z), q = q(x, y, z), r = r(x, y, z)

20. u = f(s, t), where s = s(w, x, y, z), t = t(w, x, y, z)

21-26 III Use the Chain Rule to find the indicated partial derivatives.

21. $z = x^2 + xy^3$, $x = uv^2 + w^3$, $y = u + ve^x$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$, $\frac{\partial z}{\partial w}$ when u = 2, v = 1, w = 0

 $\frac{\partial u}{\partial u}$, $\frac{\partial v}{\partial v}$, $\frac{\partial w}{\partial w}$ when u = 2, v = 1, w = 022. $u = \sqrt{r^2 + s^2}$, $r = v + x \cos t$, $s = x + v \sin t$:

22. $u = \sqrt{r^2 + s^2}$, $r = y + x \cos t$, $s = x + y \sin t$; $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial t}$ when x = 1, y = 2, t = 0

23. $R = \ln(u^2 + v^2 + w^2)$, u = x + 2y, v = 2x - y, w = 2xy;

w = 2xy; $\frac{\partial R}{\partial x}, \frac{\partial R}{\partial y}$ when x = y = 1

24. $M = xe^{y-z^2}$, x = 2uv, y = u - v, z = u + v; $\frac{\partial M}{\partial u}$, $\frac{\partial M}{\partial v}$ when u = 3, v = -1

25. $u = x^2 + yz$, $x = pr\cos\theta$, $y = pr\sin\theta$, z = p + r; $\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y}$ when p = 2, r = 3, $\theta = 0$

 $\frac{\partial u}{\partial p}$, $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \theta}$ when p = 2, r = 3, $\theta = 0$ **26.** $Y = w \tan^{-1}(uv)$, u = r + s, v = s + t, w = t + r;

20. $r = w \tan^{-1}(us), \quad u = r + s, \quad v = s + t, \quad w = t + r;$ $\frac{\partial Y}{\partial r}, \frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t} \quad \text{when } r = 1, s = 0, t = 1$

27-30 III Use Equation 6 to find dy/dx.

27. $\sqrt{xy} = 1 + x^2y$ 29. $\cos(x - y) = xe^y$

28. $y^5 + x^2y^3 = 1 + ye^{x^2}$ 30. $\sin x + \cos y = \sin x \cos y$

31-34

■ Use Equations 7 to find ∂z/∂x and ∂z/∂y.

31. $x^2 + y^2 + z^2 = 3xyz$

dW/dt

32. $xyz = \cos(x + y + z)$ 34. $yz = \ln(x + z)$

- **33.** $x z = \arctan(yz)$ **34.** $yz = \ln(x + z)$
- 35. The temperature at a point (x, y) is T(x, y), measured in degree-Celsius. A bug crawls so that its position after r seconds is given by x = √(1 + r, y = 2 + l, where x and y are measured in centimeters. The temperature function satisfies T_c(2, 3) = 4 and T_c(2, 3) = 3. How fast is the temperature rising on the bug's path after 3 seconds?
- 36. Wheat production in a given year, W. dopends on the average temperature T and the annual rainfall R. Scientists estimate that the average temperature is rising at a rate of 0.1 sm/year. They also estimate that, at current production levels, ∂W/∂T = -2 and ∂W/∂R = 8.
 - (a) What is the significance of the signs of these partial derivatives?(b) Estimate the current rate of change of wheat production.